var assert = require('assert') var crypto = require('./crypto') var BigInteger = require('bigi') var ECSignature = require('./ecsignature') var Point = require('ecurve').Point // https://tools.ietf.org/html/rfc6979#section-3.2 function deterministicGenerateK(curve, hash, d) { assert(Buffer.isBuffer(hash), 'Hash must be a Buffer, not ' + hash) assert.equal(hash.length, 32, 'Hash must be 256 bit') assert(d instanceof BigInteger, 'Private key must be a BigInteger') var x = d.toBuffer(32) var k = new Buffer(32) var v = new Buffer(32) // Step B v.fill(1) // Step C k.fill(0) // Step D k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([0]), x, hash]), k) // Step E v = crypto.HmacSHA256(v, k) // Step F k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([1]), x, hash]), k) // Step G v = crypto.HmacSHA256(v, k) // Step H1/H2a, ignored as tlen === qlen (256 bit) // Step H2b v = crypto.HmacSHA256(v, k) var T = BigInteger.fromBuffer(v) // Step H3, repeat until T is within the interval [0, n - 1] while ((T.signum() <= 0) || (T.compareTo(curve.n) >= 0)) { k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([0])]), k) v = crypto.HmacSHA256(v, k) T = BigInteger.fromBuffer(v) } return T } function sign(curve, hash, d) { var k = deterministicGenerateK(curve, hash, d) var n = curve.n var G = curve.G var Q = G.multiply(k) var e = BigInteger.fromBuffer(hash) var r = Q.affineX.mod(n) assert.notEqual(r.signum(), 0, 'Invalid R value') var s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n) assert.notEqual(s.signum(), 0, 'Invalid S value') var N_OVER_TWO = n.shiftRight(1) // enforce low S values, see bip62: 'low s values in signatures' if (s.compareTo(N_OVER_TWO) > 0) { s = n.subtract(s) } return new ECSignature(r, s) } function verify(curve, hash, signature, Q) { var e = BigInteger.fromBuffer(hash) return verifyRaw(curve, e, signature, Q) } function verifyRaw(curve, e, signature, Q) { var n = curve.n var G = curve.G var r = signature.r var s = signature.s if (r.signum() === 0 || r.compareTo(n) >= 0) return false if (s.signum() === 0 || s.compareTo(n) >= 0) return false var c = s.modInverse(n) var u1 = e.multiply(c).mod(n) var u2 = r.multiply(c).mod(n) var point = G.multiplyTwo(u1, Q, u2) var v = point.affineX.mod(n) return v.equals(r) } /** * Recover a public key from a signature. * * See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public * Key Recovery Operation". * * http://www.secg.org/download/aid-780/sec1-v2.pdf */ function recoverPubKey(curve, e, signature, i) { assert.strictEqual(i & 3, i, 'Recovery param is more than two bits') var r = signature.r var s = signature.s // A set LSB signifies that the y-coordinate is odd var isYOdd = i & 1 // The more significant bit specifies whether we should use the // first or second candidate key. var isSecondKey = i >> 1 var n = curve.n var G = curve.G // 1.1 Let x = r + jn var x = isSecondKey ? r.add(n) : r var R = curve.pointFromX(isYOdd, x) // 1.4 Check that nR is at infinity var nR = R.multiply(n) assert(curve.isInfinity(nR), 'nR is not a valid curve point') // Compute -e from e var eNeg = e.negate().mod(n) // 1.6.1 Compute Q = r^-1 (sR - eG) // Q = r^-1 (sR + -eG) var rInv = r.modInverse(n) var Q = R.multiplyTwo(s, G, eNeg).multiply(rInv) curve.validate(Q) return Q } /** * Calculate pubkey extraction parameter. * * When extracting a pubkey from a signature, we have to * distinguish four different cases. Rather than putting this * burden on the verifier, Bitcoin includes a 2-bit value with the * signature. * * This function simply tries all four cases and returns the value * that resulted in a successful pubkey recovery. */ function calcPubKeyRecoveryParam(curve, e, signature, Q) { for (var i = 0; i < 4; i++) { var Qprime = recoverPubKey(curve, e, signature, i) // 1.6.2 Verify Q if (Qprime.equals(Q)) { return i } } throw new Error('Unable to find valid recovery factor') } module.exports = { calcPubKeyRecoveryParam: calcPubKeyRecoveryParam, deterministicGenerateK: deterministicGenerateK, recoverPubKey: recoverPubKey, sign: sign, verify: verify, verifyRaw: verifyRaw }