var assert = require('assert') var crypto = require('./crypto') var BigInteger = require('bigi') var Point = require('ecurve').Point function deterministicGenerateK(curve, hash, d) { assert(Buffer.isBuffer(hash), 'Hash must be a Buffer, not ' + hash) assert.equal(hash.length, 32, 'Hash must be 256 bit') assert(d instanceof BigInteger, 'Private key must be a BigInteger') var x = d.toBuffer(32) var k = new Buffer(32) var v = new Buffer(32) k.fill(0) v.fill(1) k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([0]), x, hash]), k) v = crypto.HmacSHA256(v, k) k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([1]), x, hash]), k) v = crypto.HmacSHA256(v, k) v = crypto.HmacSHA256(v, k) var n = curve.params.n var kB = BigInteger.fromBuffer(v).mod(n) assert(kB.compareTo(BigInteger.ONE) > 0, 'Invalid k value') assert(kB.compareTo(n) < 0, 'Invalid k value') return kB } function sign(curve, hash, d) { var k = deterministicGenerateK(curve, hash, d) var n = curve.params.n var G = curve.params.G var Q = G.multiply(k) var e = BigInteger.fromBuffer(hash) var r = Q.affineX.mod(n) assert.notEqual(r.signum(), 0, 'Invalid R value') var s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n) assert.notEqual(s.signum(), 0, 'Invalid S value') var N_OVER_TWO = n.shiftRight(1) // enforce low S values, see bip62: 'low s values in signatures' if (s.compareTo(N_OVER_TWO) > 0) { s = n.subtract(s) } return {r: r, s: s} } function verify(curve, hash, signature, Q) { var e = BigInteger.fromBuffer(hash) return verifyRaw(curve, e, signature, Q) } function verifyRaw(curve, e, signature, Q) { var n = curve.params.n var G = curve.params.G var r = signature.r var s = signature.s if (r.signum() === 0 || r.compareTo(n) >= 0) return false if (s.signum() === 0 || s.compareTo(n) >= 0) return false var c = s.modInverse(n) var u1 = e.multiply(c).mod(n) var u2 = r.multiply(c).mod(n) var point = G.multiplyTwo(u1, Q, u2) var v = point.affineX.mod(n) return v.equals(r) } /** * Serialize a signature into DER format. * * Takes two BigIntegers representing r and s and returns a byte array. */ function serializeSig(signature) { var rBa = signature.r.toDERInteger() var sBa = signature.s.toDERInteger() var sequence = [] sequence.push(0x02) // INTEGER sequence.push(rBa.length) sequence = sequence.concat(rBa) sequence.push(0x02) // INTEGER sequence.push(sBa.length) sequence = sequence.concat(sBa) sequence.unshift(sequence.length) sequence.unshift(0x30) // SEQUENCE return new Buffer(sequence) } /** * Parses a buffer containing a DER-encoded signature. * * This function will return an object of the form: * * { * r: BigInteger, * s: BigInteger * } */ function parseSig(buffer) { assert.equal(buffer.readUInt8(0), 0x30, 'Not a DER sequence') assert.equal(buffer.readUInt8(1), buffer.length - 2, 'Invalid sequence length') assert.equal(buffer.readUInt8(2), 0x02, 'Expected a DER integer') var rLen = buffer.readUInt8(3) var rB = buffer.slice(4, 4 + rLen) var offset = 4 + rLen assert.equal(buffer.readUInt8(offset), 0x02, 'Expected a DER integer (2)') var sLen = buffer.readUInt8(1 + offset) var sB = buffer.slice(2 + offset) offset += 2 + sLen assert.equal(offset, buffer.length, 'Invalid DER encoding') return { r: BigInteger.fromDERInteger(rB), s: BigInteger.fromDERInteger(sB) } } function serializeSigCompact(signature, i, compressed) { if (compressed) { i += 4 } i += 27 var buffer = new Buffer(65) buffer.writeUInt8(i, 0) signature.r.toBuffer(32).copy(buffer, 1) signature.s.toBuffer(32).copy(buffer, 33) return buffer } function parseSigCompact(buffer) { assert.equal(buffer.length, 65, 'Invalid signature length') var i = buffer.readUInt8(0) - 27 // At most 3 bits assert.equal(i, i & 7, 'Invalid signature parameter') var compressed = !!(i & 4) // Recovery param only i = i & 3 var r = BigInteger.fromBuffer(buffer.slice(1, 33)) var s = BigInteger.fromBuffer(buffer.slice(33)) return { signature: { r: r, s: s }, i: i, compressed: compressed } } /** * Recover a public key from a signature. * * See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public * Key Recovery Operation". * * http://www.secg.org/download/aid-780/sec1-v2.pdf */ function recoverPubKey(curve, e, signature, i) { assert.strictEqual(i & 3, i, 'Recovery param is more than two bits') var r = signature.r var s = signature.s // A set LSB signifies that the y-coordinate is odd // By reduction, the y-coordinate is even if it is clear var isYEven = !(i & 1) // The more significant bit specifies whether we should use the // first or second candidate key. var isSecondKey = i >> 1 var n = curve.params.n var G = curve.params.G var p = curve.p var a = curve.a var b = curve.b // We precalculate (p + 1) / 4 where p is the field order if (!curve.P_OVER_FOUR) { curve.P_OVER_FOUR = p.add(BigInteger.ONE).shiftRight(2) } // 1.1 Compute x var x = isSecondKey ? r.add(n) : r // 1.3 Convert x to point var alpha = x.pow(3).add(a.multiply(x)).add(b).mod(p) var beta = alpha.modPow(curve.P_OVER_FOUR, p) // If beta is even, but y isn't, or vice versa, then convert it, // otherwise we're done and y == beta. var y = (beta.isEven() ^ isYEven) ? p.subtract(beta) : beta // 1.4 Check that nR isn't at infinity var R = Point.fromAffine(curve, x, y) var nR = R.multiply(n) assert(curve.isInfinity(nR), 'nR is not a valid curve point') // 1.5 Compute -e from e var eNeg = e.negate().mod(n) // 1.6 Compute Q = r^-1 (sR - eG) // Q = r^-1 (sR + -eG) var rInv = r.modInverse(n) var Q = R.multiplyTwo(s, G, eNeg).multiply(rInv) curve.validate(Q) if (!verifyRaw(curve, e, signature, Q)) { throw new Error("Pubkey recovery unsuccessful") } return Q } /** * Calculate pubkey extraction parameter. * * When extracting a pubkey from a signature, we have to * distinguish four different cases. Rather than putting this * burden on the verifier, Bitcoin includes a 2-bit value with the * signature. * * This function simply tries all four cases and returns the value * that resulted in a successful pubkey recovery. */ function calcPubKeyRecoveryParam(curve, e, signature, Q) { for (var i = 0; i < 4; i++) { var Qprime = recoverPubKey(curve, e, signature, i) if (Qprime.equals(Q)) { return i } } throw new Error('Unable to find valid recovery factor') } module.exports = { calcPubKeyRecoveryParam: calcPubKeyRecoveryParam, deterministicGenerateK: deterministicGenerateK, recoverPubKey: recoverPubKey, sign: sign, verify: verify, verifyRaw: verifyRaw, serializeSig: serializeSig, parseSig: parseSig, serializeSigCompact: serializeSigCompact, parseSigCompact: parseSigCompact }