var base58check = require('bs58check') var bcrypto = require('./crypto') var createHmac = require('create-hmac') var typeforce = require('typeforce') var types = require('./types') var NETWORKS = require('./networks') var BigInteger = require('bigi') var ECPair = require('./ecpair') var ecurve = require('ecurve') var curve = ecurve.getCurveByName('secp256k1') function HDNode (keyPair, chainCode) { typeforce(types.tuple('ECPair', types.Buffer256bit), arguments) if (!keyPair.compressed) throw new TypeError('BIP32 only allows compressed keyPairs') this.keyPair = keyPair this.chainCode = chainCode this.depth = 0 this.index = 0 this.parentFingerprint = 0x00000000 } HDNode.HIGHEST_BIT = 0x80000000 HDNode.LENGTH = 78 HDNode.MASTER_SECRET = new Buffer('Bitcoin seed') HDNode.fromSeedBuffer = function (seed, network) { typeforce(types.tuple(types.Buffer, types.maybe(types.Network)), arguments) if (seed.length < 16) throw new TypeError('Seed should be at least 128 bits') if (seed.length > 64) throw new TypeError('Seed should be at most 512 bits') var I = createHmac('sha512', HDNode.MASTER_SECRET).update(seed).digest() var IL = I.slice(0, 32) var IR = I.slice(32) // In case IL is 0 or >= n, the master key is invalid // This is handled by the ECPair constructor var pIL = BigInteger.fromBuffer(IL) var keyPair = new ECPair(pIL, null, { network: network }) return new HDNode(keyPair, IR) } HDNode.fromSeedHex = function (hex, network) { return HDNode.fromSeedBuffer(new Buffer(hex, 'hex'), network) } HDNode.fromBase58 = function (string, networks) { var buffer = base58check.decode(string) if (buffer.length !== 78) throw new Error('Invalid buffer length') // 4 bytes: version bytes var version = buffer.readUInt32BE(0) var network // list of networks? if (Array.isArray(networks)) { network = networks.filter(function (network) { return version === network.bip32.private || version === network.bip32.public }).pop() || {} // otherwise, assume a network object (or default to bitcoin) } else { network = networks || NETWORKS.bitcoin } if (version !== network.bip32.private && version !== network.bip32.public) throw new Error('Invalid network') // 1 byte: depth: 0x00 for master nodes, 0x01 for level-1 descendants, ... var depth = buffer[4] // 4 bytes: the fingerprint of the parent's key (0x00000000 if master key) var parentFingerprint = buffer.readUInt32BE(5) if (depth === 0) { if (parentFingerprint !== 0x00000000) throw new Error('Invalid parent fingerprint') } // 4 bytes: child number. This is the number i in xi = xpar/i, with xi the key being serialized. // This is encoded in MSB order. (0x00000000 if master key) var index = buffer.readUInt32BE(9) if (depth === 0 && index !== 0) throw new Error('Invalid index') // 32 bytes: the chain code var chainCode = buffer.slice(13, 45) var keyPair // 33 bytes: private key data (0x00 + k) if (version === network.bip32.private) { if (buffer.readUInt8(45) !== 0x00) throw new Error('Invalid private key') var d = BigInteger.fromBuffer(buffer.slice(46, 78)) keyPair = new ECPair(d, null, { network: network }) // 33 bytes: public key data (0x02 + X or 0x03 + X) } else { var Q = ecurve.Point.decodeFrom(curve, buffer.slice(45, 78)) if (!Q.compressed) throw new Error('Invalid public key') // Verify that the X coordinate in the public point corresponds to a point on the curve. // If not, the extended public key is invalid. curve.validate(Q) keyPair = new ECPair(null, Q, { network: network }) } var hd = new HDNode(keyPair, chainCode) hd.depth = depth hd.index = index hd.parentFingerprint = parentFingerprint return hd } HDNode.prototype.getAddress = function () { return this.keyPair.getAddress() } HDNode.prototype.getIdentifier = function () { return bcrypto.hash160(this.keyPair.getPublicKeyBuffer()) } HDNode.prototype.getFingerprint = function () { return this.getIdentifier().slice(0, 4) } HDNode.prototype.getNetwork = function () { return this.keyPair.getNetwork() } HDNode.prototype.getPublicKeyBuffer = function () { return this.keyPair.getPublicKeyBuffer() } HDNode.prototype.neutered = function () { var neuteredKeyPair = new ECPair(null, this.keyPair.Q, { network: this.keyPair.network }) var neutered = new HDNode(neuteredKeyPair, this.chainCode) neutered.depth = this.depth neutered.index = this.index neutered.parentFingerprint = this.parentFingerprint return neutered } HDNode.prototype.sign = function (hash) { return this.keyPair.sign(hash) } HDNode.prototype.verify = function (hash, signature) { return this.keyPair.verify(hash, signature) } HDNode.prototype.toBase58 = function (__isPrivate) { if (__isPrivate !== undefined) throw new TypeError('Unsupported argument in 2.0.0') // Version var network = this.keyPair.network var version = this.keyPair.d ? network.bip32.private : network.bip32.public var buffer = new Buffer(78) // 4 bytes: version bytes buffer.writeUInt32BE(version, 0) // 1 byte: depth: 0x00 for master nodes, 0x01 for level-1 descendants, .... buffer.writeUInt8(this.depth, 4) // 4 bytes: the fingerprint of the parent's key (0x00000000 if master key) buffer.writeUInt32BE(this.parentFingerprint, 5) // 4 bytes: child number. This is the number i in xi = xpar/i, with xi the key being serialized. // This is encoded in big endian. (0x00000000 if master key) buffer.writeUInt32BE(this.index, 9) // 32 bytes: the chain code this.chainCode.copy(buffer, 13) // 33 bytes: the public key or private key data if (this.keyPair.d) { // 0x00 + k for private keys buffer.writeUInt8(0, 45) this.keyPair.d.toBuffer(32).copy(buffer, 46) // 33 bytes: the public key } else { // X9.62 encoding for public keys this.keyPair.getPublicKeyBuffer().copy(buffer, 45) } return base58check.encode(buffer) } // https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#child-key-derivation-ckd-functions HDNode.prototype.derive = function (index) { var isHardened = index >= HDNode.HIGHEST_BIT var data = new Buffer(37) // Hardened child if (isHardened) { if (!this.keyPair.d) throw new TypeError('Could not derive hardened child key') // data = 0x00 || ser256(kpar) || ser32(index) data[0] = 0x00 this.keyPair.d.toBuffer(32).copy(data, 1) data.writeUInt32BE(index, 33) // Normal child } else { // data = serP(point(kpar)) || ser32(index) // = serP(Kpar) || ser32(index) this.keyPair.getPublicKeyBuffer().copy(data, 0) data.writeUInt32BE(index, 33) } var I = createHmac('sha512', this.chainCode).update(data).digest() var IL = I.slice(0, 32) var IR = I.slice(32) var pIL = BigInteger.fromBuffer(IL) // In case parse256(IL) >= n, proceed with the next value for i if (pIL.compareTo(curve.n) >= 0) { return this.derive(index + 1) } // Private parent key -> private child key var derivedKeyPair if (this.keyPair.d) { // ki = parse256(IL) + kpar (mod n) var ki = pIL.add(this.keyPair.d).mod(curve.n) // In case ki == 0, proceed with the next value for i if (ki.signum() === 0) { return this.derive(index + 1) } derivedKeyPair = new ECPair(ki, null, { network: this.keyPair.network }) // Public parent key -> public child key } else { // Ki = point(parse256(IL)) + Kpar // = G*IL + Kpar var Ki = curve.G.multiply(pIL).add(this.keyPair.Q) // In case Ki is the point at infinity, proceed with the next value for i if (curve.isInfinity(Ki)) { return this.derive(index + 1) } derivedKeyPair = new ECPair(null, Ki, { network: this.keyPair.network }) } var hd = new HDNode(derivedKeyPair, IR) hd.depth = this.depth + 1 hd.index = index hd.parentFingerprint = this.getFingerprint().readUInt32BE(0) return hd } HDNode.prototype.deriveHardened = function (index) { // Only derives hardened private keys by default return this.derive(index + HDNode.HIGHEST_BIT) } HDNode.prototype.toString = HDNode.prototype.toBase58 module.exports = HDNode