import * as assert from 'assert'; import * as bip32 from 'bip32'; import { ECPair } from 'ecpair'; import { describe, it } from 'mocha'; import * as bitcoin from '../..'; import { regtestUtils } from './_regtest'; const rng = require('randombytes'); const regtest = regtestUtils.network; const validator = ( pubkey: Buffer, msghash: Buffer, signature: Buffer, ): boolean => ECPair.fromPublicKey(pubkey).verify(msghash, signature); // See bottom of file for some helper functions used to make the payment objects needed. describe('bitcoinjs-lib (transactions with psbt)', () => { it('can create a 1-to-1 Transaction', () => { const alice = ECPair.fromWIF( 'L2uPYXe17xSTqbCjZvL2DsyXPCbXspvcu5mHLDYUgzdUbZGSKrSr', ); const psbt = new bitcoin.Psbt(); psbt.setVersion(2); // These are defaults. This line is not needed. psbt.setLocktime(0); // These are defaults. This line is not needed. psbt.addInput({ // if hash is string, txid, if hash is Buffer, is reversed compared to txid hash: '7d067b4a697a09d2c3cff7d4d9506c9955e93bff41bf82d439da7d030382bc3e', index: 0, sequence: 0xffffffff, // These are defaults. This line is not needed. // non-segwit inputs now require passing the whole previous tx as Buffer nonWitnessUtxo: Buffer.from( '0200000001f9f34e95b9d5c8abcd20fc5bd4a825d1517be62f0f775e5f36da944d9' + '452e550000000006b483045022100c86e9a111afc90f64b4904bd609e9eaed80d48' + 'ca17c162b1aca0a788ac3526f002207bb79b60d4fc6526329bf18a77135dc566020' + '9e761da46e1c2f1152ec013215801210211755115eabf846720f5cb18f248666fec' + '631e5e1e66009ce3710ceea5b1ad13ffffffff01' + // value in satoshis (Int64LE) = 0x015f90 = 90000 '905f010000000000' + // scriptPubkey length '19' + // scriptPubkey '76a9148bbc95d2709c71607c60ee3f097c1217482f518d88ac' + // locktime '00000000', 'hex', ), // // If this input was segwit, instead of nonWitnessUtxo, you would add // // a witnessUtxo as follows. The scriptPubkey and the value only are needed. // witnessUtxo: { // script: Buffer.from( // '76a9148bbc95d2709c71607c60ee3f097c1217482f518d88ac', // 'hex', // ), // value: 90000, // }, // Not featured here: // redeemScript. A Buffer of the redeemScript for P2SH // witnessScript. A Buffer of the witnessScript for P2WSH }); psbt.addOutput({ address: '1KRMKfeZcmosxALVYESdPNez1AP1mEtywp', value: 80000, }); psbt.signInput(0, alice); psbt.validateSignaturesOfInput(0, validator); psbt.finalizeAllInputs(); assert.strictEqual( psbt.extractTransaction().toHex(), '02000000013ebc8203037dda39d482bf41ff3be955996c50d9d4f7cfc3d2097a694a7' + 'b067d000000006b483045022100931b6db94aed25d5486884d83fc37160f37f3368c0' + 'd7f48c757112abefec983802205fda64cff98c849577026eb2ce916a50ea70626a766' + '9f8596dd89b720a26b4d501210365db9da3f8a260078a7e8f8b708a1161468fb2323f' + 'fda5ec16b261ec1056f455ffffffff0180380100000000001976a914ca0d36044e0dc' + '08a22724efa6f6a07b0ec4c79aa88ac00000000', ); }); it('can create (and broadcast via 3PBP) a typical Transaction', async () => { // these are { payment: Payment; keys: ECPair[] } const alice1 = createPayment('p2pkh'); const alice2 = createPayment('p2pkh'); // give Alice 2 unspent outputs const inputData1 = await getInputData( 5e4, alice1.payment, false, 'noredeem', ); const inputData2 = await getInputData( 7e4, alice2.payment, false, 'noredeem', ); { const { hash, // string of txid or Buffer of tx hash. (txid and hash are reverse order) index, // the output index of the txo you are spending nonWitnessUtxo, // the full previous transaction as a Buffer } = inputData1; assert.deepStrictEqual({ hash, index, nonWitnessUtxo }, inputData1); } // network is only needed if you pass an address to addOutput // using script (Buffer of scriptPubkey) instead will avoid needed network. const psbt = new bitcoin.Psbt({ network: regtest }) .addInput(inputData1) // alice1 unspent .addInput(inputData2) // alice2 unspent .addOutput({ address: 'mwCwTceJvYV27KXBc3NJZys6CjsgsoeHmf', value: 8e4, }) // the actual "spend" .addOutput({ address: alice2.payment.address, // OR script, which is a Buffer. value: 1e4, }); // Alice's change // (in)(5e4 + 7e4) - (out)(8e4 + 1e4) = (fee)3e4 = 30000, this is the miner fee // Let's show a new feature with PSBT. // We can have multiple signers sign in parrallel and combine them. // (this is not necessary, but a nice feature) // encode to send out to the signers const psbtBaseText = psbt.toBase64(); // each signer imports const signer1 = bitcoin.Psbt.fromBase64(psbtBaseText); const signer2 = bitcoin.Psbt.fromBase64(psbtBaseText); // Alice signs each input with the respective private keys // signInput and signInputAsync are better // (They take the input index explicitly as the first arg) signer1.signAllInputs(alice1.keys[0]); signer2.signAllInputs(alice2.keys[0]); // If your signer object's sign method returns a promise, use the following // await signer2.signAllInputsAsync(alice2.keys[0]) // encode to send back to combiner (signer 1 and 2 are not near each other) const s1text = signer1.toBase64(); const s2text = signer2.toBase64(); const final1 = bitcoin.Psbt.fromBase64(s1text); const final2 = bitcoin.Psbt.fromBase64(s2text); // final1.combine(final2) would give the exact same result psbt.combine(final1, final2); // Finalizer wants to check all signatures are valid before finalizing. // If the finalizer wants to check for specific pubkeys, the second arg // can be passed. See the first multisig example below. assert.strictEqual(psbt.validateSignaturesOfInput(0, validator), true); assert.strictEqual(psbt.validateSignaturesOfInput(1, validator), true); // This step it new. Since we separate the signing operation and // the creation of the scriptSig and witness stack, we are able to psbt.finalizeAllInputs(); // build and broadcast our RegTest network await regtestUtils.broadcast(psbt.extractTransaction().toHex()); // to build and broadcast to the actual Bitcoin network, see https://github.com/bitcoinjs/bitcoinjs-lib/issues/839 }); it('can create (and broadcast via 3PBP) a Transaction with an OP_RETURN output', async () => { const alice1 = createPayment('p2pkh'); const inputData1 = await getInputData( 2e5, alice1.payment, false, 'noredeem', ); const data = Buffer.from('bitcoinjs-lib', 'utf8'); const embed = bitcoin.payments.embed({ data: [data] }); const psbt = new bitcoin.Psbt({ network: regtest }) .addInput(inputData1) .addOutput({ script: embed.output!, value: 1000, }) .addOutput({ address: regtestUtils.RANDOM_ADDRESS, value: 1e5, }) .signInput(0, alice1.keys[0]); assert.strictEqual(psbt.validateSignaturesOfInput(0, validator), true); psbt.finalizeAllInputs(); // build and broadcast to the RegTest network await regtestUtils.broadcast(psbt.extractTransaction().toHex()); }); it('can create (and broadcast via 3PBP) a Transaction, w/ a P2SH(P2MS(2 of 4)) (multisig) input', async () => { const multisig = createPayment('p2sh-p2ms(2 of 4)'); const inputData1 = await getInputData(2e4, multisig.payment, false, 'p2sh'); { const { hash, index, nonWitnessUtxo, redeemScript, // NEW: P2SH needs to give redeemScript when adding an input. } = inputData1; assert.deepStrictEqual( { hash, index, nonWitnessUtxo, redeemScript }, inputData1, ); } const psbt = new bitcoin.Psbt({ network: regtest }) .addInput(inputData1) .addOutput({ address: regtestUtils.RANDOM_ADDRESS, value: 1e4, }) .signInput(0, multisig.keys[0]) .signInput(0, multisig.keys[2]); assert.strictEqual(psbt.validateSignaturesOfInput(0, validator), true); assert.strictEqual( psbt.validateSignaturesOfInput(0, validator, multisig.keys[0].publicKey), true, ); assert.throws(() => { psbt.validateSignaturesOfInput(0, validator, multisig.keys[3].publicKey); }, new RegExp('No signatures for this pubkey')); psbt.finalizeAllInputs(); const tx = psbt.extractTransaction(); // build and broadcast to the Bitcoin RegTest network await regtestUtils.broadcast(tx.toHex()); await regtestUtils.verify({ txId: tx.getId(), address: regtestUtils.RANDOM_ADDRESS, vout: 0, value: 1e4, }); }); it('can create (and broadcast via 3PBP) a Transaction, w/ a P2SH(P2WPKH) input', async () => { const p2sh = createPayment('p2sh-p2wpkh'); const inputData = await getInputData(5e4, p2sh.payment, true, 'p2sh'); const inputData2 = await getInputData(5e4, p2sh.payment, true, 'p2sh'); { const { hash, index, witnessUtxo, // NEW: this is an object of the output being spent { script: Buffer; value: Satoshis; } redeemScript, } = inputData; assert.deepStrictEqual( { hash, index, witnessUtxo, redeemScript }, inputData, ); } const keyPair = p2sh.keys[0]; const outputData = { script: p2sh.payment.output, // sending to myself for fun value: 2e4, }; const outputData2 = { script: p2sh.payment.output, // sending to myself for fun value: 7e4, }; const tx = new bitcoin.Psbt() .addInputs([inputData, inputData2]) .addOutputs([outputData, outputData2]) .signAllInputs(keyPair) .finalizeAllInputs() .extractTransaction(); // build and broadcast to the Bitcoin RegTest network await regtestUtils.broadcast(tx.toHex()); await regtestUtils.verify({ txId: tx.getId(), address: p2sh.payment.address, vout: 0, value: 2e4, }); }); it('can create (and broadcast via 3PBP) a Transaction, w/ a P2SH(P2WPKH) input with nonWitnessUtxo', async () => { // For learning purposes, ignore this test. // REPEATING ABOVE BUT WITH nonWitnessUtxo by passing false to getInputData const p2sh = createPayment('p2sh-p2wpkh'); const inputData = await getInputData(5e4, p2sh.payment, false, 'p2sh'); const inputData2 = await getInputData(5e4, p2sh.payment, false, 'p2sh'); const keyPair = p2sh.keys[0]; const outputData = { script: p2sh.payment.output, value: 2e4, }; const outputData2 = { script: p2sh.payment.output, value: 7e4, }; const tx = new bitcoin.Psbt() .addInputs([inputData, inputData2]) .addOutputs([outputData, outputData2]) .signAllInputs(keyPair) .finalizeAllInputs() .extractTransaction(); await regtestUtils.broadcast(tx.toHex()); await regtestUtils.verify({ txId: tx.getId(), address: p2sh.payment.address, vout: 0, value: 2e4, }); }); it('can create (and broadcast via 3PBP) a Transaction, w/ a P2WPKH input', async () => { // the only thing that changes is you don't give a redeemscript for input data const p2wpkh = createPayment('p2wpkh'); const inputData = await getInputData(5e4, p2wpkh.payment, true, 'noredeem'); { const { hash, index, witnessUtxo } = inputData; assert.deepStrictEqual({ hash, index, witnessUtxo }, inputData); } const psbt = new bitcoin.Psbt({ network: regtest }) .addInput(inputData) .addOutput({ address: regtestUtils.RANDOM_ADDRESS, value: 2e4, }) .signInput(0, p2wpkh.keys[0]); assert.strictEqual(psbt.validateSignaturesOfInput(0, validator), true); psbt.finalizeAllInputs(); const tx = psbt.extractTransaction(); // build and broadcast to the Bitcoin RegTest network await regtestUtils.broadcast(tx.toHex()); await regtestUtils.verify({ txId: tx.getId(), address: regtestUtils.RANDOM_ADDRESS, vout: 0, value: 2e4, }); }); it('can create (and broadcast via 3PBP) a Transaction, w/ a P2WPKH input with nonWitnessUtxo', async () => { // For learning purposes, ignore this test. // REPEATING ABOVE BUT WITH nonWitnessUtxo by passing false to getInputData const p2wpkh = createPayment('p2wpkh'); const inputData = await getInputData( 5e4, p2wpkh.payment, false, 'noredeem', ); const psbt = new bitcoin.Psbt({ network: regtest }) .addInput(inputData) .addOutput({ address: regtestUtils.RANDOM_ADDRESS, value: 2e4, }) .signInput(0, p2wpkh.keys[0]); psbt.finalizeAllInputs(); const tx = psbt.extractTransaction(); await regtestUtils.broadcast(tx.toHex()); await regtestUtils.verify({ txId: tx.getId(), address: regtestUtils.RANDOM_ADDRESS, vout: 0, value: 2e4, }); }); it('can create (and broadcast via 3PBP) a Transaction, w/ a P2WSH(P2PK) input', async () => { const p2wsh = createPayment('p2wsh-p2pk'); const inputData = await getInputData(5e4, p2wsh.payment, true, 'p2wsh'); { const { hash, index, witnessUtxo, witnessScript, // NEW: A Buffer of the witnessScript } = inputData; assert.deepStrictEqual( { hash, index, witnessUtxo, witnessScript }, inputData, ); } const psbt = new bitcoin.Psbt({ network: regtest }) .addInput(inputData) .addOutput({ address: regtestUtils.RANDOM_ADDRESS, value: 2e4, }) .signInput(0, p2wsh.keys[0]); assert.strictEqual(psbt.validateSignaturesOfInput(0, validator), true); psbt.finalizeAllInputs(); const tx = psbt.extractTransaction(); // build and broadcast to the Bitcoin RegTest network await regtestUtils.broadcast(tx.toHex()); await regtestUtils.verify({ txId: tx.getId(), address: regtestUtils.RANDOM_ADDRESS, vout: 0, value: 2e4, }); }); it('can create (and broadcast via 3PBP) a Transaction, w/ a P2WSH(P2PK) input with nonWitnessUtxo', async () => { // For learning purposes, ignore this test. // REPEATING ABOVE BUT WITH nonWitnessUtxo by passing false to getInputData const p2wsh = createPayment('p2wsh-p2pk'); const inputData = await getInputData(5e4, p2wsh.payment, false, 'p2wsh'); const psbt = new bitcoin.Psbt({ network: regtest }) .addInput(inputData) .addOutput({ address: regtestUtils.RANDOM_ADDRESS, value: 2e4, }) .signInput(0, p2wsh.keys[0]); psbt.finalizeAllInputs(); const tx = psbt.extractTransaction(); await regtestUtils.broadcast(tx.toHex()); await regtestUtils.verify({ txId: tx.getId(), address: regtestUtils.RANDOM_ADDRESS, vout: 0, value: 2e4, }); }); it( 'can create (and broadcast via 3PBP) a Transaction, w/ a ' + 'P2SH(P2WSH(P2MS(3 of 4))) (SegWit multisig) input', async () => { const p2sh = createPayment('p2sh-p2wsh-p2ms(3 of 4)'); const inputData = await getInputData( 5e4, p2sh.payment, true, 'p2sh-p2wsh', ); { const { hash, index, witnessUtxo, redeemScript, witnessScript, } = inputData; assert.deepStrictEqual( { hash, index, witnessUtxo, redeemScript, witnessScript }, inputData, ); } const psbt = new bitcoin.Psbt({ network: regtest }) .addInput(inputData) .addOutput({ address: regtestUtils.RANDOM_ADDRESS, value: 2e4, }) .signInput(0, p2sh.keys[0]) .signInput(0, p2sh.keys[2]) .signInput(0, p2sh.keys[3]); assert.strictEqual(psbt.validateSignaturesOfInput(0, validator), true); assert.strictEqual( psbt.validateSignaturesOfInput(0, validator, p2sh.keys[3].publicKey), true, ); assert.throws(() => { psbt.validateSignaturesOfInput(0, validator, p2sh.keys[1].publicKey); }, new RegExp('No signatures for this pubkey')); psbt.finalizeAllInputs(); const tx = psbt.extractTransaction(); // build and broadcast to the Bitcoin RegTest network await regtestUtils.broadcast(tx.toHex()); await regtestUtils.verify({ txId: tx.getId(), address: regtestUtils.RANDOM_ADDRESS, vout: 0, value: 2e4, }); }, ); it( 'can create (and broadcast via 3PBP) a Transaction, w/ a ' + 'P2SH(P2WSH(P2MS(3 of 4))) (SegWit multisig) input with nonWitnessUtxo', async () => { // For learning purposes, ignore this test. // REPEATING ABOVE BUT WITH nonWitnessUtxo by passing false to getInputData const p2sh = createPayment('p2sh-p2wsh-p2ms(3 of 4)'); const inputData = await getInputData( 5e4, p2sh.payment, false, 'p2sh-p2wsh', ); const psbt = new bitcoin.Psbt({ network: regtest }) .addInput(inputData) .addOutput({ address: regtestUtils.RANDOM_ADDRESS, value: 2e4, }) .signInput(0, p2sh.keys[0]) .signInput(0, p2sh.keys[2]) .signInput(0, p2sh.keys[3]); psbt.finalizeAllInputs(); const tx = psbt.extractTransaction(); await regtestUtils.broadcast(tx.toHex()); await regtestUtils.verify({ txId: tx.getId(), address: regtestUtils.RANDOM_ADDRESS, vout: 0, value: 2e4, }); }, ); it( 'can create (and broadcast via 3PBP) a Transaction, w/ a ' + 'P2SH(P2MS(2 of 2)) input with nonWitnessUtxo', async () => { const myKey = ECPair.makeRandom({ network: regtest }); const myKeys = [ myKey, ECPair.fromPrivateKey(myKey.privateKey!, { network: regtest }), ]; const p2sh = createPayment('p2sh-p2ms(2 of 2)', myKeys); const inputData = await getInputData(5e4, p2sh.payment, false, 'p2sh'); const psbt = new bitcoin.Psbt({ network: regtest }) .addInput(inputData) .addOutput({ address: regtestUtils.RANDOM_ADDRESS, value: 2e4, }) .signInput(0, p2sh.keys[0]); psbt.finalizeAllInputs(); const tx = psbt.extractTransaction(); await regtestUtils.broadcast(tx.toHex()); await regtestUtils.verify({ txId: tx.getId(), address: regtestUtils.RANDOM_ADDRESS, vout: 0, value: 2e4, }); }, ); it('can create (and broadcast via 3PBP) a Transaction, w/ a P2WPKH input using HD', async () => { const hdRoot = bip32.fromSeed(rng(64)); const masterFingerprint = hdRoot.fingerprint; const path = "m/84'/0'/0'/0/0"; const childNode = hdRoot.derivePath(path); const pubkey = childNode.publicKey; // This information should be added to your input via updateInput // You can add multiple bip32Derivation objects for multisig, but // each must have a unique pubkey. // // This is useful because as long as you store the masterFingerprint on // the PSBT Creator's server, you can have the PSBT Creator do the heavy // lifting with derivation from your m/84'/0'/0' xpub, (deriving only 0/0 ) // and your signer just needs to pass in an HDSigner interface (ie. bip32 library) const updateData = { bip32Derivation: [ { masterFingerprint, path, pubkey, }, ], }; const p2wpkh = createPayment('p2wpkh', [childNode]); const inputData = await getInputData(5e4, p2wpkh.payment, true, 'noredeem'); { const { hash, index, witnessUtxo } = inputData; assert.deepStrictEqual({ hash, index, witnessUtxo }, inputData); } // You can add extra attributes for updateData into the addInput(s) object(s) Object.assign(inputData, updateData); const psbt = new bitcoin.Psbt({ network: regtest }) .addInput(inputData) // .updateInput(0, updateData) // if you didn't merge the bip32Derivation with inputData .addOutput({ address: regtestUtils.RANDOM_ADDRESS, value: 2e4, }) .signInputHD(0, hdRoot); // must sign with root!!! assert.strictEqual(psbt.validateSignaturesOfInput(0, validator), true); assert.strictEqual( psbt.validateSignaturesOfInput(0, validator, childNode.publicKey), true, ); psbt.finalizeAllInputs(); const tx = psbt.extractTransaction(); // build and broadcast to the Bitcoin RegTest network await regtestUtils.broadcast(tx.toHex()); await regtestUtils.verify({ txId: tx.getId(), address: regtestUtils.RANDOM_ADDRESS, vout: 0, value: 2e4, }); }); }); function createPayment(_type: string, myKeys?: any[], network?: any): any { network = network || regtest; const splitType = _type.split('-').reverse(); const isMultisig = splitType[0].slice(0, 4) === 'p2ms'; const keys = myKeys || []; let m: number | undefined; if (isMultisig) { const match = splitType[0].match(/^p2ms\((\d+) of (\d+)\)$/); m = parseInt(match![1], 10); let n = parseInt(match![2], 10); if (keys.length > 0 && keys.length !== n) { throw new Error('Need n keys for multisig'); } while (!myKeys && n > 1) { keys.push(ECPair.makeRandom({ network })); n--; } } if (!myKeys) keys.push(ECPair.makeRandom({ network })); let payment: any; splitType.forEach(type => { if (type.slice(0, 4) === 'p2ms') { payment = bitcoin.payments.p2ms({ m, pubkeys: keys.map(key => key.publicKey).sort((a, b) => a.compare(b)), network, }); } else if (['p2sh', 'p2wsh'].indexOf(type) > -1) { payment = (bitcoin.payments as any)[type]({ redeem: payment, network, }); } else { payment = (bitcoin.payments as any)[type]({ pubkey: keys[0].publicKey, network, }); } }); return { payment, keys, }; } function getWitnessUtxo(out: any): any { delete out.address; out.script = Buffer.from(out.script, 'hex'); return out; } async function getInputData( amount: number, payment: any, isSegwit: boolean, redeemType: string, ): Promise { const unspent = await regtestUtils.faucetComplex(payment.output, amount); const utx = await regtestUtils.fetch(unspent.txId); // for non segwit inputs, you must pass the full transaction buffer const nonWitnessUtxo = Buffer.from(utx.txHex, 'hex'); // for segwit inputs, you only need the output script and value as an object. const witnessUtxo = getWitnessUtxo(utx.outs[unspent.vout]); const mixin = isSegwit ? { witnessUtxo } : { nonWitnessUtxo }; const mixin2: any = {}; switch (redeemType) { case 'p2sh': mixin2.redeemScript = payment.redeem.output; break; case 'p2wsh': mixin2.witnessScript = payment.redeem.output; break; case 'p2sh-p2wsh': mixin2.witnessScript = payment.redeem.redeem.output; mixin2.redeemScript = payment.redeem.output; break; } return { hash: unspent.txId, index: unspent.vout, ...mixin, ...mixin2, }; }