/*- * Copyright 2009 Colin Percival, 2011 ArtForz * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This file was originally written by Colin Percival as part of the Tarsnap * online backup system. */ #include "cpuminer-config.h" #include "miner.h" #include #include #include static inline uint32_t be32dec(const void *pp) { const uint8_t *p = (uint8_t const *)pp; return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) + ((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24)); } static inline void be32enc(void *pp, uint32_t x) { uint8_t * p = (uint8_t *)pp; p[3] = x & 0xff; p[2] = (x >> 8) & 0xff; p[1] = (x >> 16) & 0xff; p[0] = (x >> 24) & 0xff; } typedef struct SHA256Context { uint32_t state[8]; uint32_t count[2]; unsigned char buf[64]; } SHA256_CTX; typedef struct HMAC_SHA256Context { SHA256_CTX ictx; SHA256_CTX octx; } HMAC_SHA256_CTX; /* * Encode a length len/4 vector of (uint32_t) into a length len vector of * (unsigned char) in big-endian form. Assumes len is a multiple of 4. */ static inline void be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len) { size_t i; for (i = 0; i < len / 4; i++) be32enc(dst + i * 4, src[i]); } /* * Decode a big-endian length len vector of (unsigned char) into a length * len/4 vector of (uint32_t). Assumes len is a multiple of 4. */ static inline void be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len) { size_t i; for (i = 0; i < len / 4; i++) dst[i] = be32dec(src + i * 4); } /* Elementary functions used by SHA256 */ #define Ch(x, y, z) ((x & (y ^ z)) ^ z) #define Maj(x, y, z) ((x & (y | z)) | (y & z)) #define SHR(x, n) (x >> n) #define ROTR(x, n) ((x >> n) | (x << (32 - n))) #define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) #define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) #define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) #define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) /* SHA256 round function */ #define RND(a, b, c, d, e, f, g, h, k) \ t0 = h + S1(e) + Ch(e, f, g) + k; \ t1 = S0(a) + Maj(a, b, c); \ d += t0; \ h = t0 + t1; /* Adjusted round function for rotating state */ #define RNDr(S, W, i, k) \ RND(S[(64 - i) % 8], S[(65 - i) % 8], \ S[(66 - i) % 8], S[(67 - i) % 8], \ S[(68 - i) % 8], S[(69 - i) % 8], \ S[(70 - i) % 8], S[(71 - i) % 8], \ W[i] + k) /* * SHA256 block compression function. The 256-bit state is transformed via * the 512-bit input block to produce a new state. */ static void SHA256_Transform(uint32_t * state, const unsigned char block[64]) { uint32_t W[64]; uint32_t S[8]; uint32_t t0, t1; int i; /* 1. Prepare message schedule W. */ be32dec_vect(W, block, 64); for (i = 16; i < 64; i++) W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; /* 2. Initialize working variables. */ memcpy(S, state, 32); /* 3. Mix. */ RNDr(S, W, 0, 0x428a2f98); RNDr(S, W, 1, 0x71374491); RNDr(S, W, 2, 0xb5c0fbcf); RNDr(S, W, 3, 0xe9b5dba5); RNDr(S, W, 4, 0x3956c25b); RNDr(S, W, 5, 0x59f111f1); RNDr(S, W, 6, 0x923f82a4); RNDr(S, W, 7, 0xab1c5ed5); RNDr(S, W, 8, 0xd807aa98); RNDr(S, W, 9, 0x12835b01); RNDr(S, W, 10, 0x243185be); RNDr(S, W, 11, 0x550c7dc3); RNDr(S, W, 12, 0x72be5d74); RNDr(S, W, 13, 0x80deb1fe); RNDr(S, W, 14, 0x9bdc06a7); RNDr(S, W, 15, 0xc19bf174); RNDr(S, W, 16, 0xe49b69c1); RNDr(S, W, 17, 0xefbe4786); RNDr(S, W, 18, 0x0fc19dc6); RNDr(S, W, 19, 0x240ca1cc); RNDr(S, W, 20, 0x2de92c6f); RNDr(S, W, 21, 0x4a7484aa); RNDr(S, W, 22, 0x5cb0a9dc); RNDr(S, W, 23, 0x76f988da); RNDr(S, W, 24, 0x983e5152); RNDr(S, W, 25, 0xa831c66d); RNDr(S, W, 26, 0xb00327c8); RNDr(S, W, 27, 0xbf597fc7); RNDr(S, W, 28, 0xc6e00bf3); RNDr(S, W, 29, 0xd5a79147); RNDr(S, W, 30, 0x06ca6351); RNDr(S, W, 31, 0x14292967); RNDr(S, W, 32, 0x27b70a85); RNDr(S, W, 33, 0x2e1b2138); RNDr(S, W, 34, 0x4d2c6dfc); RNDr(S, W, 35, 0x53380d13); RNDr(S, W, 36, 0x650a7354); RNDr(S, W, 37, 0x766a0abb); RNDr(S, W, 38, 0x81c2c92e); RNDr(S, W, 39, 0x92722c85); RNDr(S, W, 40, 0xa2bfe8a1); RNDr(S, W, 41, 0xa81a664b); RNDr(S, W, 42, 0xc24b8b70); RNDr(S, W, 43, 0xc76c51a3); RNDr(S, W, 44, 0xd192e819); RNDr(S, W, 45, 0xd6990624); RNDr(S, W, 46, 0xf40e3585); RNDr(S, W, 47, 0x106aa070); RNDr(S, W, 48, 0x19a4c116); RNDr(S, W, 49, 0x1e376c08); RNDr(S, W, 50, 0x2748774c); RNDr(S, W, 51, 0x34b0bcb5); RNDr(S, W, 52, 0x391c0cb3); RNDr(S, W, 53, 0x4ed8aa4a); RNDr(S, W, 54, 0x5b9cca4f); RNDr(S, W, 55, 0x682e6ff3); RNDr(S, W, 56, 0x748f82ee); RNDr(S, W, 57, 0x78a5636f); RNDr(S, W, 58, 0x84c87814); RNDr(S, W, 59, 0x8cc70208); RNDr(S, W, 60, 0x90befffa); RNDr(S, W, 61, 0xa4506ceb); RNDr(S, W, 62, 0xbef9a3f7); RNDr(S, W, 63, 0xc67178f2); /* 4. Mix local working variables into global state */ for (i = 0; i < 8; i++) state[i] += S[i]; } static unsigned char PAD[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; /* SHA-256 initialization. Begins a SHA-256 operation. */ static inline void SHA256_Init(SHA256_CTX * ctx) { /* Zero bits processed so far */ ctx->count[0] = ctx->count[1] = 0; /* Magic initialization constants */ ctx->state[0] = 0x6A09E667; ctx->state[1] = 0xBB67AE85; ctx->state[2] = 0x3C6EF372; ctx->state[3] = 0xA54FF53A; ctx->state[4] = 0x510E527F; ctx->state[5] = 0x9B05688C; ctx->state[6] = 0x1F83D9AB; ctx->state[7] = 0x5BE0CD19; } /* Add bytes into the hash */ static inline void SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len) { uint32_t bitlen[2]; uint32_t r; const unsigned char *src = in; /* Number of bytes left in the buffer from previous updates */ r = (ctx->count[1] >> 3) & 0x3f; /* Convert the length into a number of bits */ bitlen[1] = ((uint32_t)len) << 3; bitlen[0] = (uint32_t)(len >> 29); /* Update number of bits */ if ((ctx->count[1] += bitlen[1]) < bitlen[1]) ctx->count[0]++; ctx->count[0] += bitlen[0]; /* Handle the case where we don't need to perform any transforms */ if (len < 64 - r) { memcpy(&ctx->buf[r], src, len); return; } /* Finish the current block */ memcpy(&ctx->buf[r], src, 64 - r); SHA256_Transform(ctx->state, ctx->buf); src += 64 - r; len -= 64 - r; /* Perform complete blocks */ while (len >= 64) { SHA256_Transform(ctx->state, src); src += 64; len -= 64; } /* Copy left over data into buffer */ memcpy(ctx->buf, src, len); } /* Add padding and terminating bit-count. */ static inline void SHA256_Pad(SHA256_CTX * ctx) { unsigned char len[8]; uint32_t r, plen; /* * Convert length to a vector of bytes -- we do this now rather * than later because the length will change after we pad. */ be32enc_vect(len, ctx->count, 8); /* Add 1--64 bytes so that the resulting length is 56 mod 64 */ r = (ctx->count[1] >> 3) & 0x3f; plen = (r < 56) ? (56 - r) : (120 - r); SHA256_Update(ctx, PAD, (size_t)plen); /* Add the terminating bit-count */ SHA256_Update(ctx, len, 8); } /* * SHA-256 finalization. Pads the input data, exports the hash value, * and clears the context state. */ static inline void SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx) { /* Add padding */ SHA256_Pad(ctx); /* Write the hash */ be32enc_vect(digest, ctx->state, 32); } /** * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen): * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and * write the output to buf. The value dkLen must be at most 32 * (2^32 - 1). */ static inline void PBKDF2_SHA256_80_128(const uint8_t * passwd, uint8_t * buf) { HMAC_SHA256_CTX PShctx, hctx; size_t i; uint8_t ivec[4]; unsigned char ihash[32]; /* Compute HMAC state after processing P and S. */ unsigned char pad[64]; unsigned char khash[32]; /* If Klen > 64, the key is really SHA256(K). */ SHA256_Init(&PShctx.ictx); SHA256_Update(&PShctx.ictx, passwd, 80); SHA256_Final(khash, &PShctx.ictx); SHA256_Init(&PShctx.ictx); memset(pad, 0x36, 64); for (i = 0; i < 32; i++) pad[i] ^= khash[i]; SHA256_Update(&PShctx.ictx, pad, 64); SHA256_Init(&PShctx.octx); memset(pad, 0x5c, 64); for (i = 0; i < 32; i++) pad[i] ^= khash[i]; SHA256_Update(&PShctx.octx, pad, 64); SHA256_Update(&PShctx.ictx, passwd, 80); /* Iterate through the blocks. */ for (i = 0; i * 32 < 128; i++) { /* Generate INT(i + 1). */ be32enc(ivec, (uint32_t)(i + 1)); /* Compute U_1 = PRF(P, S || INT(i)). */ memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX)); SHA256_Update(&hctx.ictx, ivec, 4); SHA256_Final(ihash, &hctx.ictx); /* Feed the inner hash to the outer SHA256 operation. */ SHA256_Update(&hctx.octx, ihash, 32); /* Finish the outer SHA256 operation. */ SHA256_Final(&buf[i*32], &hctx.octx); } } static inline void PBKDF2_SHA256_80_128_32(const uint8_t * passwd, const uint8_t * salt, uint8_t * buf) { HMAC_SHA256_CTX PShctx; size_t i; uint8_t ivec[4]; unsigned char ihash[32]; /* Compute HMAC state after processing P and S. */ unsigned char pad[64]; unsigned char khash[32]; /* If Klen > 64, the key is really SHA256(K). */ SHA256_Init(&PShctx.ictx); SHA256_Update(&PShctx.ictx, passwd, 80); SHA256_Final(khash, &PShctx.ictx); SHA256_Init(&PShctx.ictx); memset(pad, 0x36, 64); for (i = 0; i < 32; i++) pad[i] ^= khash[i]; SHA256_Update(&PShctx.ictx, pad, 64); SHA256_Init(&PShctx.octx); memset(pad, 0x5c, 64); for (i = 0; i < 32; i++) pad[i] ^= khash[i]; SHA256_Update(&PShctx.octx, pad, 64); SHA256_Update(&PShctx.ictx, salt, 128); /* Generate INT(i + 1). */ be32enc(ivec, (uint32_t)(1)); /* Compute U_1 = PRF(P, S || INT(i)). */ SHA256_Update(&PShctx.ictx, ivec, 4); SHA256_Final(ihash, &PShctx.ictx); /* Feed the inner hash to the outer SHA256 operation. */ SHA256_Update(&PShctx.octx, ihash, 32); /* Finish the outer SHA256 operation. */ SHA256_Final(&buf[0], &PShctx.octx); } static inline void blkcpy(void * dest, void * src, size_t len) { size_t * D = dest; size_t * S = src; size_t L = len / sizeof(size_t); size_t i; for (i = 0; i < L; i++) D[i] = S[i]; } static inline void blkxor(void * dest, void * src, size_t len) { size_t * D = dest; size_t * S = src; size_t L = len / sizeof(size_t); size_t i; for (i = 0; i < L; i++) D[i] ^= S[i]; } /** * salsa20_8(B): * Apply the salsa20/8 core to the provided block. */ static inline void salsa20_8(uint32_t B[16]) { uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15; size_t i; x00 = B[ 0]; x01 = B[ 1]; x02 = B[ 2]; x03 = B[ 3]; x04 = B[ 4]; x05 = B[ 5]; x06 = B[ 6]; x07 = B[ 7]; x08 = B[ 8]; x09 = B[ 9]; x10 = B[10]; x11 = B[11]; x12 = B[12]; x13 = B[13]; x14 = B[14]; x15 = B[15]; for (i = 0; i < 8; i += 2) { #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) /* Operate on columns. */ x04 ^= R(x00+x12, 7); x08 ^= R(x04+x00, 9); x12 ^= R(x08+x04,13); x00 ^= R(x12+x08,18); x09 ^= R(x05+x01, 7); x13 ^= R(x09+x05, 9); x01 ^= R(x13+x09,13); x05 ^= R(x01+x13,18); x14 ^= R(x10+x06, 7); x02 ^= R(x14+x10, 9); x06 ^= R(x02+x14,13); x10 ^= R(x06+x02,18); x03 ^= R(x15+x11, 7); x07 ^= R(x03+x15, 9); x11 ^= R(x07+x03,13); x15 ^= R(x11+x07,18); /* Operate on rows. */ x01 ^= R(x00+x03, 7); x02 ^= R(x01+x00, 9); x03 ^= R(x02+x01,13); x00 ^= R(x03+x02,18); x06 ^= R(x05+x04, 7); x07 ^= R(x06+x05, 9); x04 ^= R(x07+x06,13); x05 ^= R(x04+x07,18); x11 ^= R(x10+x09, 7); x08 ^= R(x11+x10, 9); x09 ^= R(x08+x11,13); x10 ^= R(x09+x08,18); x12 ^= R(x15+x14, 7); x13 ^= R(x12+x15, 9); x14 ^= R(x13+x12,13); x15 ^= R(x14+x13,18); #undef R } B[ 0] += x00; B[ 1] += x01; B[ 2] += x02; B[ 3] += x03; B[ 4] += x04; B[ 5] += x05; B[ 6] += x06; B[ 7] += x07; B[ 8] += x08; B[ 9] += x09; B[10] += x10; B[11] += x11; B[12] += x12; B[13] += x13; B[14] += x14; B[15] += x15; } /* cpu and memory intensive function to transform a 80 byte buffer into a 32 byte output scratchpad size needs to be at least 63 + (128 * r * p) + (256 * r + 64) + (128 * r * N) bytes */ static void scrypt_1024_1_1_256_sp(const char* input, char* output, char* scratchpad) { uint32_t * V; uint32_t * X; uint32_t i; uint32_t j; X = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); V = &X[32]; PBKDF2_SHA256_80_128((const uint8_t*)input, (uint8_t *)X); for (i = 0; i < 1024; i += 2) { blkcpy(&V[i * 32], X, 128); blkxor(&X[0], &X[16], 64); salsa20_8(&X[0]); blkxor(&X[16], &X[0], 64); salsa20_8(&X[16]); blkcpy(&V[(i + 1) * 32], X, 128); blkxor(&X[0], &X[16], 64); salsa20_8(&X[0]); blkxor(&X[16], &X[0], 64); salsa20_8(&X[16]); } for (i = 0; i < 1024; i += 2) { j = X[16] & 1023; blkxor(X, &V[j * 32], 128); blkxor(&X[0], &X[16], 64); salsa20_8(&X[0]); blkxor(&X[16], &X[0], 64); salsa20_8(&X[16]); j = X[16] & 1023; blkxor(X, &V[j * 32], 128); blkxor(&X[0], &X[16], 64); salsa20_8(&X[0]); blkxor(&X[16], &X[0], 64); salsa20_8(&X[16]); } PBKDF2_SHA256_80_128_32((const uint8_t*)input, (const uint8_t *)X, (uint8_t*)output); } int scanhash_scrypt(int thr_id, unsigned char *pdata, unsigned char *scratchbuf, const unsigned char *ptarget, uint32_t max_nonce, unsigned long *hashes_done) { unsigned char data[80]; unsigned char tmp_hash[32]; uint32_t *nonce = (uint32_t *)(data + 64 + 12); uint32_t n = 0; uint32_t Htarg = *(uint32_t *)(ptarget + 28); int i; work_restart[thr_id].restart = 0; for (i = 0; i < 80/4; i++) ((uint32_t *)data)[i] = swab32(((uint32_t *)pdata)[i]); while(1) { n++; *nonce = n; scrypt_1024_1_1_256_sp(data, tmp_hash, scratchbuf); if (*(uint32_t *)(tmp_hash+28) <= Htarg) { *(uint32_t *)(pdata + 64 + 12) = swab32(n); *hashes_done = n; return true; } if ((n >= max_nonce) || work_restart[thr_id].restart) { *hashes_done = n; break; } } return false; }