/*- * Copyright 2009 Colin Percival, 2011 ArtForz, 2011 pooler * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This file was originally written by Colin Percival as part of the Tarsnap * online backup system. */ #include "cpuminer-config.h" #include "miner.h" #include #include #include #define byteswap(x) ((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) | (((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu)) static inline void byteswap_vec(uint32_t *dest, const uint32_t *src, uint32_t len) { uint32_t i; for (i = 0; i < len; i++) dest[i] = byteswap(src[i]); } static inline uint32_t be32dec(const void *pp) { const uint8_t *p = (uint8_t const *)pp; return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) + ((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24)); } static inline void be32enc(void *pp, uint32_t x) { uint8_t * p = (uint8_t *)pp; p[3] = x & 0xff; p[2] = (x >> 8) & 0xff; p[1] = (x >> 16) & 0xff; p[0] = (x >> 24) & 0xff; } static inline uint32_t le32dec(const void *pp) { const uint8_t *p = (uint8_t const *)pp; return ((uint32_t)(p[0]) + ((uint32_t)(p[1]) << 8) + ((uint32_t)(p[2]) << 16) + ((uint32_t)(p[3]) << 24)); } static inline void le32enc(void *pp, uint32_t x) { uint8_t * p = (uint8_t *)pp; p[0] = x & 0xff; p[1] = (x >> 8) & 0xff; p[2] = (x >> 16) & 0xff; p[3] = (x >> 24) & 0xff; } typedef struct SHA256Context { uint32_t state[8]; uint32_t buf[16]; } SHA256_CTX; /* Elementary functions used by SHA256 */ #define Ch(x, y, z) ((x & (y ^ z)) ^ z) #define Maj(x, y, z) ((x & (y | z)) | (y & z)) #define SHR(x, n) (x >> n) #define ROTR(x, n) ((x >> n) | (x << (32 - n))) #define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) #define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) #define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) #define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) /* SHA256 round function */ #define RND(a, b, c, d, e, f, g, h, k) \ t0 = h + S1(e) + Ch(e, f, g) + k; \ t1 = S0(a) + Maj(a, b, c); \ d += t0; \ h = t0 + t1; /* Adjusted round function for rotating state */ #define RNDr(S, W, i, k) \ RND(S[(64 - i) % 8], S[(65 - i) % 8], \ S[(66 - i) % 8], S[(67 - i) % 8], \ S[(68 - i) % 8], S[(69 - i) % 8], \ S[(70 - i) % 8], S[(71 - i) % 8], \ W[i] + k) /* * SHA256 block compression function. The 256-bit state is transformed via * the 512-bit input block to produce a new state. */ static void SHA256_Transform(uint32_t * state, const uint32_t block[16], int swap) { uint32_t W[64]; uint32_t S[8]; uint32_t t0, t1; int i; /* 1. Prepare message schedule W. */ if(swap) byteswap_vec(W, block, 16); else memcpy(W, block, 64); for (i = 16; i < 64; i += 2) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; } /* 2. Initialize working variables. */ memcpy(S, state, 32); /* 3. Mix. */ RNDr(S, W, 0, 0x428a2f98); RNDr(S, W, 1, 0x71374491); RNDr(S, W, 2, 0xb5c0fbcf); RNDr(S, W, 3, 0xe9b5dba5); RNDr(S, W, 4, 0x3956c25b); RNDr(S, W, 5, 0x59f111f1); RNDr(S, W, 6, 0x923f82a4); RNDr(S, W, 7, 0xab1c5ed5); RNDr(S, W, 8, 0xd807aa98); RNDr(S, W, 9, 0x12835b01); RNDr(S, W, 10, 0x243185be); RNDr(S, W, 11, 0x550c7dc3); RNDr(S, W, 12, 0x72be5d74); RNDr(S, W, 13, 0x80deb1fe); RNDr(S, W, 14, 0x9bdc06a7); RNDr(S, W, 15, 0xc19bf174); RNDr(S, W, 16, 0xe49b69c1); RNDr(S, W, 17, 0xefbe4786); RNDr(S, W, 18, 0x0fc19dc6); RNDr(S, W, 19, 0x240ca1cc); RNDr(S, W, 20, 0x2de92c6f); RNDr(S, W, 21, 0x4a7484aa); RNDr(S, W, 22, 0x5cb0a9dc); RNDr(S, W, 23, 0x76f988da); RNDr(S, W, 24, 0x983e5152); RNDr(S, W, 25, 0xa831c66d); RNDr(S, W, 26, 0xb00327c8); RNDr(S, W, 27, 0xbf597fc7); RNDr(S, W, 28, 0xc6e00bf3); RNDr(S, W, 29, 0xd5a79147); RNDr(S, W, 30, 0x06ca6351); RNDr(S, W, 31, 0x14292967); RNDr(S, W, 32, 0x27b70a85); RNDr(S, W, 33, 0x2e1b2138); RNDr(S, W, 34, 0x4d2c6dfc); RNDr(S, W, 35, 0x53380d13); RNDr(S, W, 36, 0x650a7354); RNDr(S, W, 37, 0x766a0abb); RNDr(S, W, 38, 0x81c2c92e); RNDr(S, W, 39, 0x92722c85); RNDr(S, W, 40, 0xa2bfe8a1); RNDr(S, W, 41, 0xa81a664b); RNDr(S, W, 42, 0xc24b8b70); RNDr(S, W, 43, 0xc76c51a3); RNDr(S, W, 44, 0xd192e819); RNDr(S, W, 45, 0xd6990624); RNDr(S, W, 46, 0xf40e3585); RNDr(S, W, 47, 0x106aa070); RNDr(S, W, 48, 0x19a4c116); RNDr(S, W, 49, 0x1e376c08); RNDr(S, W, 50, 0x2748774c); RNDr(S, W, 51, 0x34b0bcb5); RNDr(S, W, 52, 0x391c0cb3); RNDr(S, W, 53, 0x4ed8aa4a); RNDr(S, W, 54, 0x5b9cca4f); RNDr(S, W, 55, 0x682e6ff3); RNDr(S, W, 56, 0x748f82ee); RNDr(S, W, 57, 0x78a5636f); RNDr(S, W, 58, 0x84c87814); RNDr(S, W, 59, 0x8cc70208); RNDr(S, W, 60, 0x90befffa); RNDr(S, W, 61, 0xa4506ceb); RNDr(S, W, 62, 0xbef9a3f7); RNDr(S, W, 63, 0xc67178f2); /* 4. Mix local working variables into global state */ for (i = 0; i < 8; i++) state[i] += S[i]; } static inline void SHA256_InitState(uint32_t * state) { /* Magic initialization constants */ state[0] = 0x6A09E667; state[1] = 0xBB67AE85; state[2] = 0x3C6EF372; state[3] = 0xA54FF53A; state[4] = 0x510E527F; state[5] = 0x9B05688C; state[6] = 0x1F83D9AB; state[7] = 0x5BE0CD19; } static const uint32_t passwdpad[12] = {0x00000080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80020000}; static const uint32_t outerpad[8] = {0x80000000, 0, 0, 0, 0, 0, 0, 0x00000300}; static inline void PBKDF2_SHA256_80_128_init(const uint32_t *passwd, uint32_t tstate[8], uint32_t ostate[8]) { uint32_t ihash[8]; uint32_t pad[16]; uint32_t i; SHA256_InitState(tstate); SHA256_Transform(tstate, passwd, 1); memcpy(pad, passwd+16, 16); memcpy(pad+4, passwdpad, 48); SHA256_Transform(tstate, pad, 1); memcpy(ihash, tstate, 32); SHA256_InitState(ostate); for (i = 0; i < 8; i++) pad[i] = ihash[i] ^ 0x5c5c5c5c; for (; i < 16; i++) pad[i] = 0x5c5c5c5c; SHA256_Transform(ostate, pad, 0); SHA256_InitState(tstate); for (i = 0; i < 8; i++) pad[i] = ihash[i] ^ 0x36363636; for (; i < 16; i++) pad[i] = 0x36363636; SHA256_Transform(tstate, pad, 0); } /** * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen): * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and * write the output to buf. */ static inline void PBKDF2_SHA256_80_128(const uint32_t *tstate, const uint32_t *ostate, const uint32_t *passwd, uint32_t *buf) { static const uint32_t innerpad[11] = {0x00000080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xa0040000}; SHA256_CTX PShictx, PShoctx; uint32_t i; /* If Klen > 64, the key is really SHA256(K). */ memcpy(PShictx.state, tstate, 32); memcpy(PShoctx.state, ostate, 32); memcpy(PShoctx.buf+8, outerpad, 32); SHA256_Transform(PShictx.state, passwd, 1); byteswap_vec(PShictx.buf, passwd+16, 4); byteswap_vec(PShictx.buf+5, innerpad, 11); /* Iterate through the blocks. */ for (i = 0; i < 4; i++) { uint32_t ist[8]; uint32_t ost[8]; memcpy(ist, PShictx.state, 32); PShictx.buf[4] = i + 1; SHA256_Transform(ist, PShictx.buf, 0); memcpy(PShoctx.buf, ist, 32); memcpy(ost, PShoctx.state, 32); SHA256_Transform(ost, PShoctx.buf, 0); byteswap_vec(buf+i*8, ost, 8); } } static inline void PBKDF2_SHA256_80_128_32(uint32_t *tstate, uint32_t *ostate, const uint32_t *passwd, const uint32_t *salt, uint32_t *output) { static const uint32_t ihash_finalblk[16] = {0x00000001,0x80000000,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x00000620}; uint32_t pad[16]; SHA256_Transform(tstate, salt, 1); SHA256_Transform(tstate, salt+16, 1); SHA256_Transform(tstate, ihash_finalblk, 0); memcpy(pad, tstate, 32); memcpy(pad+8, outerpad, 32); SHA256_Transform(ostate, pad, 0); byteswap_vec(output, ostate, 8); } /** * salsa20_8(B): * Apply the salsa20/8 core to the provided block. */ static inline void salsa20_8(uint32_t B[16], const uint32_t Bx[16]) { uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15; size_t i; x00 = (B[ 0] ^= Bx[ 0]); x01 = (B[ 1] ^= Bx[ 1]); x02 = (B[ 2] ^= Bx[ 2]); x03 = (B[ 3] ^= Bx[ 3]); x04 = (B[ 4] ^= Bx[ 4]); x05 = (B[ 5] ^= Bx[ 5]); x06 = (B[ 6] ^= Bx[ 6]); x07 = (B[ 7] ^= Bx[ 7]); x08 = (B[ 8] ^= Bx[ 8]); x09 = (B[ 9] ^= Bx[ 9]); x10 = (B[10] ^= Bx[10]); x11 = (B[11] ^= Bx[11]); x12 = (B[12] ^= Bx[12]); x13 = (B[13] ^= Bx[13]); x14 = (B[14] ^= Bx[14]); x15 = (B[15] ^= Bx[15]); for (i = 0; i < 8; i += 2) { #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) /* Operate on columns. */ x04 ^= R(x00+x12, 7); x09 ^= R(x05+x01, 7); x14 ^= R(x10+x06, 7); x03 ^= R(x15+x11, 7); x08 ^= R(x04+x00, 9); x13 ^= R(x09+x05, 9); x02 ^= R(x14+x10, 9); x07 ^= R(x03+x15, 9); x12 ^= R(x08+x04,13); x01 ^= R(x13+x09,13); x06 ^= R(x02+x14,13); x11 ^= R(x07+x03,13); x00 ^= R(x12+x08,18); x05 ^= R(x01+x13,18); x10 ^= R(x06+x02,18); x15 ^= R(x11+x07,18); /* Operate on rows. */ x01 ^= R(x00+x03, 7); x06 ^= R(x05+x04, 7); x11 ^= R(x10+x09, 7); x12 ^= R(x15+x14, 7); x02 ^= R(x01+x00, 9); x07 ^= R(x06+x05, 9); x08 ^= R(x11+x10, 9); x13 ^= R(x12+x15, 9); x03 ^= R(x02+x01,13); x04 ^= R(x07+x06,13); x09 ^= R(x08+x11,13); x14 ^= R(x13+x12,13); x00 ^= R(x03+x02,18); x05 ^= R(x04+x07,18); x10 ^= R(x09+x08,18); x15 ^= R(x14+x13,18); #undef R } B[ 0] += x00; B[ 1] += x01; B[ 2] += x02; B[ 3] += x03; B[ 4] += x04; B[ 5] += x05; B[ 6] += x06; B[ 7] += x07; B[ 8] += x08; B[ 9] += x09; B[10] += x10; B[11] += x11; B[12] += x12; B[13] += x13; B[14] += x14; B[15] += x15; } #if defined(__x86_64__) #define SCRYPT_3WAY #define SCRYPT_BUFFER_SIZE (3 * 131072 + 63) int scrypt_best_throughput(); void scrypt_core(uint32_t *X, uint32_t *V); void scrypt_core_2way(uint32_t *X, uint32_t *Y, uint32_t *V); void scrypt_core_3way(uint32_t *X, uint32_t *Y, uint32_t *Z, uint32_t *V); #elif defined(__i386__) #define SCRYPT_BUFFER_SIZE (131072 + 63) void scrypt_core(uint32_t *X, uint32_t *V); #else #define SCRYPT_BUFFER_SIZE (131072 + 63) static inline void scrypt_core(uint32_t *X, uint32_t *V) { uint32_t i; uint32_t j; uint32_t k; uint64_t *p1, *p2; p1 = (uint64_t *)X; for (i = 0; i < 1024; i += 2) { memcpy(&V[i * 32], X, 128); salsa20_8(&X[0], &X[16]); salsa20_8(&X[16], &X[0]); memcpy(&V[(i + 1) * 32], X, 128); salsa20_8(&X[0], &X[16]); salsa20_8(&X[16], &X[0]); } for (i = 0; i < 1024; i += 2) { j = X[16] & 1023; p2 = (uint64_t *)(&V[j * 32]); for(k = 0; k < 16; k++) p1[k] ^= p2[k]; salsa20_8(&X[0], &X[16]); salsa20_8(&X[16], &X[0]); j = X[16] & 1023; p2 = (uint64_t *)(&V[j * 32]); for(k = 0; k < 16; k++) p1[k] ^= p2[k]; salsa20_8(&X[0], &X[16]); salsa20_8(&X[16], &X[0]); } } #endif unsigned char *scrypt_buffer_alloc() { return malloc(SCRYPT_BUFFER_SIZE); } /* cpu and memory intensive function to transform a 80 byte buffer into a 32 byte output scratchpad size needs to be at least 63 + (128 * r * p) + (256 * r + 64) + (128 * r * N) bytes r = 1, p = 1, N = 1024 */ static void scrypt_1024_1_1_256_sp(const uint32_t* input, uint32_t *output, unsigned char *scratchpad) { uint32_t tstate[8], ostate[8]; uint32_t *V; uint32_t X[32]; V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); PBKDF2_SHA256_80_128_init(input, tstate, ostate); PBKDF2_SHA256_80_128(tstate, ostate, input, X); scrypt_core(X, V); return PBKDF2_SHA256_80_128_32(tstate, ostate, input, X, output); } #ifdef SCRYPT_3WAY static void scrypt_1024_1_1_256_sp_2way(const uint32_t *input1, const uint32_t *input2, uint32_t *output1, uint32_t *output2, unsigned char *scratchpad) { uint32_t tstate1[8], tstate2[8]; uint32_t ostate1[8], ostate2[8]; uint32_t *V; uint32_t X[32], Y[32]; V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); PBKDF2_SHA256_80_128_init(input1, tstate1, ostate1); PBKDF2_SHA256_80_128_init(input2, tstate2, ostate2); PBKDF2_SHA256_80_128(tstate1, ostate1, input1, X); PBKDF2_SHA256_80_128(tstate2, ostate2, input2, Y); scrypt_core_2way(X, Y, V); PBKDF2_SHA256_80_128_32(tstate1, ostate1, input1, X, output1); PBKDF2_SHA256_80_128_32(tstate2, ostate2, input2, Y, output2); } static void scrypt_1024_1_1_256_sp_3way(const uint32_t *input1, const uint32_t *input2, const uint32_t *input3, uint32_t *output1, uint32_t *output2, uint32_t *output3, unsigned char *scratchpad) { uint32_t tstate1[8], tstate2[8], tstate3[8]; uint32_t ostate1[8], ostate2[8], ostate3[8]; uint32_t *V; uint32_t X[32], Y[32], Z[32]; V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); PBKDF2_SHA256_80_128_init(input1, tstate1, ostate1); PBKDF2_SHA256_80_128_init(input2, tstate2, ostate2); PBKDF2_SHA256_80_128_init(input3, tstate3, ostate3); PBKDF2_SHA256_80_128(tstate1, ostate1, input1, X); PBKDF2_SHA256_80_128(tstate2, ostate2, input2, Y); PBKDF2_SHA256_80_128(tstate3, ostate3, input3, Z); scrypt_core_3way(X, Y, Z, V); PBKDF2_SHA256_80_128_32(tstate1, ostate1, input1, X, output1); PBKDF2_SHA256_80_128_32(tstate2, ostate2, input2, Y, output2); PBKDF2_SHA256_80_128_32(tstate3, ostate3, input3, Z, output3); } #endif static int test_hash(const uint32_t *hash, const uint32_t *target) { int i; for (i = 7; i >= 0; i--) { uint32_t t = le32dec(&target[i]); if (hash[i] > t) return 0; if (hash[i] < t) return 1; } return 1; } int scanhash_scrypt(int thr_id, unsigned char *pdata, unsigned char *scratchbuf, const unsigned char *ptarget, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t data[20], hash[8]; #ifdef SCRYPT_3WAY uint32_t data2[20], hash2[8]; uint32_t data3[20], hash3[8]; int throughput; #endif uint32_t n = 0; uint32_t Htarg = le32dec(&((const uint32_t *)ptarget)[7]); int i; work_restart[thr_id].restart = 0; for (i = 0; i < 19; i++) data[i] = be32dec(&((const uint32_t *)pdata)[i]); #ifdef SCRYPT_3WAY memcpy(data2, data, 80); memcpy(data3, data, 80); throughput = scrypt_best_throughput(); #endif while (1) { data[19] = n++; #ifdef SCRYPT_3WAY if (throughput >= 2 && n < max_nonce) { data2[19] = n++; if (throughput >= 3 && n < max_nonce) { data3[19] = n++; scrypt_1024_1_1_256_sp_3way(data, data2, data3, hash, hash2, hash3, scratchbuf); if (hash3[7] < Htarg || hash3[7] == Htarg && test_hash(hash3, (uint32_t *)ptarget)) { be32enc(&((uint32_t *)pdata)[19], data3[19]); *hashes_done = n; return true; } } else { scrypt_1024_1_1_256_sp_2way(data, data2, hash, hash2, scratchbuf); } if (hash2[7] < Htarg || hash2[7] == Htarg && test_hash(hash2, (uint32_t *)ptarget)) { be32enc(&((uint32_t *)pdata)[19], data2[19]); *hashes_done = n; return true; } } else { scrypt_1024_1_1_256_sp(data, hash, scratchbuf); } #else scrypt_1024_1_1_256_sp(data, hash, scratchbuf); #endif if (hash[7] < Htarg || hash[7] == Htarg && test_hash(hash, (uint32_t *)ptarget)) { be32enc(&((uint32_t *)pdata)[19], data[19]); *hashes_done = n; return true; } if ((n >= max_nonce) || work_restart[thr_id].restart) { *hashes_done = n; break; } } return false; }