diff --git a/bench_test.go b/bench_test.go index e306ef47..e4065701 100644 --- a/bench_test.go +++ b/bench_test.go @@ -78,6 +78,14 @@ func BenchmarkScalarMult(b *testing.B) { } } +// BenchmarkNAF benchmarks the NAF function. +func BenchmarkNAF(b *testing.B) { + k := fromHex("d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575") + for i := 0; i < b.N; i++ { + btcec.NAF(k.Bytes()) + } +} + // BenchmarkSigVerify benchmarks how long it takes the secp256k1 curve to // verify signatures. func BenchmarkSigVerify(b *testing.B) { diff --git a/btcec.go b/btcec.go index 2229a62f..4fd26083 100644 --- a/btcec.go +++ b/btcec.go @@ -666,6 +666,78 @@ func (curve *KoblitzCurve) moduloReduce(k []byte) []byte { return k } +// NAF takes a positive integer k and returns the Non-Adjacent Form (NAF) +// as two byte slices. The first is where 1's should be. The second is where +// -1's should be. +// NAF is also convenient in that on average, only 1/3rd of its values are +// non-zero. +// The algorithm here is from Guide to Elliptical Cryptography 3.30 (ref above) +// Essentially, this makes it possible to minimize the number of operations +// since the resulting ints returned will be at least 50% 0's. +func NAF(k []byte) ([]byte, []byte) { + + // The essence of this algorithm is that whenever we have consecutive 1s + // in the binary, we want to put a -1 in the lowest bit and get a bunch of + // 0s up to the highest bit of consecutive 1s. This is due to this identity: + // 2^n + 2^(n-1) + 2^(n-2) + ... + 2^(n-k) = 2^(n+1) - 2^(n-k) + // The algorithm thus may need to go 1 more bit than the length of the bits + // we actually have, hence bits being 1 bit longer than was necessary. + // Since we need to know whether adding will cause a carry, we go from + // right-to-left in this addition. + var carry, curIsOne, nextIsOne bool + // these default to zero + retPos := make([]byte, len(k)+1) + retNeg := make([]byte, len(k)+1) + for i := len(k) - 1; i >= 0; i-- { + curByte := k[i] + for j := uint(0); j < 8; j++ { + curIsOne = curByte&1 == 1 + if j == 7 { + if i == 0 { + nextIsOne = false + } else { + nextIsOne = k[i-1]&1 == 1 + } + } else { + nextIsOne = curByte&2 == 2 + } + if carry { + if curIsOne { + // This bit is 1, so we continue to carry and + // don't need to do anything + } else { + // We've hit a 0 after some number of 1s. + if nextIsOne { + // We start carrying again since we're starting + // a new sequence of 1s. + retNeg[i+1] += 1 << j + } else { + // We stop carrying since 1s have stopped. + carry = false + retPos[i+1] += 1 << j + } + } + } else if curIsOne { + if nextIsOne { + // if this is the start of at least 2 consecutive 1's + // we want to set the current one to -1 and start carrying + retNeg[i+1] += 1 << j + carry = true + } else { + // this is a singleton, not consecutive 1's. + retPos[i+1] += 1 << j + } + } + curByte >>= 1 + } + } + if carry { + retPos[0] = 1 + } + + return retPos, retNeg +} + // ScalarMult returns k*(Bx, By) where k is a big endian integer. // Part of the elliptic.Curve interface. func (curve *KoblitzCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) { @@ -676,66 +748,85 @@ func (curve *KoblitzCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big // see Algorithm 3.74 in Guide to Elliptical Curve Cryptography by // Hankerson, et al. k1, k2, signK1, signK2 := curve.splitK(curve.moduloReduce(k)) - k1Len := len(k1) - k2Len := len(k2) - m := k1Len - if k2Len > m { - m = k2Len - } // The main equation here to remember is // k * P = k1 * P + k2 * ϕ(P) // P1 below is P in the equation, P2 below is ϕ(P) in the equation p1x, p1y := curve.bigAffineToField(Bx, By) + // For NAF, we need the negative point + p1yNeg := new(fieldVal).NegateVal(p1y, 1) p1z := new(fieldVal).SetInt(1) // Note ϕ(x,y) = (βx,y), the Jacobian z coordinate is 1, so this math // goes through. - p2x := new(fieldVal).Set(p1x).Mul(curve.beta) + p2x := new(fieldVal).Mul2(p1x, curve.beta) p2y := new(fieldVal).Set(p1y) + // For NAF, we need the negative point + p2yNeg := new(fieldVal).NegateVal(p2y, 1) p2z := new(fieldVal).SetInt(1) - // If k1 or k2 are negative, we only need to flip the y of the respective - // Jacobian point. In ECC terms, we're reflecting the point over the - // x-axis which is guaranteed to still be on the curve. + // If k1 or k2 are negative, we flip the positive/negative values if signK1 == -1 { - p1y.Negate(1) + p1y, p1yNeg = p1yNeg, p1y } if signK2 == -1 { - p2y.Negate(1) + p2y, p2yNeg = p2yNeg, p2y } - // We use the left to right binary addition method. - // At each bit of k1 and k2, we add the current part of the - // k * P = k1 * P + k2 * ϕ(P) equation (that is, P1 and P2) and double. - // A further optimization using NAF is possible here but unimplemented. - var byteVal1, byteVal2 byte + // NAF versions of k1 and k2 should have a lot more zeros + // the Pos version of the bytes contain the +1's and the Neg versions + // contain the -1's + k1PosNAF, k1NegNAF := NAF(k1) + k2PosNAF, k2NegNAF := NAF(k2) + k1Len := len(k1PosNAF) + k2Len := len(k2PosNAF) + + m := k1Len + if m < k2Len { + m = k2Len + } + + // We add left-to-right using the NAF optimization. This is using + // algorithm 3.77 from Guide to Elliptical Curve Cryptography. + // This should be faster overall since there will be a lot more instances + // of 0, hence reducing the number of Jacobian additions at the cost + // of 1 possible extra doubling. + var k1BytePos, k1ByteNeg, k2BytePos, k2ByteNeg byte for i := 0; i < m; i++ { - // Note that if k1 or k2 has less than the max number of bytes, we - // want to ignore the bytes at the front since we're going left to - // right. + // Since we're going left-to-right, we need to pad the front with 0's if i < m-k1Len { - byteVal1 = 0 + k1BytePos = 0 + k1ByteNeg = 0 } else { - byteVal1 = k1[i-m+k1Len] + k1BytePos = k1PosNAF[i-(m-k1Len)] + k1ByteNeg = k1NegNAF[i-(m-k1Len)] } if i < m-k2Len { - byteVal2 = 0 + k2BytePos = 0 + k2ByteNeg = 0 } else { - byteVal2 = k2[i-m+k2Len] + k2BytePos = k2PosNAF[i-(m-k2Len)] + k2ByteNeg = k2NegNAF[i-(m-k2Len)] } - for bitNum := 0; bitNum < 8; bitNum++ { - // Q = 2*Q + + for j := 7; j >= 0; j-- { + // Q = 2 * Q curve.doubleJacobian(qx, qy, qz, qx, qy, qz) - if byteVal1&0x80 == 0x80 { - // Q = Q + P1 + + if k1BytePos&0x80 == 0x80 { curve.addJacobian(qx, qy, qz, p1x, p1y, p1z, qx, qy, qz) + } else if k1ByteNeg&0x80 == 0x80 { + curve.addJacobian(qx, qy, qz, p1x, p1yNeg, p1z, qx, qy, qz) } - if byteVal2&0x80 == 0x80 { - // Q = Q + P2 + + if k2BytePos&0x80 == 0x80 { curve.addJacobian(qx, qy, qz, p2x, p2y, p2z, qx, qy, qz) + } else if k2ByteNeg&0x80 == 0x80 { + curve.addJacobian(qx, qy, qz, p2x, p2yNeg, p2z, qx, qy, qz) } - byteVal1 <<= 1 - byteVal2 <<= 1 + k1BytePos <<= 1 + k1ByteNeg <<= 1 + k2BytePos <<= 1 + k2ByteNeg <<= 1 } } @@ -801,6 +892,8 @@ func initS256() { // Next 6 constants are from Hal Finney's bitcointalk.org post: // https://bitcointalk.org/index.php?topic=3238.msg45565#msg45565 // May he rest in peace. + // These have been independently verified by Dave Collins using + // an ecc math script. secp256k1.lambda, _ = new(big.Int).SetString("5363AD4CC05C30E0A5261C028812645A122E22EA20816678DF02967C1B23BD72", 16) secp256k1.beta = new(fieldVal).SetHex("7AE96A2B657C07106E64479EAC3434E99CF0497512F58995C1396C28719501EE") secp256k1.a1, _ = new(big.Int).SetString("3086D221A7D46BCDE86C90E49284EB15", 16) diff --git a/btcec_test.go b/btcec_test.go index d27944ba..cf3f4422 100644 --- a/btcec_test.go +++ b/btcec_test.go @@ -656,6 +656,41 @@ func TestSignAndVerify(t *testing.T) { testSignAndVerify(t, btcec.S256(), "S256") } +func TestNAF(t *testing.T) { + negOne := big.NewInt(-1) + one := big.NewInt(1) + two := big.NewInt(2) + for i := 0; i < 1024; i++ { + data := make([]byte, 32) + _, err := rand.Read(data) + if err != nil { + t.Fatalf("failed to read random data at %d", i) + break + } + nafPos, nafNeg := btcec.NAF(data) + want := new(big.Int).SetBytes(data) + got := big.NewInt(0) + // Check that the NAF representation comes up with the right number + for i := 0; i < len(nafPos); i++ { + bytePos := nafPos[i] + byteNeg := nafNeg[i] + for j := 7; j >= 0; j-- { + got.Mul(got, two) + if bytePos&0x80 == 0x80 { + got.Add(got, one) + } else if byteNeg&0x80 == 0x80 { + got.Add(got, negOne) + } + bytePos <<= 1 + byteNeg <<= 1 + } + } + if got.Cmp(want) != 0 { + t.Errorf("%d: Failed NAF got %X want %X", i, got, want) + } + } +} + func fromHex(s string) *big.Int { r, ok := new(big.Int).SetString(s, 16) if !ok { diff --git a/gensecp256k1.go b/gensecp256k1.go index c7d260a4..add05bfd 100644 --- a/gensecp256k1.go +++ b/gensecp256k1.go @@ -35,15 +35,14 @@ func (curve *KoblitzCurve) getDoublingPoints() [][3]fieldVal { // the possible points per 8-bit window. This is used to when generating // secp256k1.go. func (curve *KoblitzCurve) SerializedBytePoints() []byte { - byteSize := curve.BitSize / 8 doublingPoints := curve.getDoublingPoints() // Segregate the bits into byte-sized windows - serialized := make([]byte, byteSize*256*3*10*4) + serialized := make([]byte, curve.byteSize*256*3*10*4) offset := 0 - for byteNum := 0; byteNum < byteSize; byteNum++ { + for byteNum := 0; byteNum < curve.byteSize; byteNum++ { // Grab the 8 bits that make up this byte from doublingPoints. - startingBit := 8 * (byteSize - byteNum - 1) + startingBit := 8 * (curve.byteSize - byteNum - 1) computingPoints := doublingPoints[startingBit : startingBit+8] // Compute all points in this window and serialize them.