This refactors the RPC server to accept and take ownership of already
configured listeners and refactors the logic to setup those listeners to
the server. This mirrors the logic used by the connection manager and
is desirable since it is another step closer to being able to split the
RPC server code out into a separate package and will make it much easier
to internally test since it allows creating mock listeners.
This modifies all of the RPC code to use the chain parameters that are
associated with the RPC server instead of the global activeNetParams and
thus moves one step closer to being able to split the RPC server out
into a separate package.
This decouples the RPC server from the internal btcd server to move
closer to being able to split it out into a separate package.
In order to accomplish this, it introduces an rpcserverConfig type and
several new interfaces, named rpcserverPeer, rpcserverConnManager, and
rpcserverBlockManager, which are necessary to break the direct
dependencies on the main server and block manager instances.
It also adds concrete implementations of the new interfaces and uses
them to configure the RPC server.
Ultimately, the RPC server should ideally be decoupled even more such
that all of the types in the configuration struct use interfaces instead
of the concrete types. Doing this would make the RPC server much easier
to internally test since it would allow creating lightweight stubs for
the various pieces.
Instead of having the block manager notify the RPC server about
accepted, connected, and disconnected blocks, the RPC server will
directly listen for notifications from the blockchain.
The objective is to remove the reference from blockManager to
server. Since the blockManager is responsible for keeping the mempool
in sync, it should have a direct reference to it.
The BlockChain struct emits notifications for various events, but
it is only possible to register one listener. This changes the
interface and implementations to allow multiple listeners.
This removes the standardness check to reject transactions with a lock
time greater than a maxint32 because the old bitcoind nodes which it was
designed to protect against are no longer valid for other reasons and
thus there are no longer any of them on the network to worry about.
This makes the code for getheaders more consistent with the rest of the
code in terms of making use of existing error functions and using the
same RPC error codes as other handlers.
While here, it also performs the fetching of headers directly instead of
using a function from server which makes it more tightly coupled.
This replaces the ErrDoubleSpend and ErrMissingTx error codes with a
single error code named ErrMissingTxOut and updates the relevant errors
and expected test results accordingly.
Once upon a time, the code relied on a transaction index, so it was able
to definitively differentiate between a transaction output that
legitimately did not exist and one that had already been spent.
However, since the code now uses a pruned utxoset, it is no longer
possible to reliably differentiate since once all outputs of a
transaction are spent, it is removed from the utxoset completely.
Consequently, a missing transaction could be either because the
transaction never existed or because it is fully spent.
If no existing btcctl.conf file exists, btcctl creates a default one
using the RPC username and password from the btcd.conf. If the
--wallet flag is passed, however, it should read from btcwallet.conf
instead.
https://github.com/btcsuite/btcd/issues/875.
This commit updates the block template generation logic to only include
witness transactions once the soft-fork has activated and to also
include the OP_RETURN witness commitment (with additional block weight
accounting).
This commit updates the new segwit validation logic within block
validation to be guarded by an initial check to the version bits state
before conditionally enforcing the logic based off of the state.
This commit adds set of BIP0009 (Version Bits) deployment parameters
for all networks detailing the activation parameters for the segwit
soft-fork.
Additionally, the BIP0009 integration test has been updated to test for
the proper transitioning of version bits state for the segwit soft
fork. Finally, the `getblockchaininfo` test has also been updated to
properly display the state of segwit.
This commit modifies the existing block selection logic to limit
preferentially by weight instead of serialized block size, and also to
adhere to the new sig-op cost limits which are weighted according to
the witness discount.
This commit implements the new block validation rules as defined by
BIP0141. The new rules include the constraints that if a block has
transactions with witness data, then there MUST be a commitment within
the conies transaction to the root of a new merkle tree which commits
to the wtxid of all transactions. Additionally, rather than limiting
the size of a block by size in bytes, blocks are now limited by their
total weight unit. Similarly, a newly define “sig op cost” is now used
to limit the signature validation cost of transactions found within
blocks.
This commit implements the new “weight” metric introduced as part of
the segwit soft-fork. Post-fork activation, rather than limiting the
size of blocks and transactions based purely on serialized size, a new
metric “weight” will instead be used as a way to more accurately
reflect the costs of a tx/block on the system. With blocks constrained
by weight, the maximum block-size increases to ~4MB.
This commit adds verification of the post-segwit standardness
requirement that all pubkeys involved in checks operations MUST be
serialized as compressed public keys. A new ScriptFlag has been added
to guard this behavior when executing scripts.
This commit modifies the op-code execution for OP_IF and OP_NOTIF to
enforce the additional “minimal if” constraints which require the
top-stack item when the op codes are encountered to be either an empty
vector, or exactly [0x01].
This commit adds a new function to btcec: IsCompressedPubKey. This
function returns true iff the passed serialized public key is encoded
in compressed format.
This commit implements the flag activation portion of BIP 0147. The
verification behavior triggered by the NULLDUMMY script verification
flag has been present within btcd for some time, however it wasn’t
activated by default.
With this commit, once segwit has activated, the ScriptStrictMultiSig
will also be activated within the Script VM. Additionally, the
ScriptStrictMultiSig is now a standard script verification flag which
is used unconditionally within the mempool.
This commit implements full witness program validation for the
currently defined version 0 witness programs. This includes validation
logic for nested p2sh, p2wsh, and p2wkh. Additionally, when in witness
validation mode, an additional set of constrains are enforced such as
using the new sighash digest algorithm and enforcing clean stack
behavior within witness programs.
This commit fixes an off-by-one error which is only manifested by the
new behavior of OP_CODESEPARATOR within sig hashes triggered by the
segwit behavior. The current behavior within the Script VM
(txscript.Engine) is known to be fully correct to the extent that it has
been verified. However, once segwit activates a consensus divergence
would emerge due to *when* the program counter was incremented in the
previous code (pre-this-commit).
Currently (pre-segwit) when calculating the pre-image to a transaction
sighash for signature verification, *all* instances of OP_CODESEPARATOR
are removed from the subScript being signed before generating the final
sighash. SegWit has additional nerfed the behavior of OP_CODESEPARATOR
by no longer removing them (and starting after the last instance), but
instead simply starting the subScript to be directly *after* the last
instance of an OP_CODESEPARATOR within the pkScript.
Due to this new behavior, without this commit, an off-by-one error
(which only matters post-segwit), would cause txscript to generate an
incorrect subScript since the instance of OP_CODESEPARATOR would remain
as part of the subScript instead of being sliced off as the new behavior
dictates. The off-by-one error itself is manifested due to a slight
divergence in txscript.Engine’s logic compared to Bitcoin Core. In
Bitcoin Core script verification is as follows: first the next op-code
is fetched, then program counter is incremented, and finally the op-code
itself is executed. Before this commit, btcd flipped the order
of the last two steps, executing the op-code *before* the program
counter was incremented.
This commit fixes the post-segwit consensus divergence by incrementing
the program-counter *before* the next op-code is executed. It is
important to note that this divergence is only significant post-segwit,
meaning that txscript.Engine is still consensus compliant independent of
this commit.
This commit introduces a series of internal and external helper
functions which enable the txscript package to be aware of the new
standard script templates introduced as part of BIP0141. The two new
standard script templates recognized are pay-to-witness-key-hash
(P2WKH) and pay-to-witness-script-hash (P2WSH).
This commit implements most of BIP0143 by adding logic to implement the
new sighash calculation, signing, and additionally introduces the
HashCache optimization which eliminates the O(N^2) computational
complexity for the SIGHASH_ALL sighash type.
The HashCache struct is the equivalent to the existing SigCache struct,
but for caching the reusable midstate for transactions which are
spending segwitty outputs.
This commit modifies the logic within the block manager and service to
preferentially fetch transactions and blocks which include witness data
from fully upgraded peers.
Once the initial version handshake has completed, the server now tracks
which of the connected peers are witness enabled (they advertise
SFNodeWitness). From then on, if a peer is witness enabled, then btcd
will always request full witness data when fetching
transactions/blocks.
This commit modifies the base peer struct to ascertain when a peer is
able to understand the new witness encoding, and specify the peer’s
supported encoding explicitly before/after the version handshake.
This commit implements the new witness encoding/decoding for
transactions as specified by BIP0144. After segwit activation, a
special transaction encoding is used to signal to upgraded nodes that
the transaction being deserialized bares witness data. The prior
BtcEncode and BtcDecode methods have been extended to be aware of the
new signaling bytes and the encoding of witness data within
transactions.
Additionally, a new method has been added to calculate the “stripped
size” of a transaction/block which is defined as the size of a
transaction/block *excluding* any witness data.
This commit adds the new inventory types for segwit which are used by
the responder to explicitly request that transactions/blocks sent for a
particular inv hash should include all witness data.
This commit modifies the existing wire.Message interface to introduce a
new MessageEncoding variant which dictates the exact encoding to be
used when serializing and deserializing messages. Such an option is now
necessary due to the segwit soft-fork package, as btcd will need to be
able to optionally encode transactions/blocks without witness data to
un-upgraded peers.
Two new functions have been introduced: ReadMessageWithEncodingN and
WriteMessageWithEncodingN which wrap BtcDecode/BtcEncode with the
desired encoding format.
This commit introduces the new SFNodeWitness service bit which has been
added to the protocol as part of BIP0144. The new service bit allows
peers on the network to signal their acceptance and adherence to the
new rules defined as part of the segwit soft-fork package.
The IsBech32SegwitPrefix method takes a string prefix and
determines if it is a valid prefix for a Bech32 encoded segwit
address for any of the default or registered networks.