// Copyright (c) 2015-2016 The btcsuite developers // Use of this source code is governed by an ISC // license that can be found in the LICENSE file. package treap import ( "bytes" "math/rand" ) // Mutable represents a treap data structure which is used to hold ordered // key/value pairs using a combination of binary search tree and heap semantics. // It is a self-organizing and randomized data structure that doesn't require // complex operations to maintain balance. Search, insert, and delete // operations are all O(log n). type Mutable struct { root *treapNode count int // totalSize is the best estimate of the total size of of all data in // the treap including the keys, values, and node sizes. totalSize uint64 } // Len returns the number of items stored in the treap. func (t *Mutable) Len() int { return t.count } // Size returns a best estimate of the total number of bytes the treap is // consuming including all of the fields used to represent the nodes as well as // the size of the keys and values. Shared values are not detected, so the // returned size assumes each value is pointing to different memory. func (t *Mutable) Size() uint64 { return t.totalSize } // get returns the treap node that contains the passed key and its parent. When // the found node is the root of the tree, the parent will be nil. When the key // does not exist, both the node and the parent will be nil. func (t *Mutable) get(key []byte) (*treapNode, *treapNode) { var parent *treapNode for node := t.root; node != nil; { // Traverse left or right depending on the result of the // comparison. compareResult := bytes.Compare(key, node.key) if compareResult < 0 { parent = node node = node.left continue } if compareResult > 0 { parent = node node = node.right continue } // The key exists. return node, parent } // A nil node was reached which means the key does not exist. return nil, nil } // Has returns whether or not the passed key exists. func (t *Mutable) Has(key []byte) bool { if node, _ := t.get(key); node != nil { return true } return false } // Get returns the value for the passed key. The function will return nil when // the key does not exist. func (t *Mutable) Get(key []byte) []byte { if node, _ := t.get(key); node != nil { return node.value } return nil } // relinkGrandparent relinks the node into the treap after it has been rotated // by changing the passed grandparent's left or right pointer, depending on // where the old parent was, to point at the passed node. Otherwise, when there // is no grandparent, it means the node is now the root of the tree, so update // it accordingly. func (t *Mutable) relinkGrandparent(node, parent, grandparent *treapNode) { // The node is now the root of the tree when there is no grandparent. if grandparent == nil { t.root = node return } // Relink the grandparent's left or right pointer based on which side // the old parent was. if grandparent.left == parent { grandparent.left = node } else { grandparent.right = node } } // Put inserts the passed key/value pair. func (t *Mutable) Put(key, value []byte) { // Use an empty byte slice for the value when none was provided. This // ultimately allows key existence to be determined from the value since // an empty byte slice is distinguishable from nil. if value == nil { value = emptySlice } // The node is the root of the tree if there isn't already one. if t.root == nil { node := getTreapNode(key, value, rand.Int(), MutableGeneration) t.count = 1 t.totalSize = nodeSize(node) t.root = node return } // Find the binary tree insertion point and construct a list of parents // while doing so. When the key matches an entry already in the treap, // just update its value and return. var parents parentStack var compareResult int for node := t.root; node != nil; { parents.Push(node) compareResult = bytes.Compare(key, node.key) if compareResult < 0 { node = node.left continue } if compareResult > 0 { node = node.right continue } // The key already exists, so update its value. t.totalSize -= uint64(len(node.value)) t.totalSize += uint64(len(value)) node.value = value return } // Link the new node into the binary tree in the correct position. node := getTreapNode(key, value, rand.Int(), MutableGeneration) t.count++ t.totalSize += nodeSize(node) parent := parents.At(0) if compareResult < 0 { parent.left = node } else { parent.right = node } // Perform any rotations needed to maintain the min-heap. for parents.Len() > 0 { // There is nothing left to do when the node's priority is // greater than or equal to its parent's priority. parent = parents.Pop() if node.priority >= parent.priority { break } // Perform a right rotation if the node is on the left side or // a left rotation if the node is on the right side. if parent.left == node { node.right, parent.left = parent, node.right } else { node.left, parent.right = parent, node.left } t.relinkGrandparent(node, parent, parents.At(0)) } } // Delete removes the passed key if it exists. func (t *Mutable) Delete(key []byte) { // Find the node for the key along with its parent. There is nothing to // do if the key does not exist. node, parent := t.get(key) if node == nil { return } // When the only node in the tree is the root node and it is the one // being deleted, there is nothing else to do besides removing it. if parent == nil && node.left == nil && node.right == nil { t.root = nil t.count = 0 t.totalSize = 0 putTreapNode(node) return } // Perform rotations to move the node to delete to a leaf position while // maintaining the min-heap. var isLeft bool var child *treapNode for node.left != nil || node.right != nil { // Choose the child with the higher priority. if node.left == nil { child = node.right isLeft = false } else if node.right == nil { child = node.left isLeft = true } else if node.left.priority >= node.right.priority { child = node.left isLeft = true } else { child = node.right isLeft = false } // Rotate left or right depending on which side the child node // is on. This has the effect of moving the node to delete // towards the bottom of the tree while maintaining the // min-heap. if isLeft { child.right, node.left = node, child.right } else { child.left, node.right = node, child.left } t.relinkGrandparent(child, node, parent) // The parent for the node to delete is now what was previously // its child. parent = child } // Delete the node, which is now a leaf node, by disconnecting it from // its parent. if parent.right == node { parent.right = nil } else { parent.left = nil } t.count-- t.totalSize -= nodeSize(node) putTreapNode(node) } // ForEach invokes the passed function with every key/value pair in the treap // in ascending order. func (t *Mutable) ForEach(fn func(k, v []byte) bool) { // Add the root node and all children to the left of it to the list of // nodes to traverse and loop until they, and all of their child nodes, // have been traversed. var parents parentStack for node := t.root; node != nil; node = node.left { parents.Push(node) } for parents.Len() > 0 { node := parents.Pop() if !fn(node.key, node.value) { return } // Extend the nodes to traverse by all children to the left of // the current node's right child. for node := node.right; node != nil; node = node.left { parents.Push(node) } } } // Reset efficiently removes all items in the treap. func (t *Mutable) Reset() { t.count = 0 t.totalSize = 0 t.root = nil } // NewMutable returns a new empty mutable treap ready for use. See the // documentation for the Mutable structure for more details. func NewMutable() *Mutable { return &Mutable{} } func (t *Mutable) Recycle() { var parents parentStack for node := t.root; node != nil; node = node.left { parents.Push(node) } for parents.Len() > 0 { node := parents.Pop() // Extend the nodes to traverse by all children to the left of // the current node's right child. for n := node.right; n != nil; n = n.left { parents.Push(n) } if node.generation == MutableGeneration { putTreapNode(node) } } }