// Copyright (c) 2013-2017 The btcsuite developers // Use of this source code is governed by an ISC // license that can be found in the LICENSE file. package txscript import ( "bytes" "encoding/binary" "fmt" "time" "github.com/btcsuite/btcd/chaincfg/chainhash" "github.com/btcsuite/btcd/wire" ) // Bip16Activation is the timestamp where BIP0016 is valid to use in the // blockchain. To be used to determine if BIP0016 should be called for or not. // This timestamp corresponds to Sun Apr 1 00:00:00 UTC 2012. var Bip16Activation = time.Unix(1333238400, 0) // SigHashType represents hash type bits at the end of a signature. type SigHashType uint32 // Hash type bits from the end of a signature. const ( SigHashOld SigHashType = 0x0 SigHashAll SigHashType = 0x1 SigHashNone SigHashType = 0x2 SigHashSingle SigHashType = 0x3 SigHashAnyOneCanPay SigHashType = 0x80 // sigHashMask defines the number of bits of the hash type which is used // to identify which outputs are signed. sigHashMask = 0x1f ) // These are the constants specified for maximums in individual scripts. const ( MaxOpsPerScript = 201 // Max number of non-push operations. MaxPubKeysPerMultiSig = 20 // Multisig can't have more sigs than this. MaxScriptElementSize = 520 // Max bytes pushable to the stack. ) // isSmallInt returns whether or not the opcode is considered a small integer, // which is an OP_0, or OP_1 through OP_16. func isSmallInt(op *opcode) bool { if op.value == OP_0 || (op.value >= OP_1 && op.value <= OP_16) { return true } return false } // isScriptHash returns true if the script passed is a pay-to-script-hash // transaction, false otherwise. func isScriptHash(pops []parsedOpcode) bool { return len(pops) == 3 && pops[0].opcode.value == OP_HASH160 && pops[1].opcode.value == OP_DATA_20 && pops[2].opcode.value == OP_EQUAL } // IsPayToScriptHash returns true if the script is in the standard // pay-to-script-hash (P2SH) format, false otherwise. func IsPayToScriptHash(script []byte) bool { pops, err := parseScript(script) if err != nil { return false } return isScriptHash(pops) } // isPushOnly returns true if the script only pushes data, false otherwise. func isPushOnly(pops []parsedOpcode) bool { // NOTE: This function does NOT verify opcodes directly since it is // internal and is only called with parsed opcodes for scripts that did // not have any parse errors. Thus, consensus is properly maintained. for _, pop := range pops { // All opcodes up to OP_16 are data push instructions. // NOTE: This does consider OP_RESERVED to be a data push // instruction, but execution of OP_RESERVED will fail anyways // and matches the behavior required by consensus. if pop.opcode.value > OP_16 { return false } } return true } // IsPushOnlyScript returns whether or not the passed script only pushes data. // // False will be returned when the script does not parse. func IsPushOnlyScript(script []byte) bool { pops, err := parseScript(script) if err != nil { return false } return isPushOnly(pops) } // parseScriptTemplate is the same as parseScript but allows the passing of the // template list for testing purposes. When there are parse errors, it returns // the list of parsed opcodes up to the point of failure along with the error. func parseScriptTemplate(script []byte, opcodes *[256]opcode) ([]parsedOpcode, error) { retScript := make([]parsedOpcode, 0, len(script)) for i := 0; i < len(script); { instr := script[i] op := &opcodes[instr] pop := parsedOpcode{opcode: op} // Parse data out of instruction. switch { // No additional data. Note that some of the opcodes, notably // OP_1NEGATE, OP_0, and OP_[1-16] represent the data // themselves. case op.length == 1: i++ // Data pushes of specific lengths -- OP_DATA_[1-75]. case op.length > 1: if len(script[i:]) < op.length { str := fmt.Sprintf("opcode %s requires %d "+ "bytes, but script only has %d remaining", op.name, op.length, len(script[i:])) return retScript, scriptError(ErrMalformedPush, str) } // Slice out the data. pop.data = script[i+1 : i+op.length] i += op.length // Data pushes with parsed lengths -- OP_PUSHDATAP{1,2,4}. case op.length < 0: var l uint off := i + 1 if len(script[off:]) < -op.length { str := fmt.Sprintf("opcode %s requires %d "+ "bytes, but script only has %d remaining", op.name, -op.length, len(script[off:])) return retScript, scriptError(ErrMalformedPush, str) } // Next -length bytes are little endian length of data. switch op.length { case -1: l = uint(script[off]) case -2: l = ((uint(script[off+1]) << 8) | uint(script[off])) case -4: l = ((uint(script[off+3]) << 24) | (uint(script[off+2]) << 16) | (uint(script[off+1]) << 8) | uint(script[off])) default: str := fmt.Sprintf("invalid opcode length %d", op.length) return retScript, scriptError(ErrMalformedPush, str) } // Move offset to beginning of the data. off += -op.length // Disallow entries that do not fit script or were // sign extended. if int(l) > len(script[off:]) || int(l) < 0 { str := fmt.Sprintf("opcode %s pushes %d bytes, "+ "but script only has %d remaining", op.name, int(l), len(script[off:])) return retScript, scriptError(ErrMalformedPush, str) } pop.data = script[off : off+int(l)] i += 1 - op.length + int(l) } retScript = append(retScript, pop) } return retScript, nil } // parseScript preparses the script in bytes into a list of parsedOpcodes while // applying a number of sanity checks. func parseScript(script []byte) ([]parsedOpcode, error) { return parseScriptTemplate(script, &opcodeArray) } // unparseScript reversed the action of parseScript and returns the // parsedOpcodes as a list of bytes func unparseScript(pops []parsedOpcode) ([]byte, error) { script := make([]byte, 0, len(pops)) for _, pop := range pops { b, err := pop.bytes() if err != nil { return nil, err } script = append(script, b...) } return script, nil } // DisasmString formats a disassembled script for one line printing. When the // script fails to parse, the returned string will contain the disassembled // script up to the point the failure occurred along with the string '[error]' // appended. In addition, the reason the script failed to parse is returned // if the caller wants more information about the failure. func DisasmString(buf []byte) (string, error) { var disbuf bytes.Buffer opcodes, err := parseScript(buf) for _, pop := range opcodes { disbuf.WriteString(pop.print(true)) disbuf.WriteByte(' ') } if disbuf.Len() > 0 { disbuf.Truncate(disbuf.Len() - 1) } if err != nil { disbuf.WriteString("[error]") } return disbuf.String(), err } // removeOpcode will remove any opcode matching ``opcode'' from the opcode // stream in pkscript func removeOpcode(pkscript []parsedOpcode, opcode byte) []parsedOpcode { retScript := make([]parsedOpcode, 0, len(pkscript)) for _, pop := range pkscript { if pop.opcode.value != opcode { retScript = append(retScript, pop) } } return retScript } // canonicalPush returns true if the object is either not a push instruction // or the push instruction contained wherein is matches the canonical form // or using the smallest instruction to do the job. False otherwise. func canonicalPush(pop parsedOpcode) bool { opcode := pop.opcode.value data := pop.data dataLen := len(pop.data) if opcode > OP_16 { return true } if opcode < OP_PUSHDATA1 && opcode > OP_0 && (dataLen == 1 && data[0] <= 16) { return false } if opcode == OP_PUSHDATA1 && dataLen < OP_PUSHDATA1 { return false } if opcode == OP_PUSHDATA2 && dataLen <= 0xff { return false } if opcode == OP_PUSHDATA4 && dataLen <= 0xffff { return false } return true } // removeOpcodeByData will return the script minus any opcodes that would push // the passed data to the stack. func removeOpcodeByData(pkscript []parsedOpcode, data []byte) []parsedOpcode { retScript := make([]parsedOpcode, 0, len(pkscript)) for _, pop := range pkscript { if !canonicalPush(pop) || !bytes.Contains(pop.data, data) { retScript = append(retScript, pop) } } return retScript } // calcSignatureHash will, given a script and hash type for the current script // engine instance, calculate the signature hash to be used for signing and // verification. func calcSignatureHash(script []parsedOpcode, hashType SigHashType, tx *wire.MsgTx, idx int) []byte { // The SigHashSingle signature type signs only the corresponding input // and output (the output with the same index number as the input). // // Since transactions can have more inputs than outputs, this means it // is improper to use SigHashSingle on input indices that don't have a // corresponding output. // // A bug in the original Satoshi client implementation means specifying // an index that is out of range results in a signature hash of 1 (as a // uint256 little endian). The original intent appeared to be to // indicate failure, but unfortunately, it was never checked and thus is // treated as the actual signature hash. This buggy behavior is now // part of the consensus and a hard fork would be required to fix it. // // Due to this, care must be taken by software that creates transactions // which make use of SigHashSingle because it can lead to an extremely // dangerous situation where the invalid inputs will end up signing a // hash of 1. This in turn presents an opportunity for attackers to // cleverly construct transactions which can steal those coins provided // they can reuse signatures. if hashType&sigHashMask == SigHashSingle && idx >= len(tx.TxOut) { var hash chainhash.Hash hash[0] = 0x01 return hash[:] } // Remove all instances of OP_CODESEPARATOR from the script. script = removeOpcode(script, OP_CODESEPARATOR) // Make a deep copy of the transaction, zeroing out the script for all // inputs that are not currently being processed. txCopy := tx.Copy() for i := range txCopy.TxIn { if i == idx { // UnparseScript cannot fail here because removeOpcode // above only returns a valid script. sigScript, _ := unparseScript(script) txCopy.TxIn[idx].SignatureScript = sigScript } else { txCopy.TxIn[i].SignatureScript = nil } } switch hashType & sigHashMask { case SigHashNone: txCopy.TxOut = txCopy.TxOut[0:0] // Empty slice. for i := range txCopy.TxIn { if i != idx { txCopy.TxIn[i].Sequence = 0 } } case SigHashSingle: // Resize output array to up to and including requested index. txCopy.TxOut = txCopy.TxOut[:idx+1] // All but current output get zeroed out. for i := 0; i < idx; i++ { txCopy.TxOut[i].Value = -1 txCopy.TxOut[i].PkScript = nil } // Sequence on all other inputs is 0, too. for i := range txCopy.TxIn { if i != idx { txCopy.TxIn[i].Sequence = 0 } } default: // Consensus treats undefined hashtypes like normal SigHashAll // for purposes of hash generation. fallthrough case SigHashOld: fallthrough case SigHashAll: // Nothing special here. } if hashType&SigHashAnyOneCanPay != 0 { txCopy.TxIn = txCopy.TxIn[idx : idx+1] idx = 0 } // The final hash is the double sha256 of both the serialized modified // transaction and the hash type (encoded as a 4-byte little-endian // value) appended. wbuf := bytes.NewBuffer(make([]byte, 0, txCopy.SerializeSize()+4)) txCopy.Serialize(wbuf) binary.Write(wbuf, binary.LittleEndian, hashType) return chainhash.DoubleHashB(wbuf.Bytes()) } // asSmallInt returns the passed opcode, which must be true according to // isSmallInt(), as an integer. func asSmallInt(op *opcode) int { if op.value == OP_0 { return 0 } return int(op.value - (OP_1 - 1)) } // getSigOpCount is the implementation function for counting the number of // signature operations in the script provided by pops. If precise mode is // requested then we attempt to count the number of operations for a multisig // op. Otherwise we use the maximum. func getSigOpCount(pops []parsedOpcode, precise bool) int { nSigs := 0 for i, pop := range pops { switch pop.opcode.value { case OP_CHECKSIG: fallthrough case OP_CHECKSIGVERIFY: nSigs++ case OP_CHECKMULTISIG: fallthrough case OP_CHECKMULTISIGVERIFY: // If we are being precise then look for familiar // patterns for multisig, for now all we recognize is // OP_1 - OP_16 to signify the number of pubkeys. // Otherwise, we use the max of 20. if precise && i > 0 && pops[i-1].opcode.value >= OP_1 && pops[i-1].opcode.value <= OP_16 { nSigs += asSmallInt(pops[i-1].opcode) } else { nSigs += MaxPubKeysPerMultiSig } default: // Not a sigop. } } return nSigs } // GetSigOpCount provides a quick count of the number of signature operations // in a script. a CHECKSIG operations counts for 1, and a CHECK_MULTISIG for 20. // If the script fails to parse, then the count up to the point of failure is // returned. func GetSigOpCount(script []byte) int { // Don't check error since parseScript returns the parsed-up-to-error // list of pops. pops, _ := parseScript(script) return getSigOpCount(pops, false) } // GetPreciseSigOpCount returns the number of signature operations in // scriptPubKey. If bip16 is true then scriptSig may be searched for the // Pay-To-Script-Hash script in order to find the precise number of signature // operations in the transaction. If the script fails to parse, then the count // up to the point of failure is returned. func GetPreciseSigOpCount(scriptSig, scriptPubKey []byte, bip16 bool) int { // Don't check error since parseScript returns the parsed-up-to-error // list of pops. pops, _ := parseScript(scriptPubKey) // Treat non P2SH transactions as normal. if !(bip16 && isScriptHash(pops)) { return getSigOpCount(pops, true) } // The public key script is a pay-to-script-hash, so parse the signature // script to get the final item. Scripts that fail to fully parse count // as 0 signature operations. sigPops, err := parseScript(scriptSig) if err != nil { return 0 } // The signature script must only push data to the stack for P2SH to be // a valid pair, so the signature operation count is 0 when that is not // the case. if !isPushOnly(sigPops) || len(sigPops) == 0 { return 0 } // The P2SH script is the last item the signature script pushes to the // stack. When the script is empty, there are no signature operations. shScript := sigPops[len(sigPops)-1].data if len(shScript) == 0 { return 0 } // Parse the P2SH script and don't check the error since parseScript // returns the parsed-up-to-error list of pops and the consensus rules // dictate signature operations are counted up to the first parse // failure. shPops, _ := parseScript(shScript) return getSigOpCount(shPops, true) } // IsUnspendable returns whether the passed public key script is unspendable, or // guaranteed to fail at execution. This allows inputs to be pruned instantly // when entering the UTXO set. func IsUnspendable(pkScript []byte) bool { pops, err := parseScript(pkScript) if err != nil { return true } return len(pops) > 0 && pops[0].opcode.value == OP_RETURN }