// Copyright 2010 The Go Authors. All rights reserved. // Copyright 2011 ThePiachu. All rights reserved. // Copyright 2013 Conformal Systems LLC. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package btcec // This package operates, internally, on Jacobian coordinates. For a given // (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1) // where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole // calculation can be performed within the transform (as in ScalarMult and // ScalarBaseMult). But even for Add and Double, it's faster to apply and // reverse the transform than to operate in affine coordinates. import ( "crypto/elliptic" "math/big" "sync" ) //TODO: examine if we need to care about EC optimization as descibed here // https://bitcointalk.org/index.php?topic=155054.0;all // KoblitzCurve supports a koblitz curve implementation that fits the ECC Curve // interface. type KoblitzCurve struct { *elliptic.CurveParams q *big.Int } func (curve *KoblitzCurve) Params() *elliptic.CurveParams { return curve.CurveParams } // Return boolean if the point (x,y) is on the curve. // Differs from normal curve algorithm since a = 0 not -3 func (curve *KoblitzCurve) IsOnCurve(x, y *big.Int) bool { // y² = x³ + b y2 := new(big.Int).Mul(y, y) //y² y2.Mod(y2, curve.P) //y²%P x3 := new(big.Int).Mul(x, x) //x² x3.Mul(x3, x) //x³ x3.Add(x3, curve.B) //x³+B x3.Mod(x3, curve.P) //(x³+B)%P return x3.Cmp(y2) == 0 } // zForAffine returns a Jacobian Z value for the affine point (x, y). If x and // y are zero, it assumes that they represent the point at infinity because (0, // 0) is not on the any of the curves handled here. func zForAffine(x, y *big.Int) *big.Int { z := new(big.Int) if x.Sign() != 0 || y.Sign() != 0 { z.SetInt64(1) } return z } // affineFromJacobian reverses the Jacobian transform. See the comment at the // top of the file. If the point is ∞ it returns 0, 0. func (curve *KoblitzCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { if z.Sign() == 0 { return new(big.Int), new(big.Int) } zinv := new(big.Int).ModInverse(z, curve.P) zinvsq := new(big.Int).Mul(zinv, zinv) xOut = new(big.Int).Mul(x, zinvsq) xOut.Mod(xOut, curve.P) zinvsq.Mul(zinvsq, zinv) yOut = new(big.Int).Mul(y, zinvsq) yOut.Mod(yOut, curve.P) return } func (curve *KoblitzCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { z1 := zForAffine(x1, y1) z2 := zForAffine(x2, y2) return curve.affineFromJacobian(curve.addJacobian(x1, y1, z1, x2, y2, z2)) } // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and // (x2, y2, z2) and returns their sum, also in Jacobian form. func (curve *KoblitzCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl x3, y3, z3 := new(big.Int), new(big.Int), new(big.Int) if z1.Sign() == 0 { x3.Set(x2) y3.Set(y2) z3.Set(z2) return x3, y3, z3 } if z2.Sign() == 0 { x3.Set(x1) y3.Set(y1) z3.Set(z1) return x3, y3, z3 } z1z1 := new(big.Int).Mul(z1, z1) z1z1.Mod(z1z1, curve.P) z2z2 := new(big.Int).Mul(z2, z2) z2z2.Mod(z2z2, curve.P) u1 := new(big.Int).Mul(x1, z2z2) u1.Mod(u1, curve.P) u2 := new(big.Int).Mul(x2, z1z1) u2.Mod(u2, curve.P) h := new(big.Int).Sub(u2, u1) xEqual := h.Sign() == 0 if h.Sign() == -1 { h.Add(h, curve.P) } i := new(big.Int).Lsh(h, 1) i.Mul(i, i) j := new(big.Int).Mul(h, i) s1 := new(big.Int).Mul(y1, z2) s1.Mul(s1, z2z2) s1.Mod(s1, curve.P) s2 := new(big.Int).Mul(y2, z1) s2.Mul(s2, z1z1) s2.Mod(s2, curve.P) r := new(big.Int).Sub(s2, s1) if r.Sign() == -1 { r.Add(r, curve.P) } yEqual := r.Sign() == 0 if xEqual && yEqual { return curve.doubleJacobian(x1, y1, z1) } r.Lsh(r, 1) v := new(big.Int).Mul(u1, i) x3.Set(r) x3.Mul(x3, x3) x3.Sub(x3, j) x3.Sub(x3, v) x3.Sub(x3, v) x3.Mod(x3, curve.P) y3.Set(r) v.Sub(v, x3) y3.Mul(y3, v) s1.Mul(s1, j) s1.Lsh(s1, 1) y3.Sub(y3, s1) y3.Mod(y3, curve.P) z3.Add(z1, z2) z3.Mul(z3, z3) z3.Sub(z3, z1z1) z3.Sub(z3, z2z2) z3.Mul(z3, h) z3.Mod(z3, curve.P) return x3, y3, z3 } func (curve *KoblitzCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { z1 := zForAffine(x1, y1) return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1)) } // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and // returns its double, also in Jacobian form. func (curve *KoblitzCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l a := new(big.Int).Mul(x, x) //X1² b := new(big.Int).Mul(y, y) //Y1² c := new(big.Int).Mul(b, b) //B² d := new(big.Int).Add(x, b) //X1+B d.Mul(d, d) //(X1+B)² d.Sub(d, a) //(X1+B)²-A d.Sub(d, c) //(X1+B)²-A-C d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C) e := new(big.Int).Mul(big.NewInt(3), a) //3*A f := new(big.Int).Mul(e, e) //E² x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D x3.Sub(f, x3) //F-2*D x3.Mod(x3, curve.P) y3 := new(big.Int).Sub(d, x3) //D-X3 y3.Mul(e, y3) //E*(D-X3) y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C y3.Mod(y3, curve.P) z3 := new(big.Int).Mul(y, z) //Y1*Z1 z3.Mul(big.NewInt(2), z3) //3*Y1*Z1 z3.Mod(z3, curve.P) return x3, y3, z3 } func (curve *KoblitzCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) { Bz := new(big.Int).SetInt64(1) x, y, z := new(big.Int), new(big.Int), new(big.Int) for _, byte := range k { for bitNum := 0; bitNum < 8; bitNum++ { x, y, z = curve.doubleJacobian(x, y, z) if byte&0x80 == 0x80 { x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z) } byte <<= 1 } } return curve.affineFromJacobian(x, y, z) } func (curve *KoblitzCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { return curve.ScalarMult(curve.Gx, curve.Gy, k) } func (curve *KoblitzCurve) QPlus1Div4() *big.Int { if curve.q == nil { curve.q = new(big.Int).Div(new(big.Int).Add(secp256k1.P, big.NewInt(1)), big.NewInt(4)) } return curve.q } //curve parameters taken from: //http://www.secg.org/collateral/sec2_final.pdf var initonce sync.Once var secp256k1 KoblitzCurve func initAll() { initS256() } func initS256() { // See SEC 2 section 2.7.1 secp256k1.CurveParams = new(elliptic.CurveParams) secp256k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16) secp256k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16) secp256k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16) secp256k1.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16) secp256k1.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16) secp256k1.BitSize = 256 } // P521 returns a Curve which implements P-521 (see FIPS 186-3, section D.2.5) func S256() *KoblitzCurve { initonce.Do(initAll) return &secp256k1 }