// Copyright (c) 2013-2016 The btcsuite developers // Use of this source code is governed by an ISC // license that can be found in the LICENSE file. package mempool import ( "fmt" "github.com/btcsuite/btcd/blockchain" "github.com/btcsuite/btcd/txscript" "github.com/btcsuite/btcd/wire" "github.com/btcsuite/btcutil" ) const ( // maxStandardTxSize is the maximum size allowed for transactions that // are considered standard and will therefore be relayed and considered // for mining. maxStandardTxSize = 100000 // maxStandardSigScriptSize is the maximum size allowed for a // transaction input signature script to be considered standard. This // value allows for a 15-of-15 CHECKMULTISIG pay-to-script-hash with // compressed keys. // // The form of the overall script is: OP_0 <15 signatures> OP_PUSHDATA2 // <2 bytes len> [OP_15 <15 pubkeys> OP_15 OP_CHECKMULTISIG] // // For the p2sh script portion, each of the 15 compressed pubkeys are // 33 bytes (plus one for the OP_DATA_33 opcode), and the thus it totals // to (15*34)+3 = 513 bytes. Next, each of the 15 signatures is a max // of 73 bytes (plus one for the OP_DATA_73 opcode). Also, there is one // extra byte for the initial extra OP_0 push and 3 bytes for the // OP_PUSHDATA2 needed to specify the 513 bytes for the script push. // That brings the total to 1+(15*74)+3+513 = 1627. This value also // adds a few extra bytes to provide a little buffer. // (1 + 15*74 + 3) + (15*34 + 3) + 23 = 1650 maxStandardSigScriptSize = 1650 // DefaultMinRelayTxFee is the minimum fee in satoshi that is required // for a transaction to be treated as free for relay and mining // purposes. It is also used to help determine if a transaction is // considered dust and as a base for calculating minimum required fees // for larger transactions. This value is in Satoshi/1000 bytes. DefaultMinRelayTxFee = btcutil.Amount(1000) // maxStandardMultiSigKeys is the maximum number of public keys allowed // in a multi-signature transaction output script for it to be // considered standard. maxStandardMultiSigKeys = 3 ) // calcMinRequiredTxRelayFee returns the minimum transaction fee required for a // transaction with the passed serialized size to be accepted into the memory // pool and relayed. func calcMinRequiredTxRelayFee(serializedSize int64, minRelayTxFee btcutil.Amount) int64 { // Calculate the minimum fee for a transaction to be allowed into the // mempool and relayed by scaling the base fee (which is the minimum // free transaction relay fee). minTxRelayFee is in Satoshi/kB so // multiply by serializedSize (which is in bytes) and divide by 1000 to // get minimum Satoshis. minFee := (serializedSize * int64(minRelayTxFee)) / 1000 if minFee == 0 && minRelayTxFee > 0 { minFee = int64(minRelayTxFee) } // Set the minimum fee to the maximum possible value if the calculated // fee is not in the valid range for monetary amounts. if minFee < 0 || minFee > btcutil.MaxSatoshi { minFee = btcutil.MaxSatoshi } return minFee } // CalcPriority returns a transaction priority given a transaction and the sum // of each of its input values multiplied by their age (# of confirmations). // Thus, the final formula for the priority is: // sum(inputValue * inputAge) / adjustedTxSize func CalcPriority(tx *wire.MsgTx, utxoView *blockchain.UtxoViewpoint, nextBlockHeight int32) float64 { // In order to encourage spending multiple old unspent transaction // outputs thereby reducing the total set, don't count the constant // overhead for each input as well as enough bytes of the signature // script to cover a pay-to-script-hash redemption with a compressed // pubkey. This makes additional inputs free by boosting the priority // of the transaction accordingly. No more incentive is given to avoid // encouraging gaming future transactions through the use of junk // outputs. This is the same logic used in the reference // implementation. // // The constant overhead for a txin is 41 bytes since the previous // outpoint is 36 bytes + 4 bytes for the sequence + 1 byte the // signature script length. // // A compressed pubkey pay-to-script-hash redemption with a maximum len // signature is of the form: // [OP_DATA_73 <73-byte sig> + OP_DATA_35 + {OP_DATA_33 // <33 byte compresed pubkey> + OP_CHECKSIG}] // // Thus 1 + 73 + 1 + 1 + 33 + 1 = 110 overhead := 0 for _, txIn := range tx.TxIn { // Max inputs + size can't possibly overflow here. overhead += 41 + minInt(110, len(txIn.SignatureScript)) } serializedTxSize := tx.SerializeSize() if overhead >= serializedTxSize { return 0.0 } inputValueAge := calcInputValueAge(tx, utxoView, nextBlockHeight) return inputValueAge / float64(serializedTxSize-overhead) } // calcInputValueAge is a helper function used to calculate the input age of // a transaction. The input age for a txin is the number of confirmations // since the referenced txout multiplied by its output value. The total input // age is the sum of this value for each txin. Any inputs to the transaction // which are currently in the mempool and hence not mined into a block yet, // contribute no additional input age to the transaction. func calcInputValueAge(tx *wire.MsgTx, utxoView *blockchain.UtxoViewpoint, nextBlockHeight int32) float64 { var totalInputAge float64 for _, txIn := range tx.TxIn { // Don't attempt to accumulate the total input age if the // referenced transaction output doesn't exist. originHash := &txIn.PreviousOutPoint.Hash originIndex := txIn.PreviousOutPoint.Index txEntry := utxoView.LookupEntry(originHash) if txEntry != nil && !txEntry.IsOutputSpent(originIndex) { // Inputs with dependencies currently in the mempool // have their block height set to a special constant. // Their input age should be computed as zero since // their parent hasn't made it into a block yet. var inputAge int32 originHeight := txEntry.BlockHeight() if originHeight == mempoolHeight { inputAge = 0 } else { inputAge = nextBlockHeight - originHeight } // Sum the input value times age. inputValue := txEntry.AmountByIndex(originIndex) totalInputAge += float64(inputValue * int64(inputAge)) } } return totalInputAge } // checkInputsStandard performs a series of checks on a transaction's inputs // to ensure they are "standard". A standard transaction input is one that // that consumes the expected number of elements from the stack and that number // is the same as the output script pushes. This help prevent resource // exhaustion attacks by "creative" use of scripts that are super expensive to // process like OP_DUP OP_CHECKSIG OP_DROP repeated a large number of times // followed by a final OP_TRUE. func checkInputsStandard(tx *btcutil.Tx, utxoView *blockchain.UtxoViewpoint) error { // NOTE: The reference implementation also does a coinbase check here, // but coinbases have already been rejected prior to calling this // function so no need to recheck. for i, txIn := range tx.MsgTx().TxIn { // It is safe to elide existence and index checks here since // they have already been checked prior to calling this // function. prevOut := txIn.PreviousOutPoint entry := utxoView.LookupEntry(&prevOut.Hash) originPkScript := entry.PkScriptByIndex(prevOut.Index) // Calculate stats for the script pair. scriptInfo, err := txscript.CalcScriptInfo(txIn.SignatureScript, originPkScript, true) if err != nil { str := fmt.Sprintf("transaction input #%d script parse "+ "failure: %v", i, err) return txRuleError(wire.RejectNonstandard, str) } // A negative value for expected inputs indicates the script is // non-standard in some way. if scriptInfo.ExpectedInputs < 0 { str := fmt.Sprintf("transaction input #%d expects %d "+ "inputs", i, scriptInfo.ExpectedInputs) return txRuleError(wire.RejectNonstandard, str) } // The script pair is non-standard if the number of available // inputs does not match the number of expected inputs. if scriptInfo.NumInputs != scriptInfo.ExpectedInputs { str := fmt.Sprintf("transaction input #%d expects %d "+ "inputs, but referenced output script provides "+ "%d", i, scriptInfo.ExpectedInputs, scriptInfo.NumInputs) return txRuleError(wire.RejectNonstandard, str) } } return nil } // checkPkScriptStandard performs a series of checks on a transaction output // script (public key script) to ensure it is a "standard" public key script. // A standard public key script is one that is a recognized form, and for // multi-signature scripts, only contains from 1 to maxStandardMultiSigKeys // public keys. func checkPkScriptStandard(pkScript []byte, scriptClass txscript.ScriptClass) error { switch scriptClass { case txscript.MultiSigTy: numPubKeys, numSigs, err := txscript.CalcMultiSigStats(pkScript) if err != nil { str := fmt.Sprintf("multi-signature script parse "+ "failure: %v", err) return txRuleError(wire.RejectNonstandard, str) } // A standard multi-signature public key script must contain // from 1 to maxStandardMultiSigKeys public keys. if numPubKeys < 1 { str := "multi-signature script with no pubkeys" return txRuleError(wire.RejectNonstandard, str) } if numPubKeys > maxStandardMultiSigKeys { str := fmt.Sprintf("multi-signature script with %d "+ "public keys which is more than the allowed "+ "max of %d", numPubKeys, maxStandardMultiSigKeys) return txRuleError(wire.RejectNonstandard, str) } // A standard multi-signature public key script must have at // least 1 signature and no more signatures than available // public keys. if numSigs < 1 { return txRuleError(wire.RejectNonstandard, "multi-signature script with no signatures") } if numSigs > numPubKeys { str := fmt.Sprintf("multi-signature script with %d "+ "signatures which is more than the available "+ "%d public keys", numSigs, numPubKeys) return txRuleError(wire.RejectNonstandard, str) } case txscript.NonStandardTy: return txRuleError(wire.RejectNonstandard, "non-standard script form") } return nil } // isDust returns whether or not the passed transaction output amount is // considered dust or not based on the passed minimum transaction relay fee. // Dust is defined in terms of the minimum transaction relay fee. In // particular, if the cost to the network to spend coins is more than 1/3 of the // minimum transaction relay fee, it is considered dust. func isDust(txOut *wire.TxOut, minRelayTxFee btcutil.Amount) bool { // Unspendable outputs are considered dust. if txscript.IsUnspendable(txOut.PkScript) { return true } // The total serialized size consists of the output and the associated // input script to redeem it. Since there is no input script // to redeem it yet, use the minimum size of a typical input script. // // Pay-to-pubkey-hash bytes breakdown: // // Output to hash (34 bytes): // 8 value, 1 script len, 25 script [1 OP_DUP, 1 OP_HASH_160, // 1 OP_DATA_20, 20 hash, 1 OP_EQUALVERIFY, 1 OP_CHECKSIG] // // Input with compressed pubkey (148 bytes): // 36 prev outpoint, 1 script len, 107 script [1 OP_DATA_72, 72 sig, // 1 OP_DATA_33, 33 compressed pubkey], 4 sequence // // Input with uncompressed pubkey (180 bytes): // 36 prev outpoint, 1 script len, 139 script [1 OP_DATA_72, 72 sig, // 1 OP_DATA_65, 65 compressed pubkey], 4 sequence // // Pay-to-pubkey bytes breakdown: // // Output to compressed pubkey (44 bytes): // 8 value, 1 script len, 35 script [1 OP_DATA_33, // 33 compressed pubkey, 1 OP_CHECKSIG] // // Output to uncompressed pubkey (76 bytes): // 8 value, 1 script len, 67 script [1 OP_DATA_65, 65 pubkey, // 1 OP_CHECKSIG] // // Input (114 bytes): // 36 prev outpoint, 1 script len, 73 script [1 OP_DATA_72, // 72 sig], 4 sequence // // Theoretically this could examine the script type of the output script // and use a different size for the typical input script size for // pay-to-pubkey vs pay-to-pubkey-hash inputs per the above breakdowns, // but the only combinination which is less than the value chosen is // a pay-to-pubkey script with a compressed pubkey, which is not very // common. // // The most common scripts are pay-to-pubkey-hash, and as per the above // breakdown, the minimum size of a p2pkh input script is 148 bytes. So // that figure is used. totalSize := txOut.SerializeSize() + 148 // The output is considered dust if the cost to the network to spend the // coins is more than 1/3 of the minimum free transaction relay fee. // minFreeTxRelayFee is in Satoshi/KB, so multiply by 1000 to // convert to bytes. // // Using the typical values for a pay-to-pubkey-hash transaction from // the breakdown above and the default minimum free transaction relay // fee of 1000, this equates to values less than 546 satoshi being // considered dust. // // The following is equivalent to (value/totalSize) * (1/3) * 1000 // without needing to do floating point math. return txOut.Value*1000/(3*int64(totalSize)) < int64(minRelayTxFee) } // checkTransactionStandard performs a series of checks on a transaction to // ensure it is a "standard" transaction. A standard transaction is one that // conforms to several additional limiting cases over what is considered a // "sane" transaction such as having a version in the supported range, being // finalized, conforming to more stringent size constraints, having scripts // of recognized forms, and not containing "dust" outputs (those that are // so small it costs more to process them than they are worth). func checkTransactionStandard(tx *btcutil.Tx, height int32, timeSource blockchain.MedianTimeSource, minRelayTxFee btcutil.Amount) error { // The transaction must be a currently supported version. msgTx := tx.MsgTx() if msgTx.Version > wire.TxVersion || msgTx.Version < 1 { str := fmt.Sprintf("transaction version %d is not in the "+ "valid range of %d-%d", msgTx.Version, 1, wire.TxVersion) return txRuleError(wire.RejectNonstandard, str) } // The transaction must be finalized to be standard and therefore // considered for inclusion in a block. adjustedTime := timeSource.AdjustedTime() if !blockchain.IsFinalizedTransaction(tx, height, adjustedTime) { return txRuleError(wire.RejectNonstandard, "transaction is not finalized") } // Since extremely large transactions with a lot of inputs can cost // almost as much to process as the sender fees, limit the maximum // size of a transaction. This also helps mitigate CPU exhaustion // attacks. serializedLen := msgTx.SerializeSize() if serializedLen > maxStandardTxSize { str := fmt.Sprintf("transaction size of %v is larger than max "+ "allowed size of %v", serializedLen, maxStandardTxSize) return txRuleError(wire.RejectNonstandard, str) } for i, txIn := range msgTx.TxIn { // Each transaction input signature script must not exceed the // maximum size allowed for a standard transaction. See // the comment on maxStandardSigScriptSize for more details. sigScriptLen := len(txIn.SignatureScript) if sigScriptLen > maxStandardSigScriptSize { str := fmt.Sprintf("transaction input %d: signature "+ "script size of %d bytes is large than max "+ "allowed size of %d bytes", i, sigScriptLen, maxStandardSigScriptSize) return txRuleError(wire.RejectNonstandard, str) } // Each transaction input signature script must only contain // opcodes which push data onto the stack. if !txscript.IsPushOnlyScript(txIn.SignatureScript) { str := fmt.Sprintf("transaction input %d: signature "+ "script is not push only", i) return txRuleError(wire.RejectNonstandard, str) } } // None of the output public key scripts can be a non-standard script or // be "dust" (except when the script is a null data script). numNullDataOutputs := 0 for i, txOut := range msgTx.TxOut { scriptClass := txscript.GetScriptClass(txOut.PkScript) err := checkPkScriptStandard(txOut.PkScript, scriptClass) if err != nil { // Attempt to extract a reject code from the error so // it can be retained. When not possible, fall back to // a non standard error. rejectCode := wire.RejectNonstandard if rejCode, found := extractRejectCode(err); found { rejectCode = rejCode } str := fmt.Sprintf("transaction output %d: %v", i, err) return txRuleError(rejectCode, str) } // Accumulate the number of outputs which only carry data. For // all other script types, ensure the output value is not // "dust". if scriptClass == txscript.NullDataTy { numNullDataOutputs++ } else if isDust(txOut, minRelayTxFee) { str := fmt.Sprintf("transaction output %d: payment "+ "of %d is dust", i, txOut.Value) return txRuleError(wire.RejectDust, str) } } // A standard transaction must not have more than one output script that // only carries data. if numNullDataOutputs > 1 { str := "more than one transaction output in a nulldata script" return txRuleError(wire.RejectNonstandard, str) } return nil } // minInt is a helper function to return the minimum of two ints. This avoids // a math import and the need to cast to floats. func minInt(a, b int) int { if a < b { return a } return b }