// Copyright (c) 2013-2017 The btcsuite developers // Use of this source code is governed by an ISC // license that can be found in the LICENSE file. package txscript import ( "bytes" "encoding/binary" "fmt" "time" "github.com/btcsuite/btcd/chaincfg/chainhash" "github.com/btcsuite/btcd/wire" ) // Bip16Activation is the timestamp where BIP0016 is valid to use in the // blockchain. To be used to determine if BIP0016 should be called for or not. // This timestamp corresponds to Sun Apr 1 00:00:00 UTC 2012. var Bip16Activation = time.Unix(1333238400, 0) // SigHashType represents hash type bits at the end of a signature. type SigHashType uint32 // Hash type bits from the end of a signature. const ( SigHashOld SigHashType = 0x0 SigHashAll SigHashType = 0x1 SigHashNone SigHashType = 0x2 SigHashSingle SigHashType = 0x3 SigHashAnyOneCanPay SigHashType = 0x80 // sigHashMask defines the number of bits of the hash type which is used // to identify which outputs are signed. sigHashMask = 0x1f ) // These are the constants specified for maximums in individual scripts. const ( MaxOpsPerScript = 201 // Max number of non-push operations. MaxPubKeysPerMultiSig = 20 // Multisig can't have more sigs than this. MaxScriptElementSize = 520 // Max bytes pushable to the stack. ) // isSmallInt returns whether or not the opcode is considered a small integer, // which is an OP_0, or OP_1 through OP_16. func isSmallInt(op *opcode) bool { if op.value == OP_0 || (op.value >= OP_1 && op.value <= OP_16) { return true } return false } // isScriptHash returns true if the script passed is a pay-to-script-hash // transaction, false otherwise. func isScriptHash(pops []parsedOpcode) bool { return len(pops) == 3 && pops[0].opcode.value == OP_HASH160 && pops[1].opcode.value == OP_DATA_20 && pops[2].opcode.value == OP_EQUAL } // IsPayToScriptHash returns true if the script is in the standard // pay-to-script-hash (P2SH) format, false otherwise. func IsPayToScriptHash(script []byte) bool { pops, err := parseScript(script) if err != nil { return false } return isScriptHash(pops) } // isWitnessScriptHash returns true if the passed script is a // pay-to-witness-script-hash transaction, false otherwise. func isWitnessScriptHash(pops []parsedOpcode) bool { return len(pops) == 2 && pops[0].opcode.value == OP_0 && pops[1].opcode.value == OP_DATA_32 } // IsPayToWitnessScriptHash returns true if the is in the standard // pay-to-witness-script-hash (P2WSH) format, false otherwise. func IsPayToWitnessScriptHash(script []byte) bool { pops, err := parseScript(script) if err != nil { return false } return isWitnessScriptHash(pops) } // IsPayToWitnessPubKeyHash returns true if the is in the standard // pay-to-witness-pubkey-hash (P2WKH) format, false otherwise. func IsPayToWitnessPubKeyHash(script []byte) bool { pops, err := parseScript(script) if err != nil { return false } return isWitnessPubKeyHash(pops) } // isWitnessPubKeyHash returns true if the passed script is a // pay-to-witness-pubkey-hash, and false otherwise. func isWitnessPubKeyHash(pops []parsedOpcode) bool { return len(pops) == 2 && pops[0].opcode.value == OP_0 && pops[1].opcode.value == OP_DATA_20 } // IsWitnessProgram returns true if the passed script is a valid witness // program which is encoded according to the passed witness program version. A // witness program must be a small integer (from 0-16), followed by 2-40 bytes // of pushed data. func IsWitnessProgram(script []byte) bool { // The length of the script must be between 4 and 42 bytes. The // smallest program is the witness version, followed by a data push of // 2 bytes. The largest allowed witness program has a data push of // 40-bytes. if len(script) < 4 || len(script) > 42 { return false } pops, err := parseScript(script) if err != nil { return false } return isWitnessProgram(pops) } // isWitnessProgram returns true if the passed script is a witness program, and // false otherwise. A witness program MUST adhere to the following constraints: // there must be excatly two pops (program version and the program itself), the // first opcode MUST be a small integer (0-16), the push data MUST be // cannonical, and finally the size of the push data must be between 2 and 40 // bytes. func isWitnessProgram(pops []parsedOpcode) bool { return len(pops) == 2 && isSmallInt(pops[0].opcode) && canonicalPush(pops[1]) && (len(pops[1].data) >= 2 && len(pops[1].data) <= 40) } // ExtractWitnessProgramInfo attempts to extract the witness program version, // as well as the witness program itself from the passed script. func ExtractWitnessProgramInfo(script []byte) (int, []byte, error) { pops, err := parseScript(script) if err != nil { return 0, nil, err } // If at this point, the scripts doesn't resemble a witness program, // then we'll exit early as there isn't a valid version or program to // extract. if !isWitnessProgram(pops) { return 0, nil, fmt.Errorf("script is not a witness program, " + "unable to extract version or witness program") } witnessVersion := asSmallInt(pops[0].opcode) witnessProgram := pops[1].data return witnessVersion, witnessProgram, nil } // isPushOnly returns true if the script only pushes data, false otherwise. func isPushOnly(pops []parsedOpcode) bool { // NOTE: This function does NOT verify opcodes directly since it is // internal and is only called with parsed opcodes for scripts that did // not have any parse errors. Thus, consensus is properly maintained. for _, pop := range pops { // All opcodes up to OP_16 are data push instructions. // NOTE: This does consider OP_RESERVED to be a data push // instruction, but execution of OP_RESERVED will fail anyways // and matches the behavior required by consensus. if pop.opcode.value > OP_16 { return false } } return true } // IsPushOnlyScript returns whether or not the passed script only pushes data. // // False will be returned when the script does not parse. func IsPushOnlyScript(script []byte) bool { pops, err := parseScript(script) if err != nil { return false } return isPushOnly(pops) } // parseScriptTemplate is the same as parseScript but allows the passing of the // template list for testing purposes. When there are parse errors, it returns // the list of parsed opcodes up to the point of failure along with the error. func parseScriptTemplate(script []byte, opcodes *[256]opcode) ([]parsedOpcode, error) { retScript := make([]parsedOpcode, 0, len(script)) for i := 0; i < len(script); { instr := script[i] op := &opcodes[instr] pop := parsedOpcode{opcode: op} // Parse data out of instruction. switch { // No additional data. Note that some of the opcodes, notably // OP_1NEGATE, OP_0, and OP_[1-16] represent the data // themselves. case op.length == 1: i++ // Data pushes of specific lengths -- OP_DATA_[1-75]. case op.length > 1: if len(script[i:]) < op.length { str := fmt.Sprintf("opcode %s requires %d "+ "bytes, but script only has %d remaining", op.name, op.length, len(script[i:])) return retScript, scriptError(ErrMalformedPush, str) } // Slice out the data. pop.data = script[i+1 : i+op.length] i += op.length // Data pushes with parsed lengths -- OP_PUSHDATAP{1,2,4}. case op.length < 0: var l uint off := i + 1 if len(script[off:]) < -op.length { str := fmt.Sprintf("opcode %s requires %d "+ "bytes, but script only has %d remaining", op.name, -op.length, len(script[off:])) return retScript, scriptError(ErrMalformedPush, str) } // Next -length bytes are little endian length of data. switch op.length { case -1: l = uint(script[off]) case -2: l = ((uint(script[off+1]) << 8) | uint(script[off])) case -4: l = ((uint(script[off+3]) << 24) | (uint(script[off+2]) << 16) | (uint(script[off+1]) << 8) | uint(script[off])) default: str := fmt.Sprintf("invalid opcode length %d", op.length) return retScript, scriptError(ErrMalformedPush, str) } // Move offset to beginning of the data. off += -op.length // Disallow entries that do not fit script or were // sign extended. if int(l) > len(script[off:]) || int(l) < 0 { str := fmt.Sprintf("opcode %s pushes %d bytes, "+ "but script only has %d remaining", op.name, int(l), len(script[off:])) return retScript, scriptError(ErrMalformedPush, str) } pop.data = script[off : off+int(l)] i += 1 - op.length + int(l) } retScript = append(retScript, pop) } return retScript, nil } // parseScript preparses the script in bytes into a list of parsedOpcodes while // applying a number of sanity checks. func parseScript(script []byte) ([]parsedOpcode, error) { return parseScriptTemplate(script, &opcodeArray) } // unparseScript reversed the action of parseScript and returns the // parsedOpcodes as a list of bytes func unparseScript(pops []parsedOpcode) ([]byte, error) { script := make([]byte, 0, len(pops)) for _, pop := range pops { b, err := pop.bytes() if err != nil { return nil, err } script = append(script, b...) } return script, nil } // DisasmString formats a disassembled script for one line printing. When the // script fails to parse, the returned string will contain the disassembled // script up to the point the failure occurred along with the string '[error]' // appended. In addition, the reason the script failed to parse is returned // if the caller wants more information about the failure. func DisasmString(buf []byte) (string, error) { var disbuf bytes.Buffer opcodes, err := parseScript(buf) for _, pop := range opcodes { disbuf.WriteString(pop.print(true)) disbuf.WriteByte(' ') } if disbuf.Len() > 0 { disbuf.Truncate(disbuf.Len() - 1) } if err != nil { disbuf.WriteString("[error]") } return disbuf.String(), err } // removeOpcode will remove any opcode matching ``opcode'' from the opcode // stream in pkscript func removeOpcode(pkscript []parsedOpcode, opcode byte) []parsedOpcode { retScript := make([]parsedOpcode, 0, len(pkscript)) for _, pop := range pkscript { if pop.opcode.value != opcode { retScript = append(retScript, pop) } } return retScript } // canonicalPush returns true if the object is either not a push instruction // or the push instruction contained wherein is matches the canonical form // or using the smallest instruction to do the job. False otherwise. func canonicalPush(pop parsedOpcode) bool { opcode := pop.opcode.value data := pop.data dataLen := len(pop.data) if opcode > OP_16 { return true } if opcode < OP_PUSHDATA1 && opcode > OP_0 && (dataLen == 1 && data[0] <= 16) { return false } if opcode == OP_PUSHDATA1 && dataLen < OP_PUSHDATA1 { return false } if opcode == OP_PUSHDATA2 && dataLen <= 0xff { return false } if opcode == OP_PUSHDATA4 && dataLen <= 0xffff { return false } return true } // removeOpcodeByData will return the script minus any opcodes that would push // the passed data to the stack. func removeOpcodeByData(pkscript []parsedOpcode, data []byte) []parsedOpcode { retScript := make([]parsedOpcode, 0, len(pkscript)) for _, pop := range pkscript { if !canonicalPush(pop) || !bytes.Contains(pop.data, data) { retScript = append(retScript, pop) } } return retScript } // calcHashPrevOuts calculates a single hash of all the previous outputs // (txid:index) referenced within the passed transaction. This calculated hash // can be re-used when validating all inputs spending segwit outputs, with a // signature hash type of SigHashAll. This allows validation to re-use previous // hashing computation, reducing the complexity of validating SigHashAll inputs // from O(N^2) to O(N). func calcHashPrevOuts(tx *wire.MsgTx) chainhash.Hash { var b bytes.Buffer for _, in := range tx.TxIn { // First write out the 32-byte transaction ID one of whose // outputs are being referenced by this input. b.Write(in.PreviousOutPoint.Hash[:]) // Next, we'll encode the index of the referenced output as a // little endian integer. var buf [4]byte binary.LittleEndian.PutUint32(buf[:], in.PreviousOutPoint.Index) b.Write(buf[:]) } return chainhash.DoubleHashH(b.Bytes()) } // calcHashSequence computes an aggregated hash of each of the sequence numbers // within the inputs of the passed transaction. This single hash can be re-used // when validating all inputs spending segwit outputs, which include signatures // using the SigHashAll sighash type. This allows validation to re-use previous // hashing computation, reducing the complexity of validating SigHashAll inputs // from O(N^2) to O(N). func calcHashSequence(tx *wire.MsgTx) chainhash.Hash { var b bytes.Buffer for _, in := range tx.TxIn { var buf [4]byte binary.LittleEndian.PutUint32(buf[:], in.Sequence) b.Write(buf[:]) } return chainhash.DoubleHashH(b.Bytes()) } // calcHashOutputs computes a hash digest of all outputs created by the // transaction encoded using the wire format. This single hash can be re-used // when validating all inputs spending witness programs, which include // signatures using the SigHashAll sighash type. This allows computation to be // cached, reducing the total hashing complexity from O(N^2) to O(N). func calcHashOutputs(tx *wire.MsgTx) chainhash.Hash { var b bytes.Buffer for _, out := range tx.TxOut { wire.WriteTxOut(&b, 0, 0, out) } return chainhash.DoubleHashH(b.Bytes()) } // calcWitnessSignatureHash computes the sighash digest of a transaction's // segwit input using the new, optimized digest calculation algorithm defined // in BIP0143: https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki. // This function makes use of pre-calculated sighash fragments stored within // the passed HashCache to eliminate duplicate hashing computations when // calculating the final digest, reducing the complexity from O(N^2) to O(N). // Additionally, signatures now cover the input value of the referenced unspent // output. This allows offline, or hardware wallets to compute the exact amount // being spent, in addition to the final transaction fee. In the case the // wallet if fed an invalid input amount, the real sighash will differ causing // the produced signature to be invalid. func calcWitnessSignatureHash(subScript []parsedOpcode, sigHashes *TxSigHashes, hashType SigHashType, tx *wire.MsgTx, idx int, amt int64) ([]byte, error) { // As a sanity check, ensure the passed input index for the transaction // is valid. if idx > len(tx.TxIn)-1 { return nil, fmt.Errorf("idx %d but %d txins", idx, len(tx.TxIn)) } // We'll utilize this buffer throughout to incrementally calculate // the signature hash for this transaction. var sigHash bytes.Buffer // First write out, then encode the transaction's version number. var bVersion [4]byte binary.LittleEndian.PutUint32(bVersion[:], uint32(tx.Version)) sigHash.Write(bVersion[:]) // Next write out the possibly pre-calculated hashes for the sequence // numbers of all inputs, and the hashes of the previous outs for all // outputs. var zeroHash chainhash.Hash // If anyone can pay isn't active, then we can use the cached // hashPrevOuts, otherwise we just write zeroes for the prev outs. if hashType&SigHashAnyOneCanPay == 0 { sigHash.Write(sigHashes.HashPrevOuts[:]) } else { sigHash.Write(zeroHash[:]) } // If the sighash isn't anyone can pay, single, or none, the use the // cached hash sequences, otherwise write all zeroes for the // hashSequence. if hashType&SigHashAnyOneCanPay == 0 && hashType&sigHashMask != SigHashSingle && hashType&sigHashMask != SigHashNone { sigHash.Write(sigHashes.HashSequence[:]) } else { sigHash.Write(zeroHash[:]) } txIn := tx.TxIn[idx] // Next, write the outpoint being spent. sigHash.Write(txIn.PreviousOutPoint.Hash[:]) var bIndex [4]byte binary.LittleEndian.PutUint32(bIndex[:], txIn.PreviousOutPoint.Index) sigHash.Write(bIndex[:]) if isWitnessPubKeyHash(subScript) { // The script code for a p2wkh is a length prefix varint for // the next 25 bytes, followed by a re-creation of the original // p2pkh pk script. sigHash.Write([]byte{0x19}) sigHash.Write([]byte{OP_DUP}) sigHash.Write([]byte{OP_HASH160}) sigHash.Write([]byte{OP_DATA_20}) sigHash.Write(subScript[1].data) sigHash.Write([]byte{OP_EQUALVERIFY}) sigHash.Write([]byte{OP_CHECKSIG}) } else { // For p2wsh outputs, and future outputs, the script code is // the original script, with all code separators removed, // serialized with a var int length prefix. rawScript, _ := unparseScript(subScript) wire.WriteVarBytes(&sigHash, 0, rawScript) } // Next, add the input amount, and sequence number of the input being // signed. var bAmount [8]byte binary.LittleEndian.PutUint64(bAmount[:], uint64(amt)) sigHash.Write(bAmount[:]) var bSequence [4]byte binary.LittleEndian.PutUint32(bSequence[:], txIn.Sequence) sigHash.Write(bSequence[:]) // If the current signature mode isn't single, or none, then we can // re-use the pre-generated hashoutputs sighash fragment. Otherwise, // we'll serialize and add only the target output index to the signature // pre-image. if hashType&SigHashSingle != SigHashSingle && hashType&SigHashNone != SigHashNone { sigHash.Write(sigHashes.HashOutputs[:]) } else if hashType&sigHashMask == SigHashSingle && idx < len(tx.TxOut) { var b bytes.Buffer wire.WriteTxOut(&b, 0, 0, tx.TxOut[idx]) sigHash.Write(chainhash.DoubleHashB(b.Bytes())) } else { sigHash.Write(zeroHash[:]) } // Finally, write out the transaction's locktime, and the sig hash // type. var bLockTime [4]byte binary.LittleEndian.PutUint32(bLockTime[:], tx.LockTime) sigHash.Write(bLockTime[:]) var bHashType [4]byte binary.LittleEndian.PutUint32(bHashType[:], uint32(hashType)) sigHash.Write(bHashType[:]) return chainhash.DoubleHashB(sigHash.Bytes()), nil } // CalcWitnessSigHash computes the sighash digest for the specified input of // the target transaction observing the desired sig hash type. func CalcWitnessSigHash(script []byte, sigHashes *TxSigHashes, hType SigHashType, tx *wire.MsgTx, idx int, amt int64) ([]byte, error) { parsedScript, err := parseScript(script) if err != nil { return nil, fmt.Errorf("cannot parse output script: %v", err) } return calcWitnessSignatureHash(parsedScript, sigHashes, hType, tx, idx, amt) } // shallowCopyTx creates a shallow copy of the transaction for use when // calculating the signature hash. It is used over the Copy method on the // transaction itself since that is a deep copy and therefore does more work and // allocates much more space than needed. func shallowCopyTx(tx *wire.MsgTx) wire.MsgTx { // As an additional memory optimization, use contiguous backing arrays // for the copied inputs and outputs and point the final slice of // pointers into the contiguous arrays. This avoids a lot of small // allocations. txCopy := wire.MsgTx{ Version: tx.Version, TxIn: make([]*wire.TxIn, len(tx.TxIn)), TxOut: make([]*wire.TxOut, len(tx.TxOut)), LockTime: tx.LockTime, } txIns := make([]wire.TxIn, len(tx.TxIn)) for i, oldTxIn := range tx.TxIn { txIns[i] = *oldTxIn txCopy.TxIn[i] = &txIns[i] } txOuts := make([]wire.TxOut, len(tx.TxOut)) for i, oldTxOut := range tx.TxOut { txOuts[i] = *oldTxOut txCopy.TxOut[i] = &txOuts[i] } return txCopy } // calcSignatureHash will, given a script and hash type for the current script // engine instance, calculate the signature hash to be used for signing and // verification. func calcSignatureHash(script []parsedOpcode, hashType SigHashType, tx *wire.MsgTx, idx int) []byte { // The SigHashSingle signature type signs only the corresponding input // and output (the output with the same index number as the input). // // Since transactions can have more inputs than outputs, this means it // is improper to use SigHashSingle on input indices that don't have a // corresponding output. // // A bug in the original Satoshi client implementation means specifying // an index that is out of range results in a signature hash of 1 (as a // uint256 little endian). The original intent appeared to be to // indicate failure, but unfortunately, it was never checked and thus is // treated as the actual signature hash. This buggy behavior is now // part of the consensus and a hard fork would be required to fix it. // // Due to this, care must be taken by software that creates transactions // which make use of SigHashSingle because it can lead to an extremely // dangerous situation where the invalid inputs will end up signing a // hash of 1. This in turn presents an opportunity for attackers to // cleverly construct transactions which can steal those coins provided // they can reuse signatures. if hashType&sigHashMask == SigHashSingle && idx >= len(tx.TxOut) { var hash chainhash.Hash hash[0] = 0x01 return hash[:] } // Remove all instances of OP_CODESEPARATOR from the script. script = removeOpcode(script, OP_CODESEPARATOR) // Make a shallow copy of the transaction, zeroing out the script for // all inputs that are not currently being processed. txCopy := shallowCopyTx(tx) for i := range txCopy.TxIn { if i == idx { // UnparseScript cannot fail here because removeOpcode // above only returns a valid script. sigScript, _ := unparseScript(script) txCopy.TxIn[idx].SignatureScript = sigScript } else { txCopy.TxIn[i].SignatureScript = nil } } switch hashType & sigHashMask { case SigHashNone: txCopy.TxOut = txCopy.TxOut[0:0] // Empty slice. for i := range txCopy.TxIn { if i != idx { txCopy.TxIn[i].Sequence = 0 } } case SigHashSingle: // Resize output array to up to and including requested index. txCopy.TxOut = txCopy.TxOut[:idx+1] // All but current output get zeroed out. for i := 0; i < idx; i++ { txCopy.TxOut[i].Value = -1 txCopy.TxOut[i].PkScript = nil } // Sequence on all other inputs is 0, too. for i := range txCopy.TxIn { if i != idx { txCopy.TxIn[i].Sequence = 0 } } default: // Consensus treats undefined hashtypes like normal SigHashAll // for purposes of hash generation. fallthrough case SigHashOld: fallthrough case SigHashAll: // Nothing special here. } if hashType&SigHashAnyOneCanPay != 0 { txCopy.TxIn = txCopy.TxIn[idx : idx+1] } // The final hash is the double sha256 of both the serialized modified // transaction and the hash type (encoded as a 4-byte little-endian // value) appended. wbuf := bytes.NewBuffer(make([]byte, 0, txCopy.SerializeSizeStripped()+4)) txCopy.SerializeNoWitness(wbuf) binary.Write(wbuf, binary.LittleEndian, hashType) return chainhash.DoubleHashB(wbuf.Bytes()) } // asSmallInt returns the passed opcode, which must be true according to // isSmallInt(), as an integer. func asSmallInt(op *opcode) int { if op.value == OP_0 { return 0 } return int(op.value - (OP_1 - 1)) } // getSigOpCount is the implementation function for counting the number of // signature operations in the script provided by pops. If precise mode is // requested then we attempt to count the number of operations for a multisig // op. Otherwise we use the maximum. func getSigOpCount(pops []parsedOpcode, precise bool) int { nSigs := 0 for i, pop := range pops { switch pop.opcode.value { case OP_CHECKSIG: fallthrough case OP_CHECKSIGVERIFY: nSigs++ case OP_CHECKMULTISIG: fallthrough case OP_CHECKMULTISIGVERIFY: // If we are being precise then look for familiar // patterns for multisig, for now all we recognize is // OP_1 - OP_16 to signify the number of pubkeys. // Otherwise, we use the max of 20. if precise && i > 0 && pops[i-1].opcode.value >= OP_1 && pops[i-1].opcode.value <= OP_16 { nSigs += asSmallInt(pops[i-1].opcode) } else { nSigs += MaxPubKeysPerMultiSig } default: // Not a sigop. } } return nSigs } // GetSigOpCount provides a quick count of the number of signature operations // in a script. a CHECKSIG operations counts for 1, and a CHECK_MULTISIG for 20. // If the script fails to parse, then the count up to the point of failure is // returned. func GetSigOpCount(script []byte) int { // Don't check error since parseScript returns the parsed-up-to-error // list of pops. pops, _ := parseScript(script) return getSigOpCount(pops, false) } // GetPreciseSigOpCount returns the number of signature operations in // scriptPubKey. If bip16 is true then scriptSig may be searched for the // Pay-To-Script-Hash script in order to find the precise number of signature // operations in the transaction. If the script fails to parse, then the count // up to the point of failure is returned. func GetPreciseSigOpCount(scriptSig, scriptPubKey []byte, bip16 bool) int { // Don't check error since parseScript returns the parsed-up-to-error // list of pops. pops, _ := parseScript(scriptPubKey) // Treat non P2SH transactions as normal. if !(bip16 && isScriptHash(pops)) { return getSigOpCount(pops, true) } // The public key script is a pay-to-script-hash, so parse the signature // script to get the final item. Scripts that fail to fully parse count // as 0 signature operations. sigPops, err := parseScript(scriptSig) if err != nil { return 0 } // The signature script must only push data to the stack for P2SH to be // a valid pair, so the signature operation count is 0 when that is not // the case. if !isPushOnly(sigPops) || len(sigPops) == 0 { return 0 } // The P2SH script is the last item the signature script pushes to the // stack. When the script is empty, there are no signature operations. shScript := sigPops[len(sigPops)-1].data if len(shScript) == 0 { return 0 } // Parse the P2SH script and don't check the error since parseScript // returns the parsed-up-to-error list of pops and the consensus rules // dictate signature operations are counted up to the first parse // failure. shPops, _ := parseScript(shScript) return getSigOpCount(shPops, true) } // GetWitnessSigOpCount returns the number of signature operations generated by // spending the passed pkScript with the specified witness, or sigScript. // Unlike GetPreciseSigOpCount, this function is able to accurately count the // number of signature operations generated by spending witness programs, and // nested p2sh witness programs. If the script fails to parse, then the count // up to the point of failure is returned. func GetWitnessSigOpCount(sigScript, pkScript []byte, witness wire.TxWitness) int { // If this is a regular witness program, then we can proceed directly // to counting its signature operations without any further processing. if IsWitnessProgram(pkScript) { return getWitnessSigOps(pkScript, witness) } // Next, we'll check the sigScript to see if this is a nested p2sh // witness program. This is a case wherein the sigScript is actually a // datapush of a p2wsh witness program. sigPops, err := parseScript(sigScript) if err != nil { return 0 } if IsPayToScriptHash(pkScript) && isPushOnly(sigPops) && IsWitnessProgram(sigScript[1:]) { return getWitnessSigOps(sigScript[1:], witness) } return 0 } // getWitnessSigOps returns the number of signature operations generated by // spending the passed witness program wit the passed witness. The exact // signature counting heuristic is modified by the version of the passed // witness program. If the version of the witness program is unable to be // extracted, then 0 is returned for the sig op count. func getWitnessSigOps(pkScript []byte, witness wire.TxWitness) int { // Attempt to extract the witness program version. witnessVersion, witnessProgram, err := ExtractWitnessProgramInfo( pkScript, ) if err != nil { return 0 } switch witnessVersion { case 0: switch { case len(witnessProgram) == payToWitnessPubKeyHashDataSize: return 1 case len(witnessProgram) == payToWitnessScriptHashDataSize && len(witness) > 0: witnessScript := witness[len(witness)-1] pops, _ := parseScript(witnessScript) return getSigOpCount(pops, true) } } return 0 } // IsUnspendable returns whether the passed public key script is unspendable, or // guaranteed to fail at execution. This allows inputs to be pruned instantly // when entering the UTXO set. func IsUnspendable(pkScript []byte) bool { pops, err := parseScript(pkScript) if err != nil { return true } return len(pops) > 0 && pops[0].opcode.value == OP_RETURN }