// Copyright (c) 2013-2014 Conformal Systems LLC. // Use of this source code is governed by an ISC // license that can be found in the LICENSE file. package btcscript import ( "bytes" "encoding/binary" "errors" "fmt" "time" "github.com/btcsuite/btcec" "github.com/btcsuite/btcnet" "github.com/btcsuite/btcutil" "github.com/btcsuite/btcwire" ) var ( // ErrStackShortScript is returned if the script has an opcode that is // too long for the length of the script. ErrStackShortScript = errors.New("execute past end of script") // ErrStackLongScript is returned if the script has an opcode that is // too long for the length of the script. ErrStackLongScript = errors.New("script is longer than maximum allowed") // ErrStackUnderflow is returned if an opcode requires more items on the // stack than is present.f ErrStackUnderflow = errors.New("stack underflow") // ErrStackInvalidArgs is returned if the argument for an opcode is out // of acceptable range. ErrStackInvalidArgs = errors.New("invalid argument") // ErrStackOpDisabled is returned when a disabled opcode is encountered // in the script. ErrStackOpDisabled = errors.New("Disabled Opcode") // ErrStackVerifyFailed is returned when one of the OP_VERIFY or // OP_*VERIFY instructions is executed and the conditions fails. ErrStackVerifyFailed = errors.New("Verify failed") // ErrStackNumberTooBig is returned when the argument for an opcode that // should be an offset is obviously far too large. ErrStackNumberTooBig = errors.New("number too big") // ErrStackInvalidOpcode is returned when an opcode marked as invalid or // a completely undefined opcode is encountered. ErrStackInvalidOpcode = errors.New("Invalid Opcode") // ErrStackReservedOpcode is returned when an opcode marked as reserved // is encountered. ErrStackReservedOpcode = errors.New("Reserved Opcode") // ErrStackEarlyReturn is returned when OP_RETURN is executed in the // script. ErrStackEarlyReturn = errors.New("Script returned early") // ErrStackNoIf is returned if an OP_ELSE or OP_ENDIF is encountered // without first having an OP_IF or OP_NOTIF in the script. ErrStackNoIf = errors.New("OP_ELSE or OP_ENDIF with no matching OP_IF") // ErrStackMissingEndif is returned if the end of a script is reached // without and OP_ENDIF to correspond to a conditional expression. ErrStackMissingEndif = fmt.Errorf("execute fail, in conditional execution") // ErrStackTooManyPubkeys is returned if an OP_CHECKMULTISIG is // encountered with more than MaxPubKeysPerMultiSig pubkeys present. ErrStackTooManyPubkeys = errors.New("Invalid pubkey count in OP_CHECKMULTISIG") // ErrStackTooManyOperations is returned if a script has more than // MaxOpsPerScript opcodes that do not push data. ErrStackTooManyOperations = errors.New("Too many operations in script") // ErrStackElementTooBig is returned if the size of an element to be // pushed to the stack is over MaxScriptElementSize. ErrStackElementTooBig = errors.New("Element in script too large") // ErrStackUnknownAddress is returned when ScriptToAddrHash does not // recognise the pattern of the script and thus can not find the address // for payment. ErrStackUnknownAddress = errors.New("non-recognised address") // ErrStackScriptFailed is returned when at the end of a script the // boolean on top of the stack is false signifying that the script has // failed. ErrStackScriptFailed = errors.New("execute fail, fail on stack") // ErrStackScriptUnfinished is returned when CheckErrorCondition is // called on a script that has not finished executing. ErrStackScriptUnfinished = errors.New("Error check when script unfinished") // ErrStackEmptyStack is returned when the stack is empty at the end of // execution. Normal operation requires that a boolean is on top of the // stack when the scripts have finished executing. ErrStackEmptyStack = errors.New("Stack empty at end of execution") // ErrStackP2SHNonPushOnly is returned when a Pay-to-Script-Hash // transaction is encountered and the ScriptSig does operations other // than push data (in violation of bip16). ErrStackP2SHNonPushOnly = errors.New("pay to script hash with non " + "pushonly input") // ErrStackInvalidParseType is an internal error returned from // ScriptToAddrHash ony if the internal data tables are wrong. ErrStackInvalidParseType = errors.New("internal error: invalid parsetype found") // ErrStackInvalidAddrOffset is an internal error returned from // ScriptToAddrHash ony if the internal data tables are wrong. ErrStackInvalidAddrOffset = errors.New("internal error: invalid offset found") // ErrStackInvalidIndex is returned when an out-of-bounds index was // passed to a function. ErrStackInvalidIndex = errors.New("Invalid script index") // ErrStackNonPushOnly is returned when ScriptInfo is called with a // pkScript that peforms operations other that pushing data to the stack. ErrStackNonPushOnly = errors.New("SigScript is non pushonly") // ErrStackOverflow is returned when stack and altstack combined depth // is over the limit. ErrStackOverflow = errors.New("Stacks overflowed") ) const ( // maxStackSize is the maximum combined height of stack and alt stack // during execution. maxStackSize = 1000 // maxScriptSize is the maximum allowed length of a raw script. maxScriptSize = 10000 ) // ErrUnsupportedAddress is returned when a concrete type that implements // a btcutil.Address is not a supported type. var ErrUnsupportedAddress = errors.New("unsupported address type") // Bip16Activation is the timestamp where BIP0016 is valid to use in the // blockchain. To be used to determine if BIP0016 should be called for or not. // This timestamp corresponds to Sun Apr 1 00:00:00 UTC 2012. var Bip16Activation = time.Unix(1333238400, 0) // SigHashType represents hash type bits at the end of a signature. type SigHashType byte // Hash type bits from the end of a signature. const ( SigHashOld SigHashType = 0x0 SigHashAll SigHashType = 0x1 SigHashNone SigHashType = 0x2 SigHashSingle SigHashType = 0x3 SigHashAnyOneCanPay SigHashType = 0x80 ) // These are the constants specified for maximums in individual scripts. const ( MaxOpsPerScript = 201 // Max number of non-push operations. MaxPubKeysPerMultiSig = 20 // Multisig can't have more sigs than this. MaxScriptElementSize = 520 // Max bytes pushable to the stack. ) // ScriptClass is an enumeration for the list of standard types of script. type ScriptClass byte // Classes of script payment known about in the blockchain. const ( NonStandardTy ScriptClass = iota // None of the recognized forms. PubKeyTy // Pay pubkey. PubKeyHashTy // Pay pubkey hash. ScriptHashTy // Pay to script hash. MultiSigTy // Multi signature. NullDataTy // Empty data-only (provably prunable). ) var scriptClassToName = []string{ NonStandardTy: "nonstandard", PubKeyTy: "pubkey", PubKeyHashTy: "pubkeyhash", ScriptHashTy: "scripthash", MultiSigTy: "multisig", NullDataTy: "nulldata", } // String implements the Stringer interface by returning the name of // the enum script class. If the enum is invalid then "Invalid" will be // returned. func (t ScriptClass) String() string { if int(t) > len(scriptClassToName) || int(t) < 0 { return "Invalid" } return scriptClassToName[t] } // Script is the virtual machine that executes btcscripts. type Script struct { scripts [][]parsedOpcode scriptidx int scriptoff int lastcodesep int dstack Stack // data stack astack Stack // alt stack tx btcwire.MsgTx txidx int condStack []int numOps int bip16 bool // treat execution as pay-to-script-hash der bool // enforce DER encoding strictMultiSig bool // verify multisig stack item is zero length savedFirstStack [][]byte // stack from first script for bip16 scripts } // isSmallInt returns whether or not the opcode is considered a small integer, // which is an OP_0, or OP_1 through OP_16. func isSmallInt(op *opcode) bool { if op.value == OP_0 || (op.value >= OP_1 && op.value <= OP_16) { return true } return false } // isPubkey returns true if the script passed is a pubkey transaction, false // otherwise. func isPubkey(pops []parsedOpcode) bool { // valid pubkeys are either 33 or 65 bytes return len(pops) == 2 && (len(pops[0].data) == 33 || len(pops[0].data) == 65) && pops[1].opcode.value == OP_CHECKSIG } // isPubkeyHash returns true if the script passed is a pubkey hash transaction, // false otherwise. func isPubkeyHash(pops []parsedOpcode) bool { return len(pops) == 5 && pops[0].opcode.value == OP_DUP && pops[1].opcode.value == OP_HASH160 && pops[2].opcode.value == OP_DATA_20 && pops[3].opcode.value == OP_EQUALVERIFY && pops[4].opcode.value == OP_CHECKSIG } // isScriptHash returns true if the script passed is a pay-to-script-hash (P2SH) // transction, false otherwise. func isScriptHash(pops []parsedOpcode) bool { return len(pops) == 3 && pops[0].opcode.value == OP_HASH160 && pops[1].opcode.value == OP_DATA_20 && pops[2].opcode.value == OP_EQUAL } // IsPayToScriptHash returns true if the script is in the standard // Pay-To-Script-Hash format, false otherwise. func IsPayToScriptHash(script []byte) bool { pops, err := parseScript(script) if err != nil { return false } return isScriptHash(pops) } // isMultiSig returns true if the passed script is a multisig transaction, false // otherwise. func isMultiSig(pops []parsedOpcode) bool { l := len(pops) // absolute minimum is 1 pubkey so // OP_0/OP_1-16, pubkey, OP_1, OP_CHECKMULTISIG if l < 4 { return false } if !isSmallInt(pops[0].opcode) { return false } if !isSmallInt(pops[l-2].opcode) { return false } if pops[l-1].opcode.value != OP_CHECKMULTISIG { return false } for _, pop := range pops[1 : l-2] { // valid pubkeys are either 65 or 33 bytes if len(pop.data) != 33 && len(pop.data) != 65 { return false } } return true } // isNullData returns true if the passed script is a null data transaction, // false otherwise. func isNullData(pops []parsedOpcode) bool { // A nulldata transaction is either a single OP_RETURN or an // OP_RETURN SMALLDATA (where SMALLDATA is a push data up to 40 bytes). l := len(pops) if l == 1 && pops[0].opcode.value == OP_RETURN { return true } return l == 2 && pops[0].opcode.value == OP_RETURN && pops[1].opcode.value <= OP_PUSHDATA4 && len(pops[1].data) <= 40 } // isPushOnly returns true if the script only pushes data, false otherwise. func isPushOnly(pops []parsedOpcode) bool { // technically we cheat here, we don't look at opcodes for _, pop := range pops { // all opcodes up to OP_16 are data instructions. if pop.opcode.value < OP_FALSE || pop.opcode.value > OP_16 { return false } } return true } // IsPushOnlyScript returns whether or not the passed script only pushes data. // If the script does not parse false will be returned. func IsPushOnlyScript(script []byte) bool { pops, err := parseScript(script) if err != nil { return false } return isPushOnly(pops) } // canonicalPush returns true if the object is either not a push instruction // or the push instruction contained wherein is matches the canonical form // or using the smallest instruction to do the job. False otherwise. func canonicalPush(pop parsedOpcode) bool { opcode := pop.opcode.value data := pop.data dataLen := len(pop.data) if opcode > OP_16 { return true } if opcode < OP_PUSHDATA1 && opcode > OP_0 && (dataLen == 1 && data[0] <= 16) { return false } if opcode == OP_PUSHDATA1 && dataLen < OP_PUSHDATA1 { return false } if opcode == OP_PUSHDATA2 && dataLen <= 0xff { return false } if opcode == OP_PUSHDATA4 && dataLen <= 0xffff { return false } return true } // HasCanonicalPushes returns whether or not the passed script only contains // canonical data pushes. A canonical data push one where the fewest number of // bytes possible to encode the size of the data being pushed is used. This // includes using the small integer opcodes for single byte data that can be // represented directly. func HasCanonicalPushes(script []byte) bool { pops, err := parseScript(script) if err != nil { return false } for _, pop := range pops { if !canonicalPush(pop) { return false } } return true } // GetScriptClass returns the class of the script passed. If the script does not // parse then NonStandardTy will be returned. func GetScriptClass(script []byte) ScriptClass { pops, err := parseScript(script) if err != nil { return NonStandardTy } return typeOfScript(pops) } // scriptType returns the type of the script being inspected from the known // standard types. func typeOfScript(pops []parsedOpcode) ScriptClass { // XXX dubious optimisation: order these in order of popularity in the // blockchain if isPubkey(pops) { return PubKeyTy } else if isPubkeyHash(pops) { return PubKeyHashTy } else if isScriptHash(pops) { return ScriptHashTy } else if isMultiSig(pops) { return MultiSigTy } else if isNullData(pops) { return NullDataTy } return NonStandardTy } // parseScript preparses the script in bytes into a list of parsedOpcodes while // applying a number of sanity checks. func parseScript(script []byte) ([]parsedOpcode, error) { return parseScriptTemplate(script, opcodemap) } // parseScriptTemplate is the same as parseScript but allows the passing of the // template list for testing purposes. On error we return the list of parsed // opcodes so far. func parseScriptTemplate(script []byte, opcodemap map[byte]*opcode) ([]parsedOpcode, error) { retScript := make([]parsedOpcode, 0, len(script)) for i := 0; i < len(script); { instr := script[i] op, ok := opcodemap[instr] if !ok { return retScript, ErrStackInvalidOpcode } pop := parsedOpcode{opcode: op} // parse data out of instruction. switch { case op.length == 1: // no data, done here i++ case op.length > 1: if len(script[i:]) < op.length { return retScript, ErrStackShortScript } // slice out the data. pop.data = script[i+1 : i+op.length] i += op.length case op.length < 0: var l uint off := i + 1 if len(script[off:]) < -op.length { return retScript, ErrStackShortScript } // Next -length bytes are little endian length of data. switch op.length { case -1: l = uint(script[off]) case -2: l = ((uint(script[off+1]) << 8) | uint(script[off])) case -4: l = ((uint(script[off+3]) << 24) | (uint(script[off+2]) << 16) | (uint(script[off+1]) << 8) | uint(script[off])) default: return retScript, fmt.Errorf("invalid opcode length %d", op.length) } off += -op.length // beginning of data // Disallow entries that do not fit script or were // sign extended. if int(l) > len(script[off:]) || int(l) < 0 { return retScript, ErrStackShortScript } pop.data = script[off : off+int(l)] i += 1 - op.length + int(l) } retScript = append(retScript, pop) } return retScript, nil } // unparseScript reversed the action of parseScript and returns the // parsedOpcodes as a list of bytes func unparseScript(pops []parsedOpcode) ([]byte, error) { script := make([]byte, 0, len(pops)) for _, pop := range pops { b, err := pop.bytes() if err != nil { return nil, err } script = append(script, b...) } return script, nil } // ScriptFlags is a bitmask defining additional operations or // tests that will be done when executing a Script. type ScriptFlags uint32 const ( // ScriptBip16 defines whether the bip16 threshhold has passed and thus // pay-to-script hash transactions will be fully validated. ScriptBip16 ScriptFlags = 1 << iota // ScriptCanonicalSignatures defines whether additional canonical // signature checks are performed when parsing a signature. // // Canonical (DER) signatures are not required in the tx rules for // block acceptance, but are checked in recent versions of bitcoind // when accepting transactions to the mempool. Non-canonical (valid // BER but not valid DER) transactions can potentially be changed // before mined into a block, either by adding extra padding or // flipping the sign of the R or S value in the signature, creating a // transaction that still validates and spends the inputs, but is not // recognized by creator of the transaction. Performing a canonical // check enforces script signatures use a unique DER format. ScriptCanonicalSignatures // ScriptStrictMultiSig defines whether to verify the stack item // used by CHECKMULTISIG is zero length. ScriptStrictMultiSig ) // NewScript returns a new script engine for the provided tx and input idx with // a signature script scriptSig and a pubkeyscript scriptPubKey. If bip16 is // true then it will be treated as if the bip16 threshhold has passed and thus // pay-to-script hash transactions will be fully validated. func NewScript(scriptSig []byte, scriptPubKey []byte, txidx int, tx *btcwire.MsgTx, flags ScriptFlags) (*Script, error) { var m Script scripts := [][]byte{scriptSig, scriptPubKey} m.scripts = make([][]parsedOpcode, len(scripts)) for i, scr := range scripts { if len(scr) > maxScriptSize { return nil, ErrStackLongScript } var err error m.scripts[i], err = parseScript(scr) if err != nil { return nil, err } // If the first scripts(s) are empty, must start on later ones. if i == 0 && len(scr) == 0 { // This could end up seeing an invalid initial pc if // all scripts were empty. However, that is an invalid // case and should fail. m.scriptidx = i + 1 } } // Parse flags. bip16 := flags&ScriptBip16 == ScriptBip16 if bip16 && isScriptHash(m.scripts[1]) { // if we are pay to scripthash then we only accept input // scripts that push data if !isPushOnly(m.scripts[0]) { return nil, ErrStackP2SHNonPushOnly } m.bip16 = true } if flags&ScriptCanonicalSignatures == ScriptCanonicalSignatures { m.der = true } if flags&ScriptStrictMultiSig == ScriptStrictMultiSig { m.strictMultiSig = true } m.tx = *tx m.txidx = txidx m.condStack = []int{OpCondTrue} return &m, nil } // Execute will execute all script in the script engine and return either nil // for successful validation or an error if one occurred. func (s *Script) Execute() (err error) { done := false for done != true { log.Tracef("%v", newLogClosure(func() string { dis, err := s.DisasmPC() if err != nil { return fmt.Sprintf("stepping (%v)", err) } return fmt.Sprintf("stepping %v", dis) })) done, err = s.Step() if err != nil { return err } log.Tracef("%v", newLogClosure(func() string { var dstr, astr string // if we're tracing, dump the stacks. if s.dstack.Depth() != 0 { dstr = "Stack:\n" + s.dstack.String() } if s.astack.Depth() != 0 { astr = "AltStack:\n" + s.astack.String() } return dstr + astr })) } return s.CheckErrorCondition() } // CheckErrorCondition returns nil if the running script has ended and was // successful, leaving a a true boolean on the stack. An error otherwise, // including if the script has not finished. func (s *Script) CheckErrorCondition() (err error) { // Check we are actually done. if pc is past the end of script array // then we have run out of scripts to run. if s.scriptidx < len(s.scripts) { return ErrStackScriptUnfinished } if s.dstack.Depth() < 1 { return ErrStackEmptyStack } v, err := s.dstack.PopBool() if err == nil && v == false { // log interesting data. log.Tracef("%v", newLogClosure(func() string { dis0, _ := s.DisasmScript(0) dis1, _ := s.DisasmScript(1) return fmt.Sprintf("scripts failed: script0: %s\n"+ "script1: %s", dis0, dis1) })) err = ErrStackScriptFailed } return err } // Step will execute the next instruction and move the program counter to the // next opcode in the script, or the next script if the curent has ended. Step // will return true in the case that the last opcode was successfully executed. // if an error is returned then the result of calling Step or any other method // is undefined. func (s *Script) Step() (done bool, err error) { // verify that it is pointing to a valid script address err = s.validPC() if err != nil { return true, err } opcode := s.scripts[s.scriptidx][s.scriptoff] err = opcode.exec(s) if err != nil { return true, err } if s.dstack.Depth()+s.astack.Depth() > maxStackSize { return false, ErrStackOverflow } // prepare for next instruction s.scriptoff++ if s.scriptoff >= len(s.scripts[s.scriptidx]) { // Illegal to have an `if' that straddles two scripts. if err == nil && len(s.condStack) != 1 { return false, ErrStackMissingEndif } // alt stack doesn't persist. _ = s.astack.DropN(s.astack.Depth()) s.numOps = 0 // number of ops is per script. s.scriptoff = 0 if s.scriptidx == 0 && s.bip16 { s.scriptidx++ s.savedFirstStack = s.GetStack() } else if s.scriptidx == 1 && s.bip16 { // Put us past the end for CheckErrorCondition() s.scriptidx++ // We check script ran ok, if so then we pull // the script out of the first stack and executre that. err := s.CheckErrorCondition() if err != nil { return false, err } script := s.savedFirstStack[len(s.savedFirstStack)-1] pops, err := parseScript(script) if err != nil { return false, err } s.scripts = append(s.scripts, pops) // Set stack to be the stack from first script // minus the script itself s.SetStack(s.savedFirstStack[:len(s.savedFirstStack)-1]) } else { s.scriptidx++ } // there are zero length scripts in the wild if s.scriptidx < len(s.scripts) && s.scriptoff >= len(s.scripts[s.scriptidx]) { s.scriptidx++ } s.lastcodesep = 0 if s.scriptidx >= len(s.scripts) { return true, nil } } return false, nil } // curPC returns either the current script and offset, or an error if the // position isn't valid. func (s *Script) curPC() (script int, off int, err error) { err = s.validPC() if err != nil { return 0, 0, err } return s.scriptidx, s.scriptoff, nil } // validPC returns an error if the current script position is valid for // execution, nil otherwise. func (s *Script) validPC() error { if s.scriptidx >= len(s.scripts) { return fmt.Errorf("Past input scripts %v:%v %v:xxxx", s.scriptidx, s.scriptoff, len(s.scripts)) } if s.scriptoff >= len(s.scripts[s.scriptidx]) { return fmt.Errorf("Past input scripts %v:%v %v:%04d", s.scriptidx, s.scriptoff, s.scriptidx, len(s.scripts[s.scriptidx])) } return nil } // DisasmScript returns the disassembly string for the script at offset // ``idx''. Where 0 is the scriptSig and 1 is the scriptPubKey. func (s *Script) DisasmScript(idx int) (disstr string, err error) { if idx >= len(s.scripts) { return "", ErrStackInvalidIndex } for i := range s.scripts[idx] { disstr = disstr + s.disasm(idx, i) + "\n" } return disstr, nil } // DisasmPC returns the string for the disassembly of the opcode that will be // next to execute when Step() is called. func (s *Script) DisasmPC() (disstr string, err error) { scriptidx, scriptoff, err := s.curPC() if err != nil { return "", err } return s.disasm(scriptidx, scriptoff), nil } // disasm is a helper member to produce the output for DisasmPC and // DisasmScript. It produces the opcode prefixed by the program counter at the // provided position in the script. it does no error checking and leaves that // to the caller to provide a valid offse. func (s *Script) disasm(scriptidx int, scriptoff int) string { return fmt.Sprintf("%02x:%04x: %s", scriptidx, scriptoff, s.scripts[scriptidx][scriptoff].print(false)) } // subScript will return the script since the last OP_CODESEPARATOR func (s *Script) subScript() []parsedOpcode { return s.scripts[s.scriptidx][s.lastcodesep:] } // removeOpcode will remove any opcode matching ``opcode'' from the opcode // stream in pkscript func removeOpcode(pkscript []parsedOpcode, opcode byte) []parsedOpcode { retScript := make([]parsedOpcode, 0, len(pkscript)) for _, pop := range pkscript { if pop.opcode.value != opcode { retScript = append(retScript, pop) } } return retScript } // removeOpcodeByData will return the pkscript minus any opcodes that would // push the data in ``data'' to the stack. func removeOpcodeByData(pkscript []parsedOpcode, data []byte) []parsedOpcode { retScript := make([]parsedOpcode, 0, len(pkscript)) for _, pop := range pkscript { if !canonicalPush(pop) || !bytes.Contains(pop.data, data) { retScript = append(retScript, pop) } } return retScript } // DisasmString formats a disassembled script for one line printing. When the // script fails to parse, the returned string will contain the disassembled // script up to the point the failure occurred along with the string '[error]' // appended. In addition, the reason the script failed to parse is returned // if the caller wants more information about the failure. func DisasmString(buf []byte) (string, error) { disbuf := "" opcodes, err := parseScript(buf) for _, pop := range opcodes { disbuf += pop.print(true) + " " } if disbuf != "" { disbuf = disbuf[:len(disbuf)-1] } if err != nil { disbuf += "[error]" } return disbuf, err } // calcScriptHash will, given the a script and hashtype for the current // scriptmachine, calculate the doubleSha256 hash of the transaction and // script to be used for signature signing and verification. func calcScriptHash(script []parsedOpcode, hashType SigHashType, tx *btcwire.MsgTx, idx int) []byte { // remove all instances of OP_CODESEPARATOR still left in the script script = removeOpcode(script, OP_CODESEPARATOR) // Make a deep copy of the transaction, zeroing out the script // for all inputs that are not currently being processed. txCopy := tx.Copy() for i := range txCopy.TxIn { var txIn btcwire.TxIn txIn = *txCopy.TxIn[i] txCopy.TxIn[i] = &txIn if i == idx { // unparseScript cannot fail here, because removeOpcode // above only returns a valid script. sigscript, _ := unparseScript(script) txCopy.TxIn[idx].SignatureScript = sigscript } else { txCopy.TxIn[i].SignatureScript = []byte{} } } // Default behaviour has all outputs set up. for i := range txCopy.TxOut { var txOut btcwire.TxOut txOut = *txCopy.TxOut[i] txCopy.TxOut[i] = &txOut } switch hashType & 31 { case SigHashNone: txCopy.TxOut = txCopy.TxOut[0:0] // empty slice for i := range txCopy.TxIn { if i != idx { txCopy.TxIn[i].Sequence = 0 } } case SigHashSingle: if idx >= len(txCopy.TxOut) { // This was created by a buggy implementation. // In this case we do the same as bitcoind and bitcoinj // and return 1 (as a uint256 little endian) as an // error. Unfortunately this was not checked anywhere // and thus is treated as the actual // hash. hash := make([]byte, 32) hash[0] = 0x01 return hash } // Resize output array to up to and including requested index. txCopy.TxOut = txCopy.TxOut[:idx+1] // all but current output get zeroed out for i := 0; i < idx; i++ { txCopy.TxOut[i].Value = -1 txCopy.TxOut[i].PkScript = []byte{} } // Sequence on all other inputs is 0, too. for i := range txCopy.TxIn { if i != idx { txCopy.TxIn[i].Sequence = 0 } } default: // XXX bitcoind treats undefined hashtypes like normal // SigHashAll for purposes of hash generation. fallthrough case SigHashOld: fallthrough case SigHashAll: // nothing special here } if hashType&SigHashAnyOneCanPay != 0 { txCopy.TxIn = txCopy.TxIn[idx : idx+1] idx = 0 } var wbuf bytes.Buffer txCopy.Serialize(&wbuf) // Append LE 4 bytes hash type binary.Write(&wbuf, binary.LittleEndian, uint32(hashType)) return btcwire.DoubleSha256(wbuf.Bytes()) } // getStack returns the contents of stack as a byte array bottom up func getStack(stack *Stack) [][]byte { array := make([][]byte, stack.Depth()) for i := range array { // PeekByteArry can't fail due to overflow, already checked array[len(array)-i-1], _ = stack.PeekByteArray(i) } return array } // setStack sets the stack to the contents of the array where the last item in // the array is the top item in the stack. func setStack(stack *Stack, data [][]byte) { // This can not error. Only errors are for invalid arguments. _ = stack.DropN(stack.Depth()) for i := range data { stack.PushByteArray(data[i]) } } // GetStack returns the contents of the primary stack as an array. where the // last item in the array is the top of the stack. func (s *Script) GetStack() [][]byte { return getStack(&s.dstack) } // SetStack sets the contents of the primary stack to the contents of the // provided array where the last item in the array will be the top of the stack. func (s *Script) SetStack(data [][]byte) { setStack(&s.dstack, data) } // GetAltStack returns the contents of the primary stack as an array. where the // last item in the array is the top of the stack. func (s *Script) GetAltStack() [][]byte { return getStack(&s.astack) } // SetAltStack sets the contents of the primary stack to the contents of the // provided array where the last item in the array will be the top of the stack. func (s *Script) SetAltStack(data [][]byte) { setStack(&s.astack, data) } // GetSigOpCount provides a quick count of the number of signature operations // in a script. a CHECKSIG operations counts for 1, and a CHECK_MULTISIG for 20. // If the script fails to parse, then the count up to the point of failure is // returned. func GetSigOpCount(script []byte) int { // We don't check error since parseScript returns the parsed-up-to-error // list of pops. pops, _ := parseScript(script) return getSigOpCount(pops, false) } // GetPreciseSigOpCount returns the number of signature operations in // scriptPubKey. If bip16 is true then scriptSig may be searched for the // Pay-To-Script-Hash script in order to find the precise number of signature // operations in the transaction. If the script fails to parse, then the // count up to the point of failure is returned. func GetPreciseSigOpCount(scriptSig, scriptPubKey []byte, bip16 bool) int { // We don't check error since parseScript returns the parsed-up-to-error // list of pops. pops, _ := parseScript(scriptPubKey) // non P2SH transactions just treated as normal. if !(bip16 && isScriptHash(pops)) { return getSigOpCount(pops, true) } // Ok so this is P2SH, get the contained script and count it.. sigPops, err := parseScript(scriptSig) if err != nil { return 0 } if !isPushOnly(sigPops) || len(sigPops) == 0 { return 0 } shScript := sigPops[len(sigPops)-1].data // Means that sigPops is jus OP_1 - OP_16, no sigops there. if shScript == nil { return 0 } shPops, _ := parseScript(shScript) return getSigOpCount(shPops, true) } // getSigOpCount is the implementation function for counting the number of // signature operations in the script provided by pops. If precise mode is // requested then we attempt to count the number of operations for a multisig // op. Otherwise we use the maximum. func getSigOpCount(pops []parsedOpcode, precise bool) int { nSigs := 0 for i, pop := range pops { switch pop.opcode.value { case OP_CHECKSIG: fallthrough case OP_CHECKSIGVERIFY: nSigs++ case OP_CHECKMULTISIG: fallthrough case OP_CHECKMULTISIGVERIFY: // If we are being precise then look for familiar // patterns for multisig, for now all we recognise is // OP_1 - OP_16 to signify the number of pubkeys. // Otherwise, we use the max of 20. if precise && i > 0 && pops[i-1].opcode.value >= OP_1 && pops[i-1].opcode.value <= OP_16 { nSigs += int(pops[i-1].opcode.value - (OP_1 - 1)) } else { nSigs += MaxPubKeysPerMultiSig } default: // not a sigop. } } return nSigs } // payToPubKeyHashScript creates a new script to pay a transaction // output to a 20-byte pubkey hash. It is expected that the input is a valid // hash. func payToPubKeyHashScript(pubKeyHash []byte) []byte { return NewScriptBuilder().AddOp(OP_DUP).AddOp(OP_HASH160). AddData(pubKeyHash).AddOp(OP_EQUALVERIFY).AddOp(OP_CHECKSIG). Script() } // payToScriptHashScript creates a new script to pay a transaction output to a // script hash. It is expected that the input is a valid hash. func payToScriptHashScript(scriptHash []byte) []byte { return NewScriptBuilder().AddOp(OP_HASH160).AddData(scriptHash). AddOp(OP_EQUAL).Script() } // payToPubkeyScript creates a new script to pay a transaction output to a // public key. It is expected that the input is a valid pubkey. func payToPubKeyScript(serializedPubKey []byte) []byte { return NewScriptBuilder().AddData(serializedPubKey). AddOp(OP_CHECKSIG).Script() } // PayToAddrScript creates a new script to pay a transaction output to a the // specified address. func PayToAddrScript(addr btcutil.Address) ([]byte, error) { switch addr := addr.(type) { case *btcutil.AddressPubKeyHash: if addr == nil { return nil, ErrUnsupportedAddress } return payToPubKeyHashScript(addr.ScriptAddress()), nil case *btcutil.AddressScriptHash: if addr == nil { return nil, ErrUnsupportedAddress } return payToScriptHashScript(addr.ScriptAddress()), nil case *btcutil.AddressPubKey: if addr == nil { return nil, ErrUnsupportedAddress } return payToPubKeyScript(addr.ScriptAddress()), nil } return nil, ErrUnsupportedAddress } // ErrBadNumRequired is returned from MultiSigScript when nrequired is larger // than the number of provided public keys. var ErrBadNumRequired = errors.New("more signatures required than keys present") // MultiSigScript returns a valid script for a multisignature redemption where // nrequired of the keys in pubkeys are required to have signed the transaction // for success. An ErrBadNumRequired will be returned if nrequired is larger than // the number of keys provided. func MultiSigScript(pubkeys []*btcutil.AddressPubKey, nrequired int) ([]byte, error) { if len(pubkeys) < nrequired { return nil, ErrBadNumRequired } builder := NewScriptBuilder().AddInt64(int64(nrequired)) for _, key := range pubkeys { builder.AddData(key.ScriptAddress()) } builder.AddInt64(int64(len(pubkeys))) builder.AddOp(OP_CHECKMULTISIG) return builder.Script(), nil } // SignatureScript creates an input signature script for tx to spend // BTC sent from a previous output to the owner of privKey. tx must // include all transaction inputs and outputs, however txin scripts are // allowed to be filled or empty. The returned script is calculated to // be used as the idx'th txin sigscript for tx. subscript is the PkScript // of the previous output being used as the idx'th input. privKey is // serialized in either a compressed or uncompressed format based on // compress. This format must match the same format used to generate // the payment address, or the script validation will fail. func SignatureScript(tx *btcwire.MsgTx, idx int, subscript []byte, hashType SigHashType, privKey *btcec.PrivateKey, compress bool) ([]byte, error) { sig, err := RawTxInSignature(tx, idx, subscript, hashType, privKey) if err != nil { return nil, err } pk := (*btcec.PublicKey)(&privKey.PublicKey) var pkData []byte if compress { pkData = pk.SerializeCompressed() } else { pkData = pk.SerializeUncompressed() } return NewScriptBuilder().AddData(sig).AddData(pkData).Script(), nil } // RawTxInSignature returns the serialized ECDSA signature for the input // idx of the given transaction, with hashType appended to it. func RawTxInSignature(tx *btcwire.MsgTx, idx int, subScript []byte, hashType SigHashType, key *btcec.PrivateKey) ([]byte, error) { parsedScript, err := parseScript(subScript) if err != nil { return nil, fmt.Errorf("cannot parse output script: %v", err) } hash := calcScriptHash(parsedScript, hashType, tx, idx) signature, err := key.Sign(hash) if err != nil { return nil, fmt.Errorf("cannot sign tx input: %s", err) } return append(signature.Serialize(), byte(hashType)), nil } func p2pkSignatureScript(tx *btcwire.MsgTx, idx int, subScript []byte, hashType SigHashType, privKey *btcec.PrivateKey) ([]byte, error) { sig, err := RawTxInSignature(tx, idx, subScript, hashType, privKey) if err != nil { return nil, err } return NewScriptBuilder().AddData(sig).Script(), nil } // signMultiSig signs as many of the outputs in the provided multisig script as // possible. It returns the generated script and a boolean if the script fulfils // the contract (i.e. nrequired signatures are provided). Since it is arguably // legal to not be able to sign any of the outputs, no error is returned. func signMultiSig(tx *btcwire.MsgTx, idx int, subScript []byte, hashType SigHashType, addresses []btcutil.Address, nRequired int, kdb KeyDB) ([]byte, bool) { // We start with a single OP_FALSE to work around the (now standard) // but in the reference implementation that causes a spurious pop at // the end of OP_CHECKMULTISIG. builder := NewScriptBuilder().AddOp(OP_FALSE) signed := 0 for _, addr := range addresses { key, _, err := kdb.GetKey(addr) if err != nil { continue } sig, err := RawTxInSignature(tx, idx, subScript, hashType, key) if err != nil { continue } builder.AddData(sig) signed++ if signed == nRequired { break } } return builder.Script(), signed == nRequired } func sign(net *btcnet.Params, tx *btcwire.MsgTx, idx int, subScript []byte, hashType SigHashType, kdb KeyDB, sdb ScriptDB) ([]byte, ScriptClass, []btcutil.Address, int, error) { class, addresses, nrequired, err := ExtractPkScriptAddrs(subScript, net) if err != nil { return nil, NonStandardTy, nil, 0, err } switch class { case PubKeyTy: // look up key for address key, _, err := kdb.GetKey(addresses[0]) if err != nil { return nil, class, nil, 0, err } script, err := p2pkSignatureScript(tx, idx, subScript, hashType, key) if err != nil { return nil, class, nil, 0, err } return script, class, addresses, nrequired, nil case PubKeyHashTy: // look up key for address key, compressed, err := kdb.GetKey(addresses[0]) if err != nil { return nil, class, nil, 0, err } script, err := SignatureScript(tx, idx, subScript, hashType, key, compressed) if err != nil { return nil, class, nil, 0, err } return script, class, addresses, nrequired, nil case ScriptHashTy: script, err := sdb.GetScript(addresses[0]) if err != nil { return nil, class, nil, 0, err } return script, class, addresses, nrequired, nil case MultiSigTy: script, _ := signMultiSig(tx, idx, subScript, hashType, addresses, nrequired, kdb) return script, class, addresses, nrequired, nil case NullDataTy: return nil, class, nil, 0, errors.New("can't sign NULLDATA transactions") default: return nil, class, nil, 0, errors.New("can't sign unknown transactions") } } // mergeScripts merges sigScript and prevScript assuming they are both // partial solutions for pkScript spending output idx of tx. class, addresses // and nrequired are the result of extracting the addresses from pkscript. // The return value is the best effort merging of the two scripts. Calling this // function with addresses, class and nrequired that do not match pkScript is // an error and results in undefined behaviour. func mergeScripts(net *btcnet.Params, tx *btcwire.MsgTx, idx int, pkScript []byte, class ScriptClass, addresses []btcutil.Address, nRequired int, sigScript, prevScript []byte) []byte { // TODO(oga) the scripthash and multisig paths here are overly // inefficient in that they will recompute already known data. // some internal refactoring could probably make this avoid needless // extra calculations. switch class { case ScriptHashTy: // Remove the last push in the script and then recurse. // this could be a lot less inefficient. sigPops, err := parseScript(sigScript) if err != nil || len(sigPops) == 0 { return prevScript } prevPops, err := parseScript(prevScript) if err != nil || len(prevPops) == 0 { return sigScript } // assume that script in sigPops is the correct one, we just // made it. script := sigPops[len(sigPops)-1].data // We already know this information somewhere up the stack. class, addresses, nrequired, err := ExtractPkScriptAddrs(script, net) // regenerate scripts. sigScript, _ := unparseScript(sigPops) prevScript, _ := unparseScript(prevPops) // Merge mergedScript := mergeScripts(net, tx, idx, script, class, addresses, nrequired, sigScript, prevScript) // Reappend the script and return the result. builder := NewScriptBuilder() builder.script = mergedScript builder.AddData(script) return builder.Script() case MultiSigTy: return mergeMultiSig(tx, idx, addresses, nRequired, pkScript, sigScript, prevScript) // It doesn't actualy make sense to merge anything other than multiig // and scripthash (because it could contain multisig). Everything else // has either zero signature, can't be spent, or has a single signature // which is either present or not. The other two cases are handled // above. In the conflict case here we just assume the longest is // correct (this matches behaviour of the reference implementation). default: if len(sigScript) > len(prevScript) { return sigScript } return prevScript } } // mergeMultiSig combines the two signature scripts sigScript and prevScript // that both provide signatures for pkScript in output idx of tx. addresses // and nRequired should be the results from extracting the addresses from // pkScript. Since this function is internal only we assume that the arguments // have come from other functions internally and thus are all consistent with // each other, behaviour is undefined if this contract is broken. func mergeMultiSig(tx *btcwire.MsgTx, idx int, addresses []btcutil.Address, nRequired int, pkScript, sigScript, prevScript []byte) []byte { // This is an internal only function and we already parsed this script // as ok for multisig (this is how we got here), so if this fails then // all assumptions are broken and who knows which way is up? pkPops, _ := parseScript(pkScript) sigPops, err := parseScript(sigScript) if err != nil || len(sigPops) == 0 { return prevScript } prevPops, err := parseScript(prevScript) if err != nil || len(prevPops) == 0 { return sigScript } // Convenience function to avoid duplication. extractSigs := func(pops []parsedOpcode, sigs [][]byte) [][]byte { for _, pop := range pops { if len(pop.data) != 0 { sigs = append(sigs, pop.data) } } return sigs } possibleSigs := make([][]byte, 0, len(sigPops)+len(prevPops)) possibleSigs = extractSigs(sigPops, possibleSigs) possibleSigs = extractSigs(prevPops, possibleSigs) // Now we need to match the signatures to pubkeys, the only real way to // do that is to try to verify them all and match it to the pubkey // that verifies it. we then can go through the addresses in order // to build our script. Anything that doesn't parse or doesn't verify we // throw away. addrToSig := make(map[string][]byte) sigLoop: for _, sig := range possibleSigs { // can't have a valid signature that doesn't at least have a // hashtype, in practise it is even longer than this. but // that'll be checked next. if len(sig) < 1 { continue } tSig := sig[:len(sig)-1] hashType := SigHashType(sig[len(sig)-1]) pSig, err := btcec.ParseDERSignature(tSig, btcec.S256()) if err != nil { continue } // We have to do this each round since hash types may vary // between signatures and so the hash will vary. We can, // however, assume no sigs etc are in the script since that // would make the transaction nonstandard and thus not // MultiSigTy, so we just need to hash the full thing. hash := calcScriptHash(pkPops, hashType, tx, idx) for _, addr := range addresses { // All multisig addresses should be pubkey addreses // it is an error to call this internal function with // bad input. pkaddr := addr.(*btcutil.AddressPubKey) pubKey := pkaddr.PubKey() // If it matches we put it in the map. We only // can take one signature per public key so if we // already have one, we can throw this away. if pSig.Verify(hash, pubKey) { aStr := addr.EncodeAddress() if _, ok := addrToSig[aStr]; !ok { addrToSig[aStr] = sig } continue sigLoop } } } // Extra opcode to handle the extra arg consumed (due to previous bugs // in the reference implementation). builder := NewScriptBuilder().AddOp(OP_FALSE) doneSigs := 0 // This assumes that addresses are in the same order as in the script. for _, addr := range addresses { sig, ok := addrToSig[addr.EncodeAddress()] if !ok { continue } builder.AddData(sig) doneSigs++ if doneSigs == nRequired { break } } // padding for missing ones. for i := doneSigs; i < nRequired; i++ { builder.AddOp(OP_0) } return builder.Script() } // KeyDB is an interface type provided to SignTxOutput, it encapsulates // any user state required to get the private keys for an address. type KeyDB interface { GetKey(btcutil.Address) (*btcec.PrivateKey, bool, error) } // KeyClosure implements ScriptDB with a closure type KeyClosure func(btcutil.Address) (*btcec.PrivateKey, bool, error) // GetKey implements KeyDB by returning the result of calling the closure func (kc KeyClosure) GetKey(address btcutil.Address) (*btcec.PrivateKey, bool, error) { return kc(address) } // ScriptDB is an interface type provided to SignTxOutput, it encapsulates // any user state required to get the scripts for an pay-to-script-hash address. type ScriptDB interface { GetScript(btcutil.Address) ([]byte, error) } // ScriptClosure implements ScriptDB with a closure type ScriptClosure func(btcutil.Address) ([]byte, error) // GetScript implements ScriptDB by returning the result of calling the closure func (sc ScriptClosure) GetScript(address btcutil.Address) ([]byte, error) { return sc(address) } // SignTxOutput signs output idx of the given tx to resolve the script given in // pkScript with a signature type of hashType. Any keys required will be // looked up by calling getKey() with the string of the given address. // Any pay-to-script-hash signatures will be similarly looked up by calling // getScript. If previousScript is provided then the results in previousScript // will be merged in a type-dependant manner with the newly generated. // signature script. func SignTxOutput(net *btcnet.Params, tx *btcwire.MsgTx, idx int, pkScript []byte, hashType SigHashType, kdb KeyDB, sdb ScriptDB, previousScript []byte) ([]byte, error) { sigScript, class, addresses, nrequired, err := sign(net, tx, idx, pkScript, hashType, kdb, sdb) if err != nil { return nil, err } if class == ScriptHashTy { // TODO keep the sub addressed and pass down to merge. realSigScript, _, _, _, err := sign(net, tx, idx, sigScript, hashType, kdb, sdb) if err != nil { return nil, err } // This is a bad thing. Append the p2sh script as the last // push in the script. builder := NewScriptBuilder() builder.script = realSigScript builder.AddData(sigScript) sigScript = builder.Script() // TODO keep a copy of the script for merging. } // Merge scripts. with any previous data, if any. mergedScript := mergeScripts(net, tx, idx, pkScript, class, addresses, nrequired, sigScript, previousScript) if err != nil { return nil, err } return mergedScript, nil } // expectedInputs returns the number of arguments required by a script. // If the script is of unnown type such that the number can not be determined // then -1 is returned. We are an internal function and thus assume that class // is the real class of pops (and we can thus assume things that were // determined while finding out the type). func expectedInputs(pops []parsedOpcode, class ScriptClass) int { // count needed inputs. switch class { case PubKeyTy: return 1 case PubKeyHashTy: return 2 case ScriptHashTy: // Not including script, handled below. return 1 case MultiSigTy: // Standard multisig has a push a small number for the number // of sigs and number of keys. Check the first push instruction // to see how many arguments are expected. typeOfScript already // checked this so we know it'll be a small int. Also, due to // the original bitcoind bug where OP_CHECKMULTISIG pops an // additional item from the stack, add an extra expected input // for the extra push that is required to compensate. return asSmallInt(pops[0].opcode) + 1 case NullDataTy: fallthrough default: return -1 } } // ScriptInfo houses information about a script pair that is determined by // CalcScriptInfo. type ScriptInfo struct { // The class of the sigscript, equivalent to calling GetScriptClass // on the sigScript. PkScriptClass ScriptClass // NumInputs is the number of inputs provided by the pkScript. NumInputs int // ExpectedInputs is the number of outputs required by sigScript and any // pay-to-script-hash scripts. The number will be -1 if unknown. ExpectedInputs int // SigOps is the nubmer of signature operations in the script pair. SigOps int } // CalcScriptInfo returns a structure providing data about the scriptpair that // are provided as arguments. It will error if the pair is in someway invalid // such that they can not be analysed, i.e. if they do not parse or the // pkScript is not a push-only script func CalcScriptInfo(sigscript, pkscript []byte, bip16 bool) (*ScriptInfo, error) { si := new(ScriptInfo) // parse both scripts. sigPops, err := parseScript(sigscript) if err != nil { return nil, err } pkPops, err := parseScript(pkscript) if err != nil { return nil, err } // push only sigScript makes little sense. si.PkScriptClass = typeOfScript(pkPops) // Can't have a pkScript that doesn't just push data. if !isPushOnly(sigPops) { return nil, ErrStackNonPushOnly } si.ExpectedInputs = expectedInputs(pkPops, si.PkScriptClass) // all entries push to stack (or are OP_RESERVED and exec will fail). si.NumInputs = len(sigPops) if si.PkScriptClass == ScriptHashTy && bip16 { // grab the last push instruction in the script and pull out the // data. script := sigPops[len(sigPops)-1].data // check for existance and error else. shPops, err := parseScript(script) if err != nil { return nil, err } shClass := typeOfScript(shPops) shInputs := expectedInputs(shPops, shClass) if shInputs == -1 { // We have no fucking clue, then. si.ExpectedInputs = -1 } else { si.ExpectedInputs += shInputs } si.SigOps = getSigOpCount(shPops, true) } else { si.SigOps = getSigOpCount(pkPops, true) } return si, nil } // asSmallInt returns the passed opcode, which must be true according to // isSmallInt(), as an integer. func asSmallInt(op *opcode) int { if op.value == OP_0 { return 0 } return int(op.value - (OP_1 - 1)) } // CalcMultiSigStats returns the number of public keys and signatures from // a multi-signature transaction script. The passed script MUST already be // known to be a multi-signature script. func CalcMultiSigStats(script []byte) (int, int, error) { pops, err := parseScript(script) if err != nil { return 0, 0, err } // A multi-signature script is of the pattern: // NUM_SIGS PUBKEY PUBKEY PUBKEY... NUM_PUBKEYS OP_CHECKMULTISIG // Therefore the number of signatures is the oldest item on the stack // and the number of pubkeys is the 2nd to last. Also, the absolute // minimum for a multi-signature script is 1 pubkey, so at least 4 // items must be on the stack per: // OP_1 PUBKEY OP_1 OP_CHECKMULTISIG if len(pops) < 4 { return 0, 0, ErrStackUnderflow } numSigs := asSmallInt(pops[0].opcode) numPubKeys := asSmallInt(pops[len(pops)-2].opcode) return numPubKeys, numSigs, nil } // PushedData returns an array of byte slices containing any pushed data found // in the passed script. This includes OP_0, but not OP_1 - OP_16. func PushedData(script []byte) ([][]byte, error) { pops, err := parseScript(script) if err != nil { return nil, err } var data [][]byte for _, pop := range pops { if pop.data != nil { data = append(data, pop.data) } else if pop.opcode.value == OP_0 { data = append(data, []byte{}) } } return data, nil }