// Copyright (c) 2013-2016 The btcsuite developers // Use of this source code is governed by an ISC // license that can be found in the LICENSE file. package txscript import ( "fmt" "math/big" "github.com/btcsuite/btcd/btcec" "github.com/btcsuite/btcd/wire" ) // ScriptFlags is a bitmask defining additional operations or tests that will be // done when executing a script pair. type ScriptFlags uint32 const ( // ScriptBip16 defines whether the bip16 threshold has passed and thus // pay-to-script hash transactions will be fully validated. ScriptBip16 ScriptFlags = 1 << iota // ScriptStrictMultiSig defines whether to verify the stack item // used by CHECKMULTISIG is zero length. ScriptStrictMultiSig // ScriptDiscourageUpgradableNops defines whether to verify that // NOP1 through NOP10 are reserved for future soft-fork upgrades. This // flag must not be used for consensus critical code nor applied to // blocks as this flag is only for stricter standard transaction // checks. This flag is only applied when the above opcodes are // executed. ScriptDiscourageUpgradableNops // ScriptVerifyCheckLockTimeVerify defines whether to verify that // a transaction output is spendable based on the locktime. // This is BIP0065. ScriptVerifyCheckLockTimeVerify // ScriptVerifyCheckSequenceVerify defines whether to allow execution // pathways of a script to be restricted based on the age of the output // being spent. This is BIP0112. ScriptVerifyCheckSequenceVerify // ScriptVerifyCleanStack defines that the stack must contain only // one stack element after evaluation and that the element must be // true if interpreted as a boolean. This is rule 6 of BIP0062. // This flag should never be used without the ScriptBip16 flag. ScriptVerifyCleanStack // ScriptVerifyDERSignatures defines that signatures are required // to compily with the DER format. ScriptVerifyDERSignatures // ScriptVerifyLowS defines that signtures are required to comply with // the DER format and whose S value is <= order / 2. This is rule 5 // of BIP0062. ScriptVerifyLowS // ScriptVerifyMinimalData defines that signatures must use the smallest // push operator. This is both rules 3 and 4 of BIP0062. ScriptVerifyMinimalData // ScriptVerifySigPushOnly defines that signature scripts must contain // only pushed data. This is rule 2 of BIP0062. ScriptVerifySigPushOnly // ScriptVerifyStrictEncoding defines that signature scripts and // public keys must follow the strict encoding requirements. ScriptVerifyStrictEncoding ) const ( // maxStackSize is the maximum combined height of stack and alt stack // during execution. maxStackSize = 1000 // maxScriptSize is the maximum allowed length of a raw script. maxScriptSize = 10000 ) // halforder is used to tame ECDSA malleability (see BIP0062). var halfOrder = new(big.Int).Rsh(btcec.S256().N, 1) // Engine is the virtual machine that executes scripts. type Engine struct { scripts [][]parsedOpcode scriptIdx int scriptOff int lastCodeSep int dstack stack // data stack astack stack // alt stack tx wire.MsgTx txIdx int condStack []int numOps int flags ScriptFlags sigCache *SigCache bip16 bool // treat execution as pay-to-script-hash savedFirstStack [][]byte // stack from first script for bip16 scripts } // hasFlag returns whether the script engine instance has the passed flag set. func (vm *Engine) hasFlag(flag ScriptFlags) bool { return vm.flags&flag == flag } // isBranchExecuting returns whether or not the current conditional branch is // actively executing. For example, when the data stack has an OP_FALSE on it // and an OP_IF is encountered, the branch is inactive until an OP_ELSE or // OP_ENDIF is encountered. It properly handles nested conditionals. func (vm *Engine) isBranchExecuting() bool { if len(vm.condStack) == 0 { return true } return vm.condStack[len(vm.condStack)-1] == OpCondTrue } // executeOpcode peforms execution on the passed opcode. It takes into account // whether or not it is hidden by conditionals, but some rules still must be // tested in this case. func (vm *Engine) executeOpcode(pop *parsedOpcode) error { // Disabled opcodes are fail on program counter. if pop.isDisabled() { return ErrStackOpDisabled } // Always-illegal opcodes are fail on program counter. if pop.alwaysIllegal() { return ErrStackReservedOpcode } // Note that this includes OP_RESERVED which counts as a push operation. if pop.opcode.value > OP_16 { vm.numOps++ if vm.numOps > MaxOpsPerScript { return ErrStackTooManyOperations } } else if len(pop.data) > MaxScriptElementSize { return ErrStackElementTooBig } // Nothing left to do when this is not a conditional opcode and it is // not in an executing branch. if !vm.isBranchExecuting() && !pop.isConditional() { return nil } // Ensure all executed data push opcodes use the minimal encoding when // the minimal data verification flag is set. if vm.dstack.verifyMinimalData && vm.isBranchExecuting() && pop.opcode.value >= 0 && pop.opcode.value <= OP_PUSHDATA4 { if err := pop.checkMinimalDataPush(); err != nil { return err } } return pop.opcode.opfunc(pop, vm) } // disasm is a helper function to produce the output for DisasmPC and // DisasmScript. It produces the opcode prefixed by the program counter at the // provided position in the script. It does no error checking and leaves that // to the caller to provide a valid offset. func (vm *Engine) disasm(scriptIdx int, scriptOff int) string { return fmt.Sprintf("%02x:%04x: %s", scriptIdx, scriptOff, vm.scripts[scriptIdx][scriptOff].print(false)) } // validPC returns an error if the current script position is valid for // execution, nil otherwise. func (vm *Engine) validPC() error { if vm.scriptIdx >= len(vm.scripts) { return fmt.Errorf("past input scripts %v:%v %v:xxxx", vm.scriptIdx, vm.scriptOff, len(vm.scripts)) } if vm.scriptOff >= len(vm.scripts[vm.scriptIdx]) { return fmt.Errorf("past input scripts %v:%v %v:%04d", vm.scriptIdx, vm.scriptOff, vm.scriptIdx, len(vm.scripts[vm.scriptIdx])) } return nil } // curPC returns either the current script and offset, or an error if the // position isn't valid. func (vm *Engine) curPC() (script int, off int, err error) { err = vm.validPC() if err != nil { return 0, 0, err } return vm.scriptIdx, vm.scriptOff, nil } // DisasmPC returns the string for the disassembly of the opcode that will be // next to execute when Step() is called. func (vm *Engine) DisasmPC() (string, error) { scriptIdx, scriptOff, err := vm.curPC() if err != nil { return "", err } return vm.disasm(scriptIdx, scriptOff), nil } // DisasmScript returns the disassembly string for the script at the requested // offset index. Index 0 is the signature script and 1 is the public key // script. func (vm *Engine) DisasmScript(idx int) (string, error) { if idx >= len(vm.scripts) { return "", ErrStackInvalidIndex } var disstr string for i := range vm.scripts[idx] { disstr = disstr + vm.disasm(idx, i) + "\n" } return disstr, nil } // CheckErrorCondition returns nil if the running script has ended and was // successful, leaving a a true boolean on the stack. An error otherwise, // including if the script has not finished. func (vm *Engine) CheckErrorCondition(finalScript bool) error { // Check execution is actually done. When pc is past the end of script // array there are no more scripts to run. if vm.scriptIdx < len(vm.scripts) { return ErrStackScriptUnfinished } if finalScript && vm.hasFlag(ScriptVerifyCleanStack) && vm.dstack.Depth() != 1 { return ErrStackCleanStack } else if vm.dstack.Depth() < 1 { return ErrStackEmptyStack } v, err := vm.dstack.PopBool() if err != nil { return err } if v == false { // Log interesting data. log.Tracef("%v", newLogClosure(func() string { dis0, _ := vm.DisasmScript(0) dis1, _ := vm.DisasmScript(1) return fmt.Sprintf("scripts failed: script0: %s\n"+ "script1: %s", dis0, dis1) })) return ErrStackScriptFailed } return nil } // Step will execute the next instruction and move the program counter to the // next opcode in the script, or the next script if the current has ended. Step // will return true in the case that the last opcode was successfully executed. // // The result of calling Step or any other method is undefined if an error is // returned. func (vm *Engine) Step() (done bool, err error) { // Verify that it is pointing to a valid script address. err = vm.validPC() if err != nil { return true, err } opcode := &vm.scripts[vm.scriptIdx][vm.scriptOff] // Execute the opcode while taking into account several things such as // disabled opcodes, illegal opcodes, maximum allowed operations per // script, maximum script element sizes, and conditionals. err = vm.executeOpcode(opcode) if err != nil { return true, err } // The number of elements in the combination of the data and alt stacks // must not exceed the maximum number of stack elements allowed. if vm.dstack.Depth()+vm.astack.Depth() > maxStackSize { return false, ErrStackOverflow } // Prepare for next instruction. vm.scriptOff++ if vm.scriptOff >= len(vm.scripts[vm.scriptIdx]) { // Illegal to have an `if' that straddles two scripts. if err == nil && len(vm.condStack) != 0 { return false, ErrStackMissingEndif } // Alt stack doesn't persist. _ = vm.astack.DropN(vm.astack.Depth()) vm.numOps = 0 // number of ops is per script. vm.scriptOff = 0 if vm.scriptIdx == 0 && vm.bip16 { vm.scriptIdx++ vm.savedFirstStack = vm.GetStack() } else if vm.scriptIdx == 1 && vm.bip16 { // Put us past the end for CheckErrorCondition() vm.scriptIdx++ // Check script ran successfully and pull the script // out of the first stack and execute that. err := vm.CheckErrorCondition(false) if err != nil { return false, err } script := vm.savedFirstStack[len(vm.savedFirstStack)-1] pops, err := parseScript(script) if err != nil { return false, err } vm.scripts = append(vm.scripts, pops) // Set stack to be the stack from first script minus the // script itself vm.SetStack(vm.savedFirstStack[:len(vm.savedFirstStack)-1]) } else { vm.scriptIdx++ } // there are zero length scripts in the wild if vm.scriptIdx < len(vm.scripts) && vm.scriptOff >= len(vm.scripts[vm.scriptIdx]) { vm.scriptIdx++ } vm.lastCodeSep = 0 if vm.scriptIdx >= len(vm.scripts) { return true, nil } } return false, nil } // Execute will execute all scripts in the script engine and return either nil // for successful validation or an error if one occurred. func (vm *Engine) Execute() (err error) { done := false for done != true { log.Tracef("%v", newLogClosure(func() string { dis, err := vm.DisasmPC() if err != nil { return fmt.Sprintf("stepping (%v)", err) } return fmt.Sprintf("stepping %v", dis) })) done, err = vm.Step() if err != nil { return err } log.Tracef("%v", newLogClosure(func() string { var dstr, astr string // if we're tracing, dump the stacks. if vm.dstack.Depth() != 0 { dstr = "Stack:\n" + vm.dstack.String() } if vm.astack.Depth() != 0 { astr = "AltStack:\n" + vm.astack.String() } return dstr + astr })) } return vm.CheckErrorCondition(true) } // subScript returns the script since the last OP_CODESEPARATOR. func (vm *Engine) subScript() []parsedOpcode { return vm.scripts[vm.scriptIdx][vm.lastCodeSep:] } // checkHashTypeEncoding returns whether or not the passed hashtype adheres to // the strict encoding requirements if enabled. func (vm *Engine) checkHashTypeEncoding(hashType SigHashType) error { if !vm.hasFlag(ScriptVerifyStrictEncoding) { return nil } sigHashType := hashType & ^SigHashAnyOneCanPay if sigHashType < SigHashAll || sigHashType > SigHashSingle { return fmt.Errorf("invalid hashtype: 0x%x\n", hashType) } return nil } // checkPubKeyEncoding returns whether or not the passed public key adheres to // the strict encoding requirements if enabled. func (vm *Engine) checkPubKeyEncoding(pubKey []byte) error { if !vm.hasFlag(ScriptVerifyStrictEncoding) { return nil } if len(pubKey) == 33 && (pubKey[0] == 0x02 || pubKey[0] == 0x03) { // Compressed return nil } if len(pubKey) == 65 && pubKey[0] == 0x04 { // Uncompressed return nil } return ErrStackInvalidPubKey } // checkSignatureEncoding returns whether or not the passed signature adheres to // the strict encoding requirements if enabled. func (vm *Engine) checkSignatureEncoding(sig []byte) error { if !vm.hasFlag(ScriptVerifyDERSignatures) && !vm.hasFlag(ScriptVerifyLowS) && !vm.hasFlag(ScriptVerifyStrictEncoding) { return nil } // The format of a DER encoded signature is as follows: // // 0x30 0x02 0x02 // - 0x30 is the ASN.1 identifier for a sequence // - Total length is 1 byte and specifies length of all remaining data // - 0x02 is the ASN.1 identifier that specifies an integer follows // - Length of R is 1 byte and specifies how many bytes R occupies // - R is the arbitrary length big-endian encoded number which // represents the R value of the signature. DER encoding dictates // that the value must be encoded using the minimum possible number // of bytes. This implies the first byte can only be null if the // highest bit of the next byte is set in order to prevent it from // being interpreted as a negative number. // - 0x02 is once again the ASN.1 integer identifier // - Length of S is 1 byte and specifies how many bytes S occupies // - S is the arbitrary length big-endian encoded number which // represents the S value of the signature. The encoding rules are // identical as those for R. // Minimum length is when both numbers are 1 byte each. // 0x30 + <1-byte> + 0x02 + 0x01 + + 0x2 + 0x01 + if len(sig) < 8 { // Too short return fmt.Errorf("malformed signature: too short: %d < 8", len(sig)) } // Maximum length is when both numbers are 33 bytes each. It is 33 // bytes because a 256-bit integer requires 32 bytes and an additional // leading null byte might required if the high bit is set in the value. // 0x30 + <1-byte> + 0x02 + 0x21 + <33 bytes> + 0x2 + 0x21 + <33 bytes> if len(sig) > 72 { // Too long return fmt.Errorf("malformed signature: too long: %d > 72", len(sig)) } if sig[0] != 0x30 { // Wrong type return fmt.Errorf("malformed signature: format has wrong type: 0x%x", sig[0]) } if int(sig[1]) != len(sig)-2 { // Invalid length return fmt.Errorf("malformed signature: bad length: %d != %d", sig[1], len(sig)-2) } rLen := int(sig[3]) // Make sure S is inside the signature. if rLen+5 > len(sig) { return fmt.Errorf("malformed signature: S out of bounds") } sLen := int(sig[rLen+5]) // The length of the elements does not match the length of the // signature. if rLen+sLen+6 != len(sig) { return fmt.Errorf("malformed signature: invalid R length") } // R elements must be integers. if sig[2] != 0x02 { return fmt.Errorf("malformed signature: missing first integer marker") } // Zero-length integers are not allowed for R. if rLen == 0 { return fmt.Errorf("malformed signature: R length is zero") } // R must not be negative. if sig[4]&0x80 != 0 { return fmt.Errorf("malformed signature: R value is negative") } // Null bytes at the start of R are not allowed, unless R would // otherwise be interpreted as a negative number. if rLen > 1 && sig[4] == 0x00 && sig[5]&0x80 == 0 { return fmt.Errorf("malformed signature: invalid R value") } // S elements must be integers. if sig[rLen+4] != 0x02 { return fmt.Errorf("malformed signature: missing second integer marker") } // Zero-length integers are not allowed for S. if sLen == 0 { return fmt.Errorf("malformed signature: S length is zero") } // S must not be negative. if sig[rLen+6]&0x80 != 0 { return fmt.Errorf("malformed signature: S value is negative") } // Null bytes at the start of S are not allowed, unless S would // otherwise be interpreted as a negative number. if sLen > 1 && sig[rLen+6] == 0x00 && sig[rLen+7]&0x80 == 0 { return fmt.Errorf("malformed signature: invalid S value") } // Verify the S value is <= half the order of the curve. This check is // done because when it is higher, the complement modulo the order can // be used instead which is a shorter encoding by 1 byte. Further, // without enforcing this, it is possible to replace a signature in a // valid transaction with the complement while still being a valid // signature that verifies. This would result in changing the // transaction hash and thus is source of malleability. if vm.hasFlag(ScriptVerifyLowS) { sValue := new(big.Int).SetBytes(sig[rLen+6 : rLen+6+sLen]) if sValue.Cmp(halfOrder) > 0 { return ErrStackInvalidLowSSignature } } return nil } // getStack returns the contents of stack as a byte array bottom up func getStack(stack *stack) [][]byte { array := make([][]byte, stack.Depth()) for i := range array { // PeekByteArry can't fail due to overflow, already checked array[len(array)-i-1], _ = stack.PeekByteArray(int32(i)) } return array } // setStack sets the stack to the contents of the array where the last item in // the array is the top item in the stack. func setStack(stack *stack, data [][]byte) { // This can not error. Only errors are for invalid arguments. _ = stack.DropN(stack.Depth()) for i := range data { stack.PushByteArray(data[i]) } } // GetStack returns the contents of the primary stack as an array. where the // last item in the array is the top of the stack. func (vm *Engine) GetStack() [][]byte { return getStack(&vm.dstack) } // SetStack sets the contents of the primary stack to the contents of the // provided array where the last item in the array will be the top of the stack. func (vm *Engine) SetStack(data [][]byte) { setStack(&vm.dstack, data) } // GetAltStack returns the contents of the alternate stack as an array where the // last item in the array is the top of the stack. func (vm *Engine) GetAltStack() [][]byte { return getStack(&vm.astack) } // SetAltStack sets the contents of the alternate stack to the contents of the // provided array where the last item in the array will be the top of the stack. func (vm *Engine) SetAltStack(data [][]byte) { setStack(&vm.astack, data) } // NewEngine returns a new script engine for the provided public key script, // transaction, and input index. The flags modify the behavior of the script // engine according to the description provided by each flag. func NewEngine(scriptPubKey []byte, tx *wire.MsgTx, txIdx int, flags ScriptFlags, sigCache *SigCache) (*Engine, error) { // The provided transaction input index must refer to a valid input. if txIdx < 0 || txIdx >= len(tx.TxIn) { return nil, ErrInvalidIndex } scriptSig := tx.TxIn[txIdx].SignatureScript // The clean stack flag (ScriptVerifyCleanStack) is not allowed without // the pay-to-script-hash (P2SH) evaluation (ScriptBip16) flag. // // Recall that evaluating a P2SH script without the flag set results in // non-P2SH evaluation which leaves the P2SH inputs on the stack. Thus, // allowing the clean stack flag without the P2SH flag would make it // possible to have a situation where P2SH would not be a soft fork when // it should be. vm := Engine{flags: flags, sigCache: sigCache} if vm.hasFlag(ScriptVerifyCleanStack) && !vm.hasFlag(ScriptBip16) { return nil, ErrInvalidFlags } // The signature script must only contain data pushes when the // associated flag is set. if vm.hasFlag(ScriptVerifySigPushOnly) && !IsPushOnlyScript(scriptSig) { return nil, ErrStackNonPushOnly } // The engine stores the scripts in parsed form using a slice. This // allows multiple scripts to be executed in sequence. For example, // with a pay-to-script-hash transaction, there will be ultimately be // a third script to execute. scripts := [][]byte{scriptSig, scriptPubKey} vm.scripts = make([][]parsedOpcode, len(scripts)) for i, scr := range scripts { if len(scr) > maxScriptSize { return nil, ErrStackLongScript } var err error vm.scripts[i], err = parseScript(scr) if err != nil { return nil, err } } // Advance the program counter to the public key script if the signature // script is empty since there is nothing to execute for it in that // case. if len(scripts[0]) == 0 { vm.scriptIdx++ } if vm.hasFlag(ScriptBip16) && isScriptHash(vm.scripts[1]) { // Only accept input scripts that push data for P2SH. if !isPushOnly(vm.scripts[0]) { return nil, ErrStackP2SHNonPushOnly } vm.bip16 = true } if vm.hasFlag(ScriptVerifyMinimalData) { vm.dstack.verifyMinimalData = true vm.astack.verifyMinimalData = true } vm.tx = *tx vm.txIdx = txIdx return &vm, nil }