// Copyright (c) 2013-2015 The btcsuite developers // Use of this source code is governed by an ISC // license that can be found in the LICENSE file. package txscript import ( "errors" "fmt" "github.com/lbryio/lbcd/btcec" "github.com/lbryio/lbcd/chaincfg" "github.com/lbryio/lbcd/wire" btcutil "github.com/lbryio/lbcutil" ) // RawTxInWitnessSignature returns the serialized ECDA signature for the input // idx of the given transaction, with the hashType appended to it. This // function is identical to RawTxInSignature, however the signature generated // signs a new sighash digest defined in BIP0143. func RawTxInWitnessSignature(tx *wire.MsgTx, sigHashes *TxSigHashes, idx int, amt int64, subScript []byte, hashType SigHashType, key *btcec.PrivateKey) ([]byte, error) { parsedScript, err := parseScript(subScript) if err != nil { return nil, fmt.Errorf("cannot parse output script: %v", err) } hash, err := calcWitnessSignatureHash(parsedScript, sigHashes, hashType, tx, idx, amt) if err != nil { return nil, err } signature, err := key.Sign(hash) if err != nil { return nil, fmt.Errorf("cannot sign tx input: %s", err) } return append(signature.Serialize(), byte(hashType)), nil } // WitnessSignature creates an input witness stack for tx to spend BTC sent // from a previous output to the owner of privKey using the p2wkh script // template. The passed transaction must contain all the inputs and outputs as // dictated by the passed hashType. The signature generated observes the new // transaction digest algorithm defined within BIP0143. func WitnessSignature(tx *wire.MsgTx, sigHashes *TxSigHashes, idx int, amt int64, subscript []byte, hashType SigHashType, privKey *btcec.PrivateKey, compress bool) (wire.TxWitness, error) { sig, err := RawTxInWitnessSignature(tx, sigHashes, idx, amt, subscript, hashType, privKey) if err != nil { return nil, err } pk := (*btcec.PublicKey)(&privKey.PublicKey) var pkData []byte if compress { pkData = pk.SerializeCompressed() } else { pkData = pk.SerializeUncompressed() } // A witness script is actually a stack, so we return an array of byte // slices here, rather than a single byte slice. return wire.TxWitness{sig, pkData}, nil } // RawTxInSignature returns the serialized ECDSA signature for the input idx of // the given transaction, with hashType appended to it. func RawTxInSignature(tx *wire.MsgTx, idx int, subScript []byte, hashType SigHashType, key *btcec.PrivateKey) ([]byte, error) { hash, err := CalcSignatureHash(subScript, hashType, tx, idx) if err != nil { return nil, err } signature, err := key.Sign(hash) if err != nil { return nil, fmt.Errorf("cannot sign tx input: %s", err) } return append(signature.Serialize(), byte(hashType)), nil } // SignatureScript creates an input signature script for tx to spend BTC sent // from a previous output to the owner of privKey. tx must include all // transaction inputs and outputs, however txin scripts are allowed to be filled // or empty. The returned script is calculated to be used as the idx'th txin // sigscript for tx. subscript is the PkScript of the previous output being used // as the idx'th input. privKey is serialized in either a compressed or // uncompressed format based on compress. This format must match the same format // used to generate the payment address, or the script validation will fail. func SignatureScript(tx *wire.MsgTx, idx int, subscript []byte, hashType SigHashType, privKey *btcec.PrivateKey, compress bool) ([]byte, error) { sig, err := RawTxInSignature(tx, idx, subscript, hashType, privKey) if err != nil { return nil, err } pk := (*btcec.PublicKey)(&privKey.PublicKey) var pkData []byte if compress { pkData = pk.SerializeCompressed() } else { pkData = pk.SerializeUncompressed() } return NewScriptBuilder().AddData(sig).AddData(pkData).Script() } func p2pkSignatureScript(tx *wire.MsgTx, idx int, subScript []byte, hashType SigHashType, privKey *btcec.PrivateKey) ([]byte, error) { sig, err := RawTxInSignature(tx, idx, subScript, hashType, privKey) if err != nil { return nil, err } return NewScriptBuilder().AddData(sig).Script() } // signMultiSig signs as many of the outputs in the provided multisig script as // possible. It returns the generated script and a boolean if the script fulfils // the contract (i.e. nrequired signatures are provided). Since it is arguably // legal to not be able to sign any of the outputs, no error is returned. func signMultiSig(tx *wire.MsgTx, idx int, subScript []byte, hashType SigHashType, addresses []btcutil.Address, nRequired int, kdb KeyDB) ([]byte, bool) { // We start with a single OP_FALSE to work around the (now standard) // but in the reference implementation that causes a spurious pop at // the end of OP_CHECKMULTISIG. builder := NewScriptBuilder().AddOp(OP_FALSE) signed := 0 for _, addr := range addresses { key, _, err := kdb.GetKey(addr) if err != nil { continue } sig, err := RawTxInSignature(tx, idx, subScript, hashType, key) if err != nil { continue } builder.AddData(sig) signed++ if signed == nRequired { break } } script, _ := builder.Script() return script, signed == nRequired } func sign(chainParams *chaincfg.Params, tx *wire.MsgTx, idx int, subScript []byte, hashType SigHashType, kdb KeyDB, sdb ScriptDB) ([]byte, ScriptClass, []btcutil.Address, int, error) { subSubScript := StripClaimScriptPrefix(subScript) class, addresses, nrequired, err := ExtractPkScriptAddrs(subSubScript, chainParams) if err != nil { return nil, NonStandardTy, nil, 0, err } switch class { case PubKeyTy: // look up key for address key, _, err := kdb.GetKey(addresses[0]) if err != nil { return nil, class, nil, 0, err } script, err := p2pkSignatureScript(tx, idx, subScript, hashType, key) if err != nil { return nil, class, nil, 0, err } return script, class, addresses, nrequired, nil case PubKeyHashTy: // look up key for address key, compressed, err := kdb.GetKey(addresses[0]) if err != nil { return nil, class, nil, 0, err } script, err := SignatureScript(tx, idx, subScript, hashType, key, compressed) if err != nil { return nil, class, nil, 0, err } return script, class, addresses, nrequired, nil case ScriptHashTy: script, err := sdb.GetScript(addresses[0]) if err != nil { return nil, class, nil, 0, err } return script, class, addresses, nrequired, nil case MultiSigTy: script, _ := signMultiSig(tx, idx, subScript, hashType, addresses, nrequired, kdb) return script, class, addresses, nrequired, nil case NullDataTy: return nil, class, nil, 0, errors.New("can't sign NULLDATA transactions") default: return nil, class, nil, 0, errors.New("can't sign unknown transactions") } } // mergeScripts merges sigScript and prevScript assuming they are both // partial solutions for pkScript spending output idx of tx. class, addresses // and nrequired are the result of extracting the addresses from pkscript. // The return value is the best effort merging of the two scripts. Calling this // function with addresses, class and nrequired that do not match pkScript is // an error and results in undefined behaviour. func mergeScripts(chainParams *chaincfg.Params, tx *wire.MsgTx, idx int, pkScript []byte, class ScriptClass, addresses []btcutil.Address, nRequired int, sigScript, prevScript []byte) []byte { // TODO: the scripthash and multisig paths here are overly // inefficient in that they will recompute already known data. // some internal refactoring could probably make this avoid needless // extra calculations. switch class { case ScriptHashTy: // Remove the last push in the script and then recurse. // this could be a lot less inefficient. sigPops, err := parseScript(sigScript) if err != nil || len(sigPops) == 0 { return prevScript } prevPops, err := parseScript(prevScript) if err != nil || len(prevPops) == 0 { return sigScript } // assume that script in sigPops is the correct one, we just // made it. script := sigPops[len(sigPops)-1].data // We already know this information somewhere up the stack. class, addresses, nrequired, _ := ExtractPkScriptAddrs(script, chainParams) // regenerate scripts. sigScript, _ := unparseScript(sigPops) prevScript, _ := unparseScript(prevPops) // Merge mergedScript := mergeScripts(chainParams, tx, idx, script, class, addresses, nrequired, sigScript, prevScript) // Reappend the script and return the result. builder := NewScriptBuilder() builder.AddOps(mergedScript) builder.AddData(script) finalScript, _ := builder.Script() return finalScript case MultiSigTy: return mergeMultiSig(tx, idx, addresses, nRequired, pkScript, sigScript, prevScript) // It doesn't actually make sense to merge anything other than multiig // and scripthash (because it could contain multisig). Everything else // has either zero signature, can't be spent, or has a single signature // which is either present or not. The other two cases are handled // above. In the conflict case here we just assume the longest is // correct (this matches behaviour of the reference implementation). default: if len(sigScript) > len(prevScript) { return sigScript } return prevScript } } // mergeMultiSig combines the two signature scripts sigScript and prevScript // that both provide signatures for pkScript in output idx of tx. addresses // and nRequired should be the results from extracting the addresses from // pkScript. Since this function is internal only we assume that the arguments // have come from other functions internally and thus are all consistent with // each other, behaviour is undefined if this contract is broken. func mergeMultiSig(tx *wire.MsgTx, idx int, addresses []btcutil.Address, nRequired int, pkScript, sigScript, prevScript []byte) []byte { // This is an internal only function and we already parsed this script // as ok for multisig (this is how we got here), so if this fails then // all assumptions are broken and who knows which way is up? pkPops, _ := parseScript(pkScript) sigPops, err := parseScript(sigScript) if err != nil || len(sigPops) == 0 { return prevScript } prevPops, err := parseScript(prevScript) if err != nil || len(prevPops) == 0 { return sigScript } // Convenience function to avoid duplication. extractSigs := func(pops []parsedOpcode, sigs [][]byte) [][]byte { for _, pop := range pops { if len(pop.data) != 0 { sigs = append(sigs, pop.data) } } return sigs } possibleSigs := make([][]byte, 0, len(sigPops)+len(prevPops)) possibleSigs = extractSigs(sigPops, possibleSigs) possibleSigs = extractSigs(prevPops, possibleSigs) // Now we need to match the signatures to pubkeys, the only real way to // do that is to try to verify them all and match it to the pubkey // that verifies it. we then can go through the addresses in order // to build our script. Anything that doesn't parse or doesn't verify we // throw away. addrToSig := make(map[string][]byte) sigLoop: for _, sig := range possibleSigs { // can't have a valid signature that doesn't at least have a // hashtype, in practise it is even longer than this. but // that'll be checked next. if len(sig) < 1 { continue } tSig := sig[:len(sig)-1] hashType := SigHashType(sig[len(sig)-1]) pSig, err := btcec.ParseDERSignature(tSig, btcec.S256()) if err != nil { continue } // We have to do this each round since hash types may vary // between signatures and so the hash will vary. We can, // however, assume no sigs etc are in the script since that // would make the transaction nonstandard and thus not // MultiSigTy, so we just need to hash the full thing. hash := calcSignatureHash(pkPops, hashType, tx, idx) for _, addr := range addresses { // All multisig addresses should be pubkey addresses // it is an error to call this internal function with // bad input. pkaddr := addr.(*btcutil.AddressPubKey) pubKey := pkaddr.PubKey() // If it matches we put it in the map. We only // can take one signature per public key so if we // already have one, we can throw this away. if pSig.Verify(hash, pubKey) { aStr := addr.EncodeAddress() if _, ok := addrToSig[aStr]; !ok { addrToSig[aStr] = sig } continue sigLoop } } } // Extra opcode to handle the extra arg consumed (due to previous bugs // in the reference implementation). builder := NewScriptBuilder().AddOp(OP_FALSE) doneSigs := 0 // This assumes that addresses are in the same order as in the script. for _, addr := range addresses { sig, ok := addrToSig[addr.EncodeAddress()] if !ok { continue } builder.AddData(sig) doneSigs++ if doneSigs == nRequired { break } } // padding for missing ones. for i := doneSigs; i < nRequired; i++ { builder.AddOp(OP_0) } script, _ := builder.Script() return script } // KeyDB is an interface type provided to SignTxOutput, it encapsulates // any user state required to get the private keys for an address. type KeyDB interface { GetKey(btcutil.Address) (*btcec.PrivateKey, bool, error) } // KeyClosure implements KeyDB with a closure. type KeyClosure func(btcutil.Address) (*btcec.PrivateKey, bool, error) // GetKey implements KeyDB by returning the result of calling the closure. func (kc KeyClosure) GetKey(address btcutil.Address) (*btcec.PrivateKey, bool, error) { return kc(address) } // ScriptDB is an interface type provided to SignTxOutput, it encapsulates any // user state required to get the scripts for an pay-to-script-hash address. type ScriptDB interface { GetScript(btcutil.Address) ([]byte, error) } // ScriptClosure implements ScriptDB with a closure. type ScriptClosure func(btcutil.Address) ([]byte, error) // GetScript implements ScriptDB by returning the result of calling the closure. func (sc ScriptClosure) GetScript(address btcutil.Address) ([]byte, error) { return sc(address) } // SignTxOutput signs output idx of the given tx to resolve the script given in // pkScript with a signature type of hashType. Any keys required will be // looked up by calling getKey() with the string of the given address. // Any pay-to-script-hash signatures will be similarly looked up by calling // getScript. If previousScript is provided then the results in previousScript // will be merged in a type-dependent manner with the newly generated. // signature script. func SignTxOutput(chainParams *chaincfg.Params, tx *wire.MsgTx, idx int, pkScript []byte, hashType SigHashType, kdb KeyDB, sdb ScriptDB, previousScript []byte) ([]byte, error) { sigScript, class, addresses, nrequired, err := sign(chainParams, tx, idx, pkScript, hashType, kdb, sdb) if err != nil { return nil, err } if class == ScriptHashTy { // TODO keep the sub addressed and pass down to merge. realSigScript, _, _, _, err := sign(chainParams, tx, idx, sigScript, hashType, kdb, sdb) if err != nil { return nil, err } // Append the p2sh script as the last push in the script. builder := NewScriptBuilder() builder.AddOps(realSigScript) builder.AddData(sigScript) sigScript, _ = builder.Script() // TODO keep a copy of the script for merging. } // Merge scripts. with any previous data, if any. mergedScript := mergeScripts(chainParams, tx, idx, pkScript, class, addresses, nrequired, sigScript, previousScript) return mergedScript, nil }