// Copyright (c) 2013-2015 The btcsuite developers // Use of this source code is governed by an ISC // license that can be found in the LICENSE file. package main import ( "crypto/rand" "encoding/binary" "errors" "fmt" "math" mrand "math/rand" "net" "runtime" "strconv" "strings" "sync" "sync/atomic" "time" "github.com/btcsuite/btcd/addrmgr" "github.com/btcsuite/btcd/blockchain" "github.com/btcsuite/btcd/chaincfg" "github.com/btcsuite/btcd/database" "github.com/btcsuite/btcd/peer" "github.com/btcsuite/btcd/txscript" "github.com/btcsuite/btcd/wire" "github.com/btcsuite/btcutil" "github.com/btcsuite/btcutil/bloom" ) const ( // These constants are used by the DNS seed code to pick a random last // seen time. secondsIn3Days int32 = 24 * 60 * 60 * 3 secondsIn4Days int32 = 24 * 60 * 60 * 4 ) const ( // defaultServices describes the default services that are supported by // the server. defaultServices = wire.SFNodeNetwork | wire.SFNodeBloom // defaultMaxOutbound is the default number of max outbound peers. defaultMaxOutbound = 8 // connectionRetryInterval is the base amount of time to wait in between // retries when connecting to persistent peers. It is adjusted by the // number of retries such that there is a retry backoff. connectionRetryInterval = time.Second * 10 // maxConnectionRetryInterval is the max amount of time retrying of a // persistent peer is allowed to grow to. This is necessary since the // retry logic uses a backoff mechanism which increases the interval // base done the number of retries that have been done. maxConnectionRetryInterval = time.Minute * 5 ) var ( // userAgentName is the user agent name and is used to help identify // ourselves to other bitcoin peers. userAgentName = "btcd" // userAgentVersion is the user agent version and is used to help // identify ourselves to other bitcoin peers. userAgentVersion = fmt.Sprintf("%d.%d.%d", appMajor, appMinor, appPatch) ) // broadcastMsg provides the ability to house a bitcoin message to be broadcast // to all connected peers except specified excluded peers. type broadcastMsg struct { message wire.Message excludePeers []*serverPeer } // broadcastInventoryAdd is a type used to declare that the InvVect it contains // needs to be added to the rebroadcast map type broadcastInventoryAdd relayMsg // broadcastInventoryDel is a type used to declare that the InvVect it contains // needs to be removed from the rebroadcast map type broadcastInventoryDel *wire.InvVect // relayMsg packages an inventory vector along with the newly discovered // inventory so the relay has access to that information. type relayMsg struct { invVect *wire.InvVect data interface{} } // updatePeerHeightsMsg is a message sent from the blockmanager to the server // after a new block has been accepted. The purpose of the message is to update // the heights of peers that were known to announce the block before we // connected it to the main chain or recognized it as an orphan. With these // updates, peer heights will be kept up to date, allowing for fresh data when // selecting sync peer candidacy. type updatePeerHeightsMsg struct { newSha *wire.ShaHash newHeight int32 originPeer *serverPeer } // peerState maintains state of inbound, persistent, outbound peers as well // as banned peers and outbound groups. type peerState struct { pendingPeers map[string]*serverPeer peers map[int32]*serverPeer outboundPeers map[int32]*serverPeer persistentPeers map[int32]*serverPeer banned map[string]time.Time outboundGroups map[string]int maxOutboundPeers int } // Count returns the count of all known peers. func (ps *peerState) Count() int { return len(ps.peers) + len(ps.outboundPeers) + len(ps.persistentPeers) } // OutboundCount returns the count of known outbound peers. func (ps *peerState) OutboundCount() int { return len(ps.outboundPeers) + len(ps.persistentPeers) } // NeedMoreOutbound returns true if more outbound peers are required. func (ps *peerState) NeedMoreOutbound() bool { return ps.OutboundCount() < ps.maxOutboundPeers && ps.Count() < cfg.MaxPeers } // NeedMoreTries returns true if more outbound peer attempts can be tried. func (ps *peerState) NeedMoreTries() bool { return len(ps.pendingPeers) < 2*(ps.maxOutboundPeers-ps.OutboundCount()) } // forAllOutboundPeers is a helper function that runs closure on all outbound // peers known to peerState. func (ps *peerState) forAllOutboundPeers(closure func(sp *serverPeer)) { for _, e := range ps.outboundPeers { closure(e) } for _, e := range ps.persistentPeers { closure(e) } } // forPendingPeers is a helper function that runs closure on all pending peers // known to peerState. func (ps *peerState) forPendingPeers(closure func(sp *serverPeer)) { for _, e := range ps.pendingPeers { closure(e) } } // forAllPeers is a helper function that runs closure on all peers known to // peerState. func (ps *peerState) forAllPeers(closure func(sp *serverPeer)) { for _, e := range ps.peers { closure(e) } ps.forAllOutboundPeers(closure) } // server provides a bitcoin server for handling communications to and from // bitcoin peers. type server struct { listeners []net.Listener chainParams *chaincfg.Params started int32 // atomic shutdown int32 // atomic shutdownSched int32 // atomic bytesMutex sync.Mutex // For the following two fields. bytesReceived uint64 // Total bytes received from all peers since start. bytesSent uint64 // Total bytes sent by all peers since start. addrManager *addrmgr.AddrManager sigCache *txscript.SigCache rpcServer *rpcServer blockManager *blockManager addrIndexer *addrIndexer txMemPool *txMemPool cpuMiner *CPUMiner modifyRebroadcastInv chan interface{} pendingPeers chan *serverPeer newPeers chan *serverPeer donePeers chan *serverPeer banPeers chan *serverPeer retryPeers chan *serverPeer wakeup chan struct{} query chan interface{} relayInv chan relayMsg broadcast chan broadcastMsg peerHeightsUpdate chan updatePeerHeightsMsg wg sync.WaitGroup quit chan struct{} nat NAT db database.Db timeSource blockchain.MedianTimeSource services wire.ServiceFlag } // serverPeer extends the peer to maintain state shared by the server and // the blockmanager. type serverPeer struct { *peer.Peer server *server persistent bool continueHash *wire.ShaHash relayMtx sync.Mutex disableRelayTx bool requestQueue []*wire.InvVect requestedTxns map[wire.ShaHash]struct{} requestedBlocks map[wire.ShaHash]struct{} filter *bloom.Filter knownAddresses map[string]struct{} quit chan struct{} // The following chans are used to sync blockmanager and server. txProcessed chan struct{} blockProcessed chan struct{} } // newServerPeer returns a new serverPeer instance. The peer needs to be set by // the caller. func newServerPeer(s *server, isPersistent bool) *serverPeer { return &serverPeer{ server: s, persistent: isPersistent, requestedTxns: make(map[wire.ShaHash]struct{}), requestedBlocks: make(map[wire.ShaHash]struct{}), filter: bloom.LoadFilter(nil), knownAddresses: make(map[string]struct{}), quit: make(chan struct{}), txProcessed: make(chan struct{}, 1), blockProcessed: make(chan struct{}, 1), } } // addKnownAddresses adds the given addresses to the set of known addreses to // the peer to prevent sending duplicate addresses. func (sp *serverPeer) addKnownAddresses(addresses []*wire.NetAddress) { for _, na := range addresses { sp.knownAddresses[addrmgr.NetAddressKey(na)] = struct{}{} } } // addressKnown true if the given address is already known to the peer. func (sp *serverPeer) addressKnown(na *wire.NetAddress) bool { _, exists := sp.knownAddresses[addrmgr.NetAddressKey(na)] return exists } // setDisableRelayTx toggles relaying of transactions for the given peer. // It is safe for concurrent access. func (sp *serverPeer) setDisableRelayTx(disable bool) { sp.relayMtx.Lock() sp.disableRelayTx = disable sp.relayMtx.Unlock() } // relayTxDisabled returns whether or not relaying of transactions for the given // peer is disabled. // It is safe for concurrent access. func (sp *serverPeer) relayTxDisabled() bool { sp.relayMtx.Lock() defer sp.relayMtx.Unlock() return sp.disableRelayTx } // pushAddrMsg sends an addr message to the connected peer using the provided // addresses. func (sp *serverPeer) pushAddrMsg(addresses []*wire.NetAddress) { // Filter addresses already known to the peer. addrs := make([]*wire.NetAddress, 0, len(addresses)) for _, addr := range addresses { if !sp.addressKnown(addr) { addrs = append(addrs, addr) } } known, err := sp.PushAddrMsg(addrs) if err != nil { peerLog.Errorf("Can't push address message to %s: %v", sp.Peer, err) sp.Disconnect() return } sp.addKnownAddresses(known) } // OnVersion is invoked when a peer receives a version bitcoin message // and is used to negotiate the protocol version details as well as kick start // the communications. func (sp *serverPeer) OnVersion(p *peer.Peer, msg *wire.MsgVersion) { // Add the remote peer time as a sample for creating an offset against // the local clock to keep the network time in sync. sp.server.timeSource.AddTimeSample(p.Addr(), msg.Timestamp) // Signal the block manager this peer is a new sync candidate. sp.server.blockManager.NewPeer(sp) // Choose whether or not to relay transactions before a filter command // is received. sp.setDisableRelayTx(msg.DisableRelayTx) // Update the address manager and request known addresses from the // remote peer for outbound connections. This is skipped when running // on the simulation test network since it is only intended to connect // to specified peers and actively avoids advertising and connecting to // discovered peers. if !cfg.SimNet { addrManager := sp.server.addrManager // Outbound connections. if !p.Inbound() { // TODO(davec): Only do this if not doing the initial block // download and the local address is routable. if !cfg.DisableListen /* && isCurrent? */ { // Get address that best matches. lna := addrManager.GetBestLocalAddress(p.NA()) if addrmgr.IsRoutable(lna) { // Filter addresses the peer already knows about. addresses := []*wire.NetAddress{lna} sp.pushAddrMsg(addresses) } } // Request known addresses if the server address manager needs // more and the peer has a protocol version new enough to // include a timestamp with addresses. hasTimestamp := p.ProtocolVersion() >= wire.NetAddressTimeVersion if addrManager.NeedMoreAddresses() && hasTimestamp { p.QueueMessage(wire.NewMsgGetAddr(), nil) } // Mark the address as a known good address. addrManager.Good(p.NA()) } else { // A peer might not be advertising the same address that it // actually connected from. One example of why this can happen // is with NAT. Only add the address to the address manager if // the addresses agree. if addrmgr.NetAddressKey(&msg.AddrMe) == addrmgr.NetAddressKey(p.NA()) { addrManager.AddAddress(p.NA(), p.NA()) addrManager.Good(p.NA()) } } } // Add valid peer to the server. sp.server.AddPeer(sp) } // OnMemPool is invoked when a peer receives a mempool bitcoin message. // It creates and sends an inventory message with the contents of the memory // pool up to the maximum inventory allowed per message. When the peer has a // bloom filter loaded, the contents are filtered accordingly. func (sp *serverPeer) OnMemPool(p *peer.Peer, msg *wire.MsgMemPool) { // Generate inventory message with the available transactions in the // transaction memory pool. Limit it to the max allowed inventory // per message. The the NewMsgInvSizeHint function automatically limits // the passed hint to the maximum allowed, so it's safe to pass it // without double checking it here. txMemPool := sp.server.txMemPool txDescs := txMemPool.TxDescs() invMsg := wire.NewMsgInvSizeHint(uint(len(txDescs))) for i, txDesc := range txDescs { // Another thread might have removed the transaction from the // pool since the initial query. hash := txDesc.Tx.Sha() if !txMemPool.IsTransactionInPool(hash) { continue } // Either add all transactions when there is no bloom filter, // or only the transactions that match the filter when there is // one. if !sp.filter.IsLoaded() || sp.filter.MatchTxAndUpdate(txDesc.Tx) { iv := wire.NewInvVect(wire.InvTypeTx, hash) invMsg.AddInvVect(iv) if i+1 >= wire.MaxInvPerMsg { break } } } // Send the inventory message if there is anything to send. if len(invMsg.InvList) > 0 { p.QueueMessage(invMsg, nil) } } // OnTx is invoked when a peer receives a tx bitcoin message. It blocks // until the bitcoin transaction has been fully processed. Unlock the block // handler this does not serialize all transactions through a single thread // transactions don't rely on the previous one in a linear fashion like blocks. func (sp *serverPeer) OnTx(p *peer.Peer, msg *wire.MsgTx) { // Add the transaction to the known inventory for the peer. // Convert the raw MsgTx to a btcutil.Tx which provides some convenience // methods and things such as hash caching. tx := btcutil.NewTx(msg) iv := wire.NewInvVect(wire.InvTypeTx, tx.Sha()) p.AddKnownInventory(iv) // Queue the transaction up to be handled by the block manager and // intentionally block further receives until the transaction is fully // processed and known good or bad. This helps prevent a malicious peer // from queueing up a bunch of bad transactions before disconnecting (or // being disconnected) and wasting memory. sp.server.blockManager.QueueTx(tx, sp) <-sp.txProcessed } // OnBlock is invoked when a peer receives a block bitcoin message. It // blocks until the bitcoin block has been fully processed. func (sp *serverPeer) OnBlock(p *peer.Peer, msg *wire.MsgBlock, buf []byte) { // Convert the raw MsgBlock to a btcutil.Block which provides some // convenience methods and things such as hash caching. block := btcutil.NewBlockFromBlockAndBytes(msg, buf) // Add the block to the known inventory for the peer. iv := wire.NewInvVect(wire.InvTypeBlock, block.Sha()) p.AddKnownInventory(iv) // Queue the block up to be handled by the block // manager and intentionally block further receives // until the bitcoin block is fully processed and known // good or bad. This helps prevent a malicious peer // from queueing up a bunch of bad blocks before // disconnecting (or being disconnected) and wasting // memory. Additionally, this behavior is depended on // by at least the block acceptance test tool as the // reference implementation processes blocks in the same // thread and therefore blocks further messages until // the bitcoin block has been fully processed. sp.server.blockManager.QueueBlock(block, sp) <-sp.blockProcessed } // OnInv is invoked when a peer receives an inv bitcoin message and is // used to examine the inventory being advertised by the remote peer and react // accordingly. We pass the message down to blockmanager which will call // QueueMessage with any appropriate responses. func (sp *serverPeer) OnInv(p *peer.Peer, msg *wire.MsgInv) { sp.server.blockManager.QueueInv(msg, sp) } // OnHeaders is invoked when a peer receives a headers bitcoin // message. The message is passed down to the block manager. func (sp *serverPeer) OnHeaders(p *peer.Peer, msg *wire.MsgHeaders) { sp.server.blockManager.QueueHeaders(msg, sp) } // handleGetData is invoked when a peer receives a getdata bitcoin message and // is used to deliver block and transaction information. func (sp *serverPeer) OnGetData(p *peer.Peer, msg *wire.MsgGetData) { numAdded := 0 notFound := wire.NewMsgNotFound() // We wait on this wait channel periodically to prevent queueing // far more data than we can send in a reasonable time, wasting memory. // The waiting occurs after the database fetch for the next one to // provide a little pipelining. var waitChan chan struct{} doneChan := make(chan struct{}, 1) for i, iv := range msg.InvList { var c chan struct{} // If this will be the last message we send. if i == len(msg.InvList)-1 && len(notFound.InvList) == 0 { c = doneChan } else if (i+1)%3 == 0 { // Buffered so as to not make the send goroutine block. c = make(chan struct{}, 1) } var err error switch iv.Type { case wire.InvTypeTx: err = sp.server.pushTxMsg(sp, &iv.Hash, c, waitChan) case wire.InvTypeBlock: err = sp.server.pushBlockMsg(sp, &iv.Hash, c, waitChan) case wire.InvTypeFilteredBlock: err = sp.server.pushMerkleBlockMsg(sp, &iv.Hash, c, waitChan) default: peerLog.Warnf("Unknown type in inventory request %d", iv.Type) continue } if err != nil { notFound.AddInvVect(iv) // When there is a failure fetching the final entry // and the done channel was sent in due to there // being no outstanding not found inventory, consume // it here because there is now not found inventory // that will use the channel momentarily. if i == len(msg.InvList)-1 && c != nil { <-c } } numAdded++ waitChan = c } if len(notFound.InvList) != 0 { p.QueueMessage(notFound, doneChan) } // Wait for messages to be sent. We can send quite a lot of data at this // point and this will keep the peer busy for a decent amount of time. // We don't process anything else by them in this time so that we // have an idea of when we should hear back from them - else the idle // timeout could fire when we were only half done sending the blocks. if numAdded > 0 { <-doneChan } } // OnGetBlocks is invoked when a peer receives a getblocks bitcoin // message. func (sp *serverPeer) OnGetBlocks(p *peer.Peer, msg *wire.MsgGetBlocks) { db := sp.server.db // Return all block hashes to the latest one (up to max per message) if // no stop hash was specified. // Attempt to find the ending index of the stop hash if specified. endIdx := database.AllShas if !msg.HashStop.IsEqual(&zeroHash) { height, err := db.FetchBlockHeightBySha(&msg.HashStop) if err == nil { endIdx = height + 1 } } // Find the most recent known block based on the block locator. // Use the block after the genesis block if no other blocks in the // provided locator are known. This does mean the client will start // over with the genesis block if unknown block locators are provided. // This mirrors the behavior in the reference implementation. startIdx := int32(1) for _, hash := range msg.BlockLocatorHashes { height, err := db.FetchBlockHeightBySha(hash) if err == nil { // Start with the next hash since we know this one. startIdx = height + 1 break } } // Don't attempt to fetch more than we can put into a single message. autoContinue := false if endIdx-startIdx > wire.MaxBlocksPerMsg { endIdx = startIdx + wire.MaxBlocksPerMsg autoContinue = true } // Generate inventory message. // // The FetchBlockBySha call is limited to a maximum number of hashes // per invocation. Since the maximum number of inventory per message // might be larger, call it multiple times with the appropriate indices // as needed. invMsg := wire.NewMsgInv() for start := startIdx; start < endIdx; { // Fetch the inventory from the block database. hashList, err := db.FetchHeightRange(start, endIdx) if err != nil { peerLog.Warnf("Block lookup failed: %v", err) return } // The database did not return any further hashes. Break out of // the loop now. if len(hashList) == 0 { break } // Add block inventory to the message. for _, hash := range hashList { hashCopy := hash iv := wire.NewInvVect(wire.InvTypeBlock, &hashCopy) invMsg.AddInvVect(iv) } start += int32(len(hashList)) } // Send the inventory message if there is anything to send. if len(invMsg.InvList) > 0 { invListLen := len(invMsg.InvList) if autoContinue && invListLen == wire.MaxBlocksPerMsg { // Intentionally use a copy of the final hash so there // is not a reference into the inventory slice which // would prevent the entire slice from being eligible // for GC as soon as it's sent. continueHash := invMsg.InvList[invListLen-1].Hash sp.continueHash = &continueHash } p.QueueMessage(invMsg, nil) } } // OnGetHeaders is invoked when a peer receives a getheaders bitcoin // message. func (sp *serverPeer) OnGetHeaders(p *peer.Peer, msg *wire.MsgGetHeaders) { // Ignore getheaders requests if not in sync. if !sp.server.blockManager.IsCurrent() { return } db := sp.server.db // Attempt to look up the height of the provided stop hash. endIdx := database.AllShas height, err := db.FetchBlockHeightBySha(&msg.HashStop) if err == nil { endIdx = height + 1 } // There are no block locators so a specific header is being requested // as identified by the stop hash. if len(msg.BlockLocatorHashes) == 0 { // No blocks with the stop hash were found so there is nothing // to do. Just return. This behavior mirrors the reference // implementation. if endIdx == database.AllShas { return } // Fetch and send the requested block header. header, err := db.FetchBlockHeaderBySha(&msg.HashStop) if err != nil { peerLog.Warnf("Lookup of known block hash failed: %v", err) return } headersMsg := wire.NewMsgHeaders() headersMsg.AddBlockHeader(header) p.QueueMessage(headersMsg, nil) return } // Find the most recent known block based on the block locator. // Use the block after the genesis block if no other blocks in the // provided locator are known. This does mean the client will start // over with the genesis block if unknown block locators are provided. // This mirrors the behavior in the reference implementation. startIdx := int32(1) for _, hash := range msg.BlockLocatorHashes { height, err := db.FetchBlockHeightBySha(hash) if err == nil { // Start with the next hash since we know this one. startIdx = height + 1 break } } // Don't attempt to fetch more than we can put into a single message. if endIdx-startIdx > wire.MaxBlockHeadersPerMsg { endIdx = startIdx + wire.MaxBlockHeadersPerMsg } // Generate headers message and send it. // // The FetchHeightRange call is limited to a maximum number of hashes // per invocation. Since the maximum number of headers per message // might be larger, call it multiple times with the appropriate indices // as needed. headersMsg := wire.NewMsgHeaders() for start := startIdx; start < endIdx; { // Fetch the inventory from the block database. hashList, err := db.FetchHeightRange(start, endIdx) if err != nil { peerLog.Warnf("Header lookup failed: %v", err) return } // The database did not return any further hashes. Break out of // the loop now. if len(hashList) == 0 { break } // Add headers to the message. for _, hash := range hashList { header, err := db.FetchBlockHeaderBySha(&hash) if err != nil { peerLog.Warnf("Lookup of known block hash "+ "failed: %v", err) continue } headersMsg.AddBlockHeader(header) } // Start at the next block header after the latest one on the // next loop iteration. start += int32(len(hashList)) } p.QueueMessage(headersMsg, nil) } // OnFilterAdd is invoked when a peer receives a filteradd bitcoin // message and is used by remote peers to add data to an already loaded bloom // filter. The peer will be disconnected if a filter is not loaded when this // message is received. func (sp *serverPeer) OnFilterAdd(p *peer.Peer, msg *wire.MsgFilterAdd) { if sp.filter.IsLoaded() { peerLog.Debugf("%s sent a filteradd request with no filter "+ "loaded -- disconnecting", p) p.Disconnect() return } sp.filter.Add(msg.Data) } // OnFilterClear is invoked when a peer receives a filterclear bitcoin // message and is used by remote peers to clear an already loaded bloom filter. // The peer will be disconnected if a filter is not loaded when this message is // received. func (sp *serverPeer) OnFilterClear(p *peer.Peer, msg *wire.MsgFilterClear) { if !sp.filter.IsLoaded() { peerLog.Debugf("%s sent a filterclear request with no "+ "filter loaded -- disconnecting", p) p.Disconnect() return } sp.filter.Unload() } // OnFilterLoad is invoked when a peer receives a filterload bitcoin // message and it used to load a bloom filter that should be used for // delivering merkle blocks and associated transactions that match the filter. func (sp *serverPeer) OnFilterLoad(p *peer.Peer, msg *wire.MsgFilterLoad) { sp.setDisableRelayTx(false) sp.filter.Reload(msg) } // OnGetAddr is invoked when a peer receives a getaddr bitcoin message // and is used to provide the peer with known addresses from the address // manager. func (sp *serverPeer) OnGetAddr(p *peer.Peer, msg *wire.MsgGetAddr) { // Don't return any addresses when running on the simulation test // network. This helps prevent the network from becoming another // public test network since it will not be able to learn about other // peers that have not specifically been provided. if cfg.SimNet { return } // Do not accept getaddr requests from outbound peers. This reduces // fingerprinting attacks. if !p.Inbound() { return } // Get the current known addresses from the address manager. addrCache := sp.server.addrManager.AddressCache() // Push the addresses. sp.pushAddrMsg(addrCache) } // OnAddr is invoked when a peer receives an addr bitcoin message and is // used to notify the server about advertised addresses. func (sp *serverPeer) OnAddr(p *peer.Peer, msg *wire.MsgAddr) { // Ignore addresses when running on the simulation test network. This // helps prevent the network from becoming another public test network // since it will not be able to learn about other peers that have not // specifically been provided. if cfg.SimNet { return } // Ignore old style addresses which don't include a timestamp. if p.ProtocolVersion() < wire.NetAddressTimeVersion { return } // A message that has no addresses is invalid. if len(msg.AddrList) == 0 { peerLog.Errorf("Command [%s] from %s does not contain any addresses", msg.Command(), p) p.Disconnect() return } for _, na := range msg.AddrList { // Don't add more address if we're disconnecting. if !p.Connected() { return } // Set the timestamp to 5 days ago if it's more than 24 hours // in the future so this address is one of the first to be // removed when space is needed. now := time.Now() if na.Timestamp.After(now.Add(time.Minute * 10)) { na.Timestamp = now.Add(-1 * time.Hour * 24 * 5) } // Add address to known addresses for this peer. sp.addKnownAddresses([]*wire.NetAddress{na}) } // Add addresses to server address manager. The address manager handles // the details of things such as preventing duplicate addresses, max // addresses, and last seen updates. // XXX bitcoind gives a 2 hour time penalty here, do we want to do the // same? sp.server.addrManager.AddAddresses(msg.AddrList, p.NA()) } // OnRead is invoked when a peer receives a message and it is used to update // the bytes received by the server. func (sp *serverPeer) OnRead(p *peer.Peer, bytesRead int, msg wire.Message, err error) { sp.server.AddBytesReceived(uint64(bytesRead)) } // OnWrite is invoked when a peer sends a message and it is used to update // the bytes sent by the server. func (sp *serverPeer) OnWrite(p *peer.Peer, bytesWritten int, msg wire.Message, err error) { sp.server.AddBytesSent(uint64(bytesWritten)) } // randomUint16Number returns a random uint16 in a specified input range. Note // that the range is in zeroth ordering; if you pass it 1800, you will get // values from 0 to 1800. func randomUint16Number(max uint16) uint16 { // In order to avoid modulo bias and ensure every possible outcome in // [0, max) has equal probability, the random number must be sampled // from a random source that has a range limited to a multiple of the // modulus. var randomNumber uint16 var limitRange = (math.MaxUint16 / max) * max for { binary.Read(rand.Reader, binary.LittleEndian, &randomNumber) if randomNumber < limitRange { return (randomNumber % max) } } } // AddRebroadcastInventory adds 'iv' to the list of inventories to be // rebroadcasted at random intervals until they show up in a block. func (s *server) AddRebroadcastInventory(iv *wire.InvVect, data interface{}) { // Ignore if shutting down. if atomic.LoadInt32(&s.shutdown) != 0 { return } s.modifyRebroadcastInv <- broadcastInventoryAdd{invVect: iv, data: data} } // RemoveRebroadcastInventory removes 'iv' from the list of items to be // rebroadcasted if present. func (s *server) RemoveRebroadcastInventory(iv *wire.InvVect) { // Ignore if shutting down. if atomic.LoadInt32(&s.shutdown) != 0 { return } s.modifyRebroadcastInv <- broadcastInventoryDel(iv) } // pushTxMsg sends a tx message for the provided transaction hash to the // connected peer. An error is returned if the transaction hash is not known. func (s *server) pushTxMsg(sp *serverPeer, sha *wire.ShaHash, doneChan, waitChan chan struct{}) error { // Attempt to fetch the requested transaction from the pool. A // call could be made to check for existence first, but simply trying // to fetch a missing transaction results in the same behavior. tx, err := s.txMemPool.FetchTransaction(sha) if err != nil { peerLog.Tracef("Unable to fetch tx %v from transaction "+ "pool: %v", sha, err) if doneChan != nil { doneChan <- struct{}{} } return err } // Once we have fetched data wait for any previous operation to finish. if waitChan != nil { <-waitChan } sp.QueueMessage(tx.MsgTx(), doneChan) return nil } // pushBlockMsg sends a block message for the provided block hash to the // connected peer. An error is returned if the block hash is not known. func (s *server) pushBlockMsg(sp *serverPeer, sha *wire.ShaHash, doneChan, waitChan chan struct{}) error { blk, err := s.db.FetchBlockBySha(sha) if err != nil { peerLog.Tracef("Unable to fetch requested block sha %v: %v", sha, err) if doneChan != nil { doneChan <- struct{}{} } return err } // Once we have fetched data wait for any previous operation to finish. if waitChan != nil { <-waitChan } // We only send the channel for this message if we aren't sending // an inv straight after. var dc chan struct{} continueHash := sp.continueHash sendInv := continueHash != nil && continueHash.IsEqual(sha) if !sendInv { dc = doneChan } sp.QueueMessage(blk.MsgBlock(), dc) // When the peer requests the final block that was advertised in // response to a getblocks message which requested more blocks than // would fit into a single message, send it a new inventory message // to trigger it to issue another getblocks message for the next // batch of inventory. if sendInv { hash, _, err := s.db.NewestSha() if err == nil { invMsg := wire.NewMsgInvSizeHint(1) iv := wire.NewInvVect(wire.InvTypeBlock, hash) invMsg.AddInvVect(iv) sp.QueueMessage(invMsg, doneChan) sp.continueHash = nil } else if doneChan != nil { doneChan <- struct{}{} } } return nil } // pushMerkleBlockMsg sends a merkleblock message for the provided block hash to // the connected peer. Since a merkle block requires the peer to have a filter // loaded, this call will simply be ignored if there is no filter loaded. An // error is returned if the block hash is not known. func (s *server) pushMerkleBlockMsg(sp *serverPeer, sha *wire.ShaHash, doneChan, waitChan chan struct{}) error { // Do not send a response if the peer doesn't have a filter loaded. if !sp.filter.IsLoaded() { if doneChan != nil { doneChan <- struct{}{} } return nil } blk, err := s.db.FetchBlockBySha(sha) if err != nil { peerLog.Tracef("Unable to fetch requested block sha %v: %v", sha, err) if doneChan != nil { doneChan <- struct{}{} } return err } // Generate a merkle block by filtering the requested block according // to the filter for the peer. merkle, matchedTxIndices := bloom.NewMerkleBlock(blk, sp.filter) // Once we have fetched data wait for any previous operation to finish. if waitChan != nil { <-waitChan } // Send the merkleblock. Only send the done channel with this message // if no transactions will be sent afterwards. var dc chan struct{} if len(matchedTxIndices) == 0 { dc = doneChan } sp.QueueMessage(merkle, dc) // Finally, send any matched transactions. blkTransactions := blk.MsgBlock().Transactions for i, txIndex := range matchedTxIndices { // Only send the done channel on the final transaction. var dc chan struct{} if i == len(matchedTxIndices)-1 { dc = doneChan } if txIndex < uint32(len(blkTransactions)) { sp.QueueMessage(blkTransactions[txIndex], dc) } } return nil } // handleUpdatePeerHeight updates the heights of all peers who were known to // announce a block we recently accepted. func (s *server) handleUpdatePeerHeights(state *peerState, umsg updatePeerHeightsMsg) { state.forAllPeers(func(sp *serverPeer) { // The origin peer should already have the updated height. if sp == umsg.originPeer { return } // This is a pointer to the underlying memory which doesn't // change. latestBlkSha := sp.LastAnnouncedBlock() // Skip this peer if it hasn't recently announced any new blocks. if latestBlkSha == nil { return } // If the peer has recently announced a block, and this block // matches our newly accepted block, then update their block // height. if *latestBlkSha == *umsg.newSha { sp.UpdateLastBlockHeight(umsg.newHeight) sp.UpdateLastAnnouncedBlock(nil) } }) } // handleAddPeerMsg deals with adding new peers. It is invoked from the // peerHandler goroutine. func (s *server) handleAddPeerMsg(state *peerState, sp *serverPeer) bool { if sp == nil { return false } // Ignore new peers if we're shutting down. if atomic.LoadInt32(&s.shutdown) != 0 { srvrLog.Infof("New peer %s ignored - server is shutting "+ "down", sp) sp.Shutdown() return false } // Disconnect banned peers. host, _, err := net.SplitHostPort(sp.Addr()) if err != nil { srvrLog.Debugf("can't split hostport %v", err) sp.Shutdown() return false } if banEnd, ok := state.banned[host]; ok { if time.Now().Before(banEnd) { srvrLog.Debugf("Peer %s is banned for another %v - "+ "disconnecting", host, banEnd.Sub(time.Now())) sp.Shutdown() return false } srvrLog.Infof("Peer %s is no longer banned", host) delete(state.banned, host) } // TODO: Check for max peers from a single IP. // Limit max outbound peers. if _, ok := state.pendingPeers[sp.Addr()]; ok { if state.OutboundCount() >= state.maxOutboundPeers { srvrLog.Infof("Max outbound peers reached [%d] - disconnecting "+ "peer %s", state.maxOutboundPeers, sp) sp.Shutdown() return false } } // Limit max number of total peers. if state.Count() >= cfg.MaxPeers { srvrLog.Infof("Max peers reached [%d] - disconnecting "+ "peer %s", cfg.MaxPeers, sp) sp.Shutdown() // TODO(oga) how to handle permanent peers here? // they should be rescheduled. return false } // Add the new peer and start it. srvrLog.Debugf("New peer %s", sp) if sp.Inbound() { state.peers[sp.ID()] = sp } else { state.outboundGroups[addrmgr.GroupKey(sp.NA())]++ if sp.persistent { state.persistentPeers[sp.ID()] = sp } else { state.outboundPeers[sp.ID()] = sp } // Remove from pending peers. delete(state.pendingPeers, sp.Addr()) } return true } // handleDonePeerMsg deals with peers that have signalled they are done. It is // invoked from the peerHandler goroutine. func (s *server) handleDonePeerMsg(state *peerState, sp *serverPeer) { if _, ok := state.pendingPeers[sp.Addr()]; ok { delete(state.pendingPeers, sp.Addr()) srvrLog.Debugf("Removed pending peer %s", sp) return } var list map[int32]*serverPeer if sp.persistent { list = state.persistentPeers } else if sp.Inbound() { list = state.peers } else { list = state.outboundPeers } for id, e := range list { if e == sp { // Issue an asynchronous reconnect if the peer was a // persistent outbound connection. if !sp.Inbound() && sp.persistent && atomic.LoadInt32(&s.shutdown) == 0 { // Retry peer sp = s.newOutboundPeer(sp.Addr(), sp.persistent) if sp != nil { go s.retryConn(sp, connectionRetryInterval/2) } list[id] = sp return } if !sp.Inbound() && sp.VersionKnown() { state.outboundGroups[addrmgr.GroupKey(sp.NA())]-- } delete(list, id) srvrLog.Debugf("Removed peer %s", sp) return } } // Update the address' last seen time if the peer has acknowledged // our version and has sent us its version as well. if sp.VerAckReceived() && sp.VersionKnown() && sp.NA() != nil { s.addrManager.Connected(sp.NA()) } // If we get here it means that either we didn't know about the peer // or we purposefully deleted it. } // handleBanPeerMsg deals with banning peers. It is invoked from the // peerHandler goroutine. func (s *server) handleBanPeerMsg(state *peerState, sp *serverPeer) { host, _, err := net.SplitHostPort(sp.Addr()) if err != nil { srvrLog.Debugf("can't split ban peer %s %v", sp.Addr(), err) return } direction := directionString(sp.Inbound()) srvrLog.Infof("Banned peer %s (%s) for %v", host, direction, cfg.BanDuration) state.banned[host] = time.Now().Add(cfg.BanDuration) } // handleRelayInvMsg deals with relaying inventory to peers that are not already // known to have it. It is invoked from the peerHandler goroutine. func (s *server) handleRelayInvMsg(state *peerState, msg relayMsg) { state.forAllPeers(func(sp *serverPeer) { if !sp.Connected() { return } if msg.invVect.Type == wire.InvTypeTx { // Don't relay the transaction to the peer when it has // transaction relaying disabled. if sp.relayTxDisabled() { return } // Don't relay the transaction if there is a bloom // filter loaded and the transaction doesn't match it. if sp.filter.IsLoaded() { tx, ok := msg.data.(*btcutil.Tx) if !ok { peerLog.Warnf("Underlying data for tx" + " inv relay is not a transaction") return } if !sp.filter.MatchTxAndUpdate(tx) { return } } } // Queue the inventory to be relayed with the next batch. // It will be ignored if the peer is already known to // have the inventory. sp.QueueInventory(msg.invVect) }) } // handleBroadcastMsg deals with broadcasting messages to peers. It is invoked // from the peerHandler goroutine. func (s *server) handleBroadcastMsg(state *peerState, bmsg *broadcastMsg) { state.forAllPeers(func(sp *serverPeer) { excluded := false for _, ep := range bmsg.excludePeers { if sp == ep { excluded = true } } // Don't broadcast to still connecting outbound peers . if !sp.Connected() { excluded = true } if !excluded { sp.QueueMessage(bmsg.message, nil) } }) } type getConnCountMsg struct { reply chan int32 } type getPeersMsg struct { reply chan []*serverPeer } type getAddedNodesMsg struct { reply chan []*serverPeer } type disconnectNodeMsg struct { cmp func(*serverPeer) bool reply chan error } type connectNodeMsg struct { addr string permanent bool reply chan error } type removeNodeMsg struct { cmp func(*serverPeer) bool reply chan error } // handleQuery is the central handler for all queries and commands from other // goroutines related to peer state. func (s *server) handleQuery(state *peerState, querymsg interface{}) { switch msg := querymsg.(type) { case getConnCountMsg: nconnected := int32(0) state.forAllPeers(func(sp *serverPeer) { if sp.Connected() { nconnected++ } }) msg.reply <- nconnected case getPeersMsg: peers := make([]*serverPeer, 0, state.Count()) state.forAllPeers(func(sp *serverPeer) { if !sp.Connected() { return } peers = append(peers, sp) }) msg.reply <- peers case connectNodeMsg: // XXX(oga) duplicate oneshots? for _, peer := range state.persistentPeers { if peer.Addr() == msg.addr { if msg.permanent { msg.reply <- errors.New("peer already connected") } else { msg.reply <- errors.New("peer exists as a permanent peer") } return } } // TODO(oga) if too many, nuke a non-perm peer. sp := s.newOutboundPeer(msg.addr, msg.permanent) if sp != nil { go s.peerConnHandler(sp) msg.reply <- nil } else { msg.reply <- errors.New("failed to add peer") } case removeNodeMsg: found := disconnectPeer(state.persistentPeers, msg.cmp, func(sp *serverPeer) { // Keep group counts ok since we remove from // the list now. state.outboundGroups[addrmgr.GroupKey(sp.NA())]-- }) if found { msg.reply <- nil } else { msg.reply <- errors.New("peer not found") } // Request a list of the persistent (added) peers. case getAddedNodesMsg: // Respond with a slice of the relavent peers. peers := make([]*serverPeer, 0, len(state.persistentPeers)) for _, sp := range state.persistentPeers { peers = append(peers, sp) } msg.reply <- peers case disconnectNodeMsg: // Check inbound peers. We pass a nil callback since we don't // require any additional actions on disconnect for inbound peers. found := disconnectPeer(state.peers, msg.cmp, nil) if found { msg.reply <- nil return } // Check outbound peers. found = disconnectPeer(state.outboundPeers, msg.cmp, func(sp *serverPeer) { // Keep group counts ok since we remove from // the list now. state.outboundGroups[addrmgr.GroupKey(sp.NA())]-- }) if found { // If there are multiple outbound connections to the same // ip:port, continue disconnecting them all until no such // peers are found. for found { found = disconnectPeer(state.outboundPeers, msg.cmp, func(sp *serverPeer) { state.outboundGroups[addrmgr.GroupKey(sp.NA())]-- }) } msg.reply <- nil return } msg.reply <- errors.New("peer not found") } } // disconnectPeer attempts to drop the connection of a tageted peer in the // passed peer list. Targets are identified via usage of the passed // `compareFunc`, which should return `true` if the passed peer is the target // peer. This function returns true on success and false if the peer is unable // to be located. If the peer is found, and the passed callback: `whenFound' // isn't nil, we call it with the peer as the argument before it is removed // from the peerList, and is disconnected from the server. func disconnectPeer(peerList map[int32]*serverPeer, compareFunc func(*serverPeer) bool, whenFound func(*serverPeer)) bool { for addr, peer := range peerList { if compareFunc(peer) { if whenFound != nil { whenFound(peer) } // This is ok because we are not continuing // to iterate so won't corrupt the loop. delete(peerList, addr) peer.Disconnect() return true } } return false } // newPeerConfig returns the configuration for the given serverPeer. func newPeerConfig(sp *serverPeer) *peer.Config { return &peer.Config{ Listeners: peer.MessageListeners{ OnVersion: sp.OnVersion, OnMemPool: sp.OnMemPool, OnTx: sp.OnTx, OnBlock: sp.OnBlock, OnInv: sp.OnInv, OnHeaders: sp.OnHeaders, OnGetData: sp.OnGetData, OnGetBlocks: sp.OnGetBlocks, OnGetHeaders: sp.OnGetHeaders, OnFilterAdd: sp.OnFilterAdd, OnFilterClear: sp.OnFilterClear, OnFilterLoad: sp.OnFilterLoad, OnGetAddr: sp.OnGetAddr, OnAddr: sp.OnAddr, OnRead: sp.OnRead, OnWrite: sp.OnWrite, // Note: The reference client currently bans peers that send alerts // not signed with its key. We could verify against their key, but // since the reference client is currently unwilling to support // other implementions' alert messages, we will not relay theirs. OnAlert: nil, }, NewestBlock: sp.server.db.NewestSha, BestLocalAddress: sp.server.addrManager.GetBestLocalAddress, HostToNetAddress: sp.server.addrManager.HostToNetAddress, Proxy: cfg.Proxy, UserAgentName: userAgentName, UserAgentVersion: userAgentVersion, ChainParams: sp.server.chainParams, Services: sp.server.services, } } // listenHandler is the main listener which accepts incoming connections for the // server. It must be run as a goroutine. func (s *server) listenHandler(listener net.Listener) { srvrLog.Infof("Server listening on %s", listener.Addr()) for atomic.LoadInt32(&s.shutdown) == 0 { conn, err := listener.Accept() if err != nil { // Only log the error if we're not forcibly shutting down. if atomic.LoadInt32(&s.shutdown) == 0 { srvrLog.Errorf("can't accept connection: %v", err) } continue } sp := newServerPeer(s, false) sp.Peer = peer.NewInboundPeer(newPeerConfig(sp), conn) sp.Start() go s.peerDoneHandler(sp) } s.wg.Done() srvrLog.Tracef("Listener handler done for %s", listener.Addr()) } // seedFromDNS uses DNS seeding to populate the address manager with peers. func (s *server) seedFromDNS() { // Nothing to do if DNS seeding is disabled. if cfg.DisableDNSSeed { return } for _, seeder := range activeNetParams.DNSSeeds { go func(seeder string) { randSource := mrand.New(mrand.NewSource(time.Now().UnixNano())) seedpeers, err := dnsDiscover(seeder) if err != nil { discLog.Infof("DNS discovery failed on seed %s: %v", seeder, err) return } numPeers := len(seedpeers) discLog.Infof("%d addresses found from DNS seed %s", numPeers, seeder) if numPeers == 0 { return } addresses := make([]*wire.NetAddress, len(seedpeers)) // if this errors then we have *real* problems intPort, _ := strconv.Atoi(activeNetParams.DefaultPort) for i, peer := range seedpeers { addresses[i] = new(wire.NetAddress) addresses[i].SetAddress(peer, uint16(intPort)) // bitcoind seeds with addresses from // a time randomly selected between 3 // and 7 days ago. addresses[i].Timestamp = time.Now().Add(-1 * time.Second * time.Duration(secondsIn3Days+ randSource.Int31n(secondsIn4Days))) } // Bitcoind uses a lookup of the dns seeder here. This // is rather strange since the values looked up by the // DNS seed lookups will vary quite a lot. // to replicate this behaviour we put all addresses as // having come from the first one. s.addrManager.AddAddresses(addresses, addresses[0]) }(seeder) } } // newOutboundPeer initializes a new outbound peer and setups the message // listeners. func (s *server) newOutboundPeer(addr string, persistent bool) *serverPeer { sp := newServerPeer(s, persistent) p, err := peer.NewOutboundPeer(newPeerConfig(sp), addr) if err != nil { srvrLog.Errorf("Cannot create outbound peer: %v", err) return nil } sp.Peer = p go s.peerDoneHandler(sp) return sp } // peerConnHandler handles peer connections. It must be run in a goroutine. func (s *server) peerConnHandler(sp *serverPeer) { err := s.establishConn(sp) if err != nil { srvrLog.Debugf("Failed to connect to %s: %v", sp.Addr(), err) s.donePeers <- sp } } // peerDoneHandler handles peer disconnects by notifiying the server that it's // done. func (s *server) peerDoneHandler(sp *serverPeer) { sp.WaitForShutdown() s.donePeers <- sp // Only tell block manager we are gone if we ever told it we existed. if sp.VersionKnown() { s.blockManager.DonePeer(sp) } close(sp.quit) } // establishConn establishes a connection to the peer. func (s *server) establishConn(sp *serverPeer) error { srvrLog.Debugf("Attempting to connect to %s", sp.Addr()) conn, err := btcdDial("tcp", sp.Addr()) if err != nil { return err } if err := sp.Connect(conn); err != nil { return err } srvrLog.Debugf("Connected to %s", sp.Addr()) s.addrManager.Attempt(sp.NA()) return nil } // retryConn retries connection to the peer after the given duration. func (s *server) retryConn(sp *serverPeer, retryDuration time.Duration) { srvrLog.Debugf("Retrying connection to %s in %s", sp.Addr(), retryDuration) select { case <-time.After(retryDuration): err := s.establishConn(sp) if err != nil { retryDuration += connectionRetryInterval / 2 if retryDuration > maxConnectionRetryInterval { retryDuration = maxConnectionRetryInterval } go s.retryConn(sp, retryDuration) return } case <-sp.quit: case <-s.quit: } } // peerHandler is used to handle peer operations such as adding and removing // peers to and from the server, banning peers, and broadcasting messages to // peers. It must be run in a goroutine. func (s *server) peerHandler() { // Start the address manager and block manager, both of which are needed // by peers. This is done here since their lifecycle is closely tied // to this handler and rather than adding more channels to sychronize // things, it's easier and slightly faster to simply start and stop them // in this handler. s.addrManager.Start() s.blockManager.Start() srvrLog.Tracef("Starting peer handler") state := &peerState{ pendingPeers: make(map[string]*serverPeer), peers: make(map[int32]*serverPeer), persistentPeers: make(map[int32]*serverPeer), outboundPeers: make(map[int32]*serverPeer), banned: make(map[string]time.Time), maxOutboundPeers: defaultMaxOutbound, outboundGroups: make(map[string]int), } if cfg.MaxPeers < state.maxOutboundPeers { state.maxOutboundPeers = cfg.MaxPeers } // Add peers discovered through DNS to the address manager. s.seedFromDNS() // Start up persistent peers. permanentPeers := cfg.ConnectPeers if len(permanentPeers) == 0 { permanentPeers = cfg.AddPeers } for _, addr := range permanentPeers { sp := s.newOutboundPeer(addr, true) if sp != nil { go s.peerConnHandler(sp) } } // if nothing else happens, wake us up soon. time.AfterFunc(10*time.Second, func() { s.wakeup <- struct{}{} }) out: for { select { // New peers connected to the server. case p := <-s.newPeers: s.handleAddPeerMsg(state, p) // Disconnected peers. case p := <-s.donePeers: s.handleDonePeerMsg(state, p) // Block accepted in mainchain or orphan, update peer height. case umsg := <-s.peerHeightsUpdate: s.handleUpdatePeerHeights(state, umsg) // Peer to ban. case p := <-s.banPeers: s.handleBanPeerMsg(state, p) // New inventory to potentially be relayed to other peers. case invMsg := <-s.relayInv: s.handleRelayInvMsg(state, invMsg) // Message to broadcast to all connected peers except those // which are excluded by the message. case bmsg := <-s.broadcast: s.handleBroadcastMsg(state, &bmsg) // Used by timers below to wake us back up. case <-s.wakeup: // this page left intentionally blank case qmsg := <-s.query: s.handleQuery(state, qmsg) // Shutdown the peer handler. case <-s.quit: // Shutdown peers. state.forAllPeers(func(sp *serverPeer) { sp.Shutdown() }) break out } // Don't try to connect to more peers when running on the // simulation test network. The simulation network is only // intended to connect to specified peers and actively avoid // advertising and connecting to discovered peers. if cfg.SimNet { continue } // Only try connect to more peers if we actually need more. if !state.NeedMoreOutbound() || len(cfg.ConnectPeers) > 0 || atomic.LoadInt32(&s.shutdown) != 0 { state.forPendingPeers(func(sp *serverPeer) { sp.Shutdown() }) continue } tries := 0 for state.NeedMoreOutbound() && state.NeedMoreTries() && atomic.LoadInt32(&s.shutdown) == 0 { addr := s.addrManager.GetAddress("any") if addr == nil { break } key := addrmgr.GroupKey(addr.NetAddress()) // Address will not be invalid, local or unroutable // because addrmanager rejects those on addition. // Just check that we don't already have an address // in the same group so that we are not connecting // to the same network segment at the expense of // others. if state.outboundGroups[key] != 0 { break } // Check that we don't have a pending connection to this addr. addrStr := addrmgr.NetAddressKey(addr.NetAddress()) if _, ok := state.pendingPeers[addrStr]; ok { continue } tries++ // After 100 bad tries exit the loop and we'll try again // later. if tries > 100 { break } // XXX if we have limited that address skip // only allow recent nodes (10mins) after we failed 30 // times if tries < 30 && time.Now().Sub(addr.LastAttempt()) < 10*time.Minute { continue } // allow nondefault ports after 50 failed tries. if fmt.Sprintf("%d", addr.NetAddress().Port) != activeNetParams.DefaultPort && tries < 50 { continue } tries = 0 sp := s.newOutboundPeer(addrStr, false) if sp != nil { go s.peerConnHandler(sp) state.pendingPeers[sp.Addr()] = sp } } // We need more peers, wake up in ten seconds and try again. if state.NeedMoreOutbound() { time.AfterFunc(10*time.Second, func() { s.wakeup <- struct{}{} }) } } if cfg.AddrIndex { s.addrIndexer.Stop() } s.blockManager.Stop() s.addrManager.Stop() s.wg.Done() srvrLog.Tracef("Peer handler done") } // AddPeer adds a new peer that has already been connected to the server. func (s *server) AddPeer(sp *serverPeer) { s.newPeers <- sp } // BanPeer bans a peer that has already been connected to the server by ip. func (s *server) BanPeer(sp *serverPeer) { s.banPeers <- sp } // RelayInventory relays the passed inventory to all connected peers that are // not already known to have it. func (s *server) RelayInventory(invVect *wire.InvVect, data interface{}) { s.relayInv <- relayMsg{invVect: invVect, data: data} } // BroadcastMessage sends msg to all peers currently connected to the server // except those in the passed peers to exclude. func (s *server) BroadcastMessage(msg wire.Message, exclPeers ...*serverPeer) { // XXX: Need to determine if this is an alert that has already been // broadcast and refrain from broadcasting again. bmsg := broadcastMsg{message: msg, excludePeers: exclPeers} s.broadcast <- bmsg } // ConnectedCount returns the number of currently connected peers. func (s *server) ConnectedCount() int32 { replyChan := make(chan int32) s.query <- getConnCountMsg{reply: replyChan} return <-replyChan } // AddedNodeInfo returns an array of btcjson.GetAddedNodeInfoResult structures // describing the persistent (added) nodes. func (s *server) AddedNodeInfo() []*serverPeer { replyChan := make(chan []*serverPeer) s.query <- getAddedNodesMsg{reply: replyChan} return <-replyChan } // Peers returns an array of all connected peers. func (s *server) Peers() []*serverPeer { replyChan := make(chan []*serverPeer) s.query <- getPeersMsg{reply: replyChan} return <-replyChan } // DisconnectNodeByAddr disconnects a peer by target address. Both outbound and // inbound nodes will be searched for the target node. An error message will // be returned if the peer was not found. func (s *server) DisconnectNodeByAddr(addr string) error { replyChan := make(chan error) s.query <- disconnectNodeMsg{ cmp: func(sp *serverPeer) bool { return sp.Addr() == addr }, reply: replyChan, } return <-replyChan } // DisconnectNodeByID disconnects a peer by target node id. Both outbound and // inbound nodes will be searched for the target node. An error message will be // returned if the peer was not found. func (s *server) DisconnectNodeByID(id int32) error { replyChan := make(chan error) s.query <- disconnectNodeMsg{ cmp: func(sp *serverPeer) bool { return sp.ID() == id }, reply: replyChan, } return <-replyChan } // RemoveNodeByAddr removes a peer from the list of persistent peers if // present. An error will be returned if the peer was not found. func (s *server) RemoveNodeByAddr(addr string) error { replyChan := make(chan error) s.query <- removeNodeMsg{ cmp: func(sp *serverPeer) bool { return sp.Addr() == addr }, reply: replyChan, } return <-replyChan } // RemoveNodeByID removes a peer by node ID from the list of persistent peers // if present. An error will be returned if the peer was not found. func (s *server) RemoveNodeByID(id int32) error { replyChan := make(chan error) s.query <- removeNodeMsg{ cmp: func(sp *serverPeer) bool { return sp.ID() == id }, reply: replyChan, } return <-replyChan } // ConnectNode adds `addr' as a new outbound peer. If permanent is true then the // peer will be persistent and reconnect if the connection is lost. // It is an error to call this with an already existing peer. func (s *server) ConnectNode(addr string, permanent bool) error { replyChan := make(chan error) s.query <- connectNodeMsg{addr: addr, permanent: permanent, reply: replyChan} return <-replyChan } // AddBytesSent adds the passed number of bytes to the total bytes sent counter // for the server. It is safe for concurrent access. func (s *server) AddBytesSent(bytesSent uint64) { s.bytesMutex.Lock() defer s.bytesMutex.Unlock() s.bytesSent += bytesSent } // AddBytesReceived adds the passed number of bytes to the total bytes received // counter for the server. It is safe for concurrent access. func (s *server) AddBytesReceived(bytesReceived uint64) { s.bytesMutex.Lock() defer s.bytesMutex.Unlock() s.bytesReceived += bytesReceived } // NetTotals returns the sum of all bytes received and sent across the network // for all peers. It is safe for concurrent access. func (s *server) NetTotals() (uint64, uint64) { s.bytesMutex.Lock() defer s.bytesMutex.Unlock() return s.bytesReceived, s.bytesSent } // UpdatePeerHeights updates the heights of all peers who have have announced // the latest connected main chain block, or a recognized orphan. These height // updates allow us to dynamically refresh peer heights, ensuring sync peer // selection has access to the latest block heights for each peer. func (s *server) UpdatePeerHeights(latestBlkSha *wire.ShaHash, latestHeight int32, updateSource *serverPeer) { s.peerHeightsUpdate <- updatePeerHeightsMsg{ newSha: latestBlkSha, newHeight: latestHeight, originPeer: updateSource, } } // rebroadcastHandler keeps track of user submitted inventories that we have // sent out but have not yet made it into a block. We periodically rebroadcast // them in case our peers restarted or otherwise lost track of them. func (s *server) rebroadcastHandler() { // Wait 5 min before first tx rebroadcast. timer := time.NewTimer(5 * time.Minute) pendingInvs := make(map[wire.InvVect]interface{}) out: for { select { case riv := <-s.modifyRebroadcastInv: switch msg := riv.(type) { // Incoming InvVects are added to our map of RPC txs. case broadcastInventoryAdd: pendingInvs[*msg.invVect] = msg.data // When an InvVect has been added to a block, we can // now remove it, if it was present. case broadcastInventoryDel: if _, ok := pendingInvs[*msg]; ok { delete(pendingInvs, *msg) } } case <-timer.C: // Any inventory we have has not made it into a block // yet. We periodically resubmit them until they have. for iv, data := range pendingInvs { ivCopy := iv s.RelayInventory(&ivCopy, data) } // Process at a random time up to 30mins (in seconds) // in the future. timer.Reset(time.Second * time.Duration(randomUint16Number(1800))) case <-s.quit: break out } } timer.Stop() // Drain channels before exiting so nothing is left waiting around // to send. cleanup: for { select { case <-s.modifyRebroadcastInv: default: break cleanup } } s.wg.Done() } // Start begins accepting connections from peers. func (s *server) Start() { // Already started? if atomic.AddInt32(&s.started, 1) != 1 { return } srvrLog.Trace("Starting server") // Start all the listeners. There will not be any if listening is // disabled. for _, listener := range s.listeners { s.wg.Add(1) go s.listenHandler(listener) } // Start the peer handler which in turn starts the address and block // managers. s.wg.Add(1) go s.peerHandler() if s.nat != nil { s.wg.Add(1) go s.upnpUpdateThread() } if !cfg.DisableRPC { s.wg.Add(1) // Start the rebroadcastHandler, which ensures user tx received by // the RPC server are rebroadcast until being included in a block. go s.rebroadcastHandler() s.rpcServer.Start() } // Start the CPU miner if generation is enabled. if cfg.Generate { s.cpuMiner.Start() } if cfg.AddrIndex { s.addrIndexer.Start() } } // Stop gracefully shuts down the server by stopping and disconnecting all // peers and the main listener. func (s *server) Stop() error { // Make sure this only happens once. if atomic.AddInt32(&s.shutdown, 1) != 1 { srvrLog.Infof("Server is already in the process of shutting down") return nil } srvrLog.Warnf("Server shutting down") // Stop all the listeners. There will not be any listeners if // listening is disabled. for _, listener := range s.listeners { err := listener.Close() if err != nil { return err } } // Stop the CPU miner if needed s.cpuMiner.Stop() // Shutdown the RPC server if it's not disabled. if !cfg.DisableRPC { s.rpcServer.Stop() } // Signal the remaining goroutines to quit. close(s.quit) return nil } // WaitForShutdown blocks until the main listener and peer handlers are stopped. func (s *server) WaitForShutdown() { s.wg.Wait() } // ScheduleShutdown schedules a server shutdown after the specified duration. // It also dynamically adjusts how often to warn the server is going down based // on remaining duration. func (s *server) ScheduleShutdown(duration time.Duration) { // Don't schedule shutdown more than once. if atomic.AddInt32(&s.shutdownSched, 1) != 1 { return } srvrLog.Warnf("Server shutdown in %v", duration) go func() { remaining := duration tickDuration := dynamicTickDuration(remaining) done := time.After(remaining) ticker := time.NewTicker(tickDuration) out: for { select { case <-done: ticker.Stop() s.Stop() break out case <-ticker.C: remaining = remaining - tickDuration if remaining < time.Second { continue } // Change tick duration dynamically based on remaining time. newDuration := dynamicTickDuration(remaining) if tickDuration != newDuration { tickDuration = newDuration ticker.Stop() ticker = time.NewTicker(tickDuration) } srvrLog.Warnf("Server shutdown in %v", remaining) } } }() } // parseListeners splits the list of listen addresses passed in addrs into // IPv4 and IPv6 slices and returns them. This allows easy creation of the // listeners on the correct interface "tcp4" and "tcp6". It also properly // detects addresses which apply to "all interfaces" and adds the address to // both slices. func parseListeners(addrs []string) ([]string, []string, bool, error) { ipv4ListenAddrs := make([]string, 0, len(addrs)*2) ipv6ListenAddrs := make([]string, 0, len(addrs)*2) haveWildcard := false for _, addr := range addrs { host, _, err := net.SplitHostPort(addr) if err != nil { // Shouldn't happen due to already being normalized. return nil, nil, false, err } // Empty host or host of * on plan9 is both IPv4 and IPv6. if host == "" || (host == "*" && runtime.GOOS == "plan9") { ipv4ListenAddrs = append(ipv4ListenAddrs, addr) ipv6ListenAddrs = append(ipv6ListenAddrs, addr) haveWildcard = true continue } // Strip IPv6 zone id if present since net.ParseIP does not // handle it. zoneIndex := strings.LastIndex(host, "%") if zoneIndex > 0 { host = host[:zoneIndex] } // Parse the IP. ip := net.ParseIP(host) if ip == nil { return nil, nil, false, fmt.Errorf("'%s' is not a "+ "valid IP address", host) } // To4 returns nil when the IP is not an IPv4 address, so use // this determine the address type. if ip.To4() == nil { ipv6ListenAddrs = append(ipv6ListenAddrs, addr) } else { ipv4ListenAddrs = append(ipv4ListenAddrs, addr) } } return ipv4ListenAddrs, ipv6ListenAddrs, haveWildcard, nil } func (s *server) upnpUpdateThread() { // Go off immediately to prevent code duplication, thereafter we renew // lease every 15 minutes. timer := time.NewTimer(0 * time.Second) lport, _ := strconv.ParseInt(activeNetParams.DefaultPort, 10, 16) first := true out: for { select { case <-timer.C: // TODO(oga) pick external port more cleverly // TODO(oga) know which ports we are listening to on an external net. // TODO(oga) if specific listen port doesn't work then ask for wildcard // listen port? // XXX this assumes timeout is in seconds. listenPort, err := s.nat.AddPortMapping("tcp", int(lport), int(lport), "btcd listen port", 20*60) if err != nil { srvrLog.Warnf("can't add UPnP port mapping: %v", err) } if first && err == nil { // TODO(oga): look this up periodically to see if upnp domain changed // and so did ip. externalip, err := s.nat.GetExternalAddress() if err != nil { srvrLog.Warnf("UPnP can't get external address: %v", err) continue out } na := wire.NewNetAddressIPPort(externalip, uint16(listenPort), s.services) err = s.addrManager.AddLocalAddress(na, addrmgr.UpnpPrio) if err != nil { // XXX DeletePortMapping? } srvrLog.Warnf("Successfully bound via UPnP to %s", addrmgr.NetAddressKey(na)) first = false } timer.Reset(time.Minute * 15) case <-s.quit: break out } } timer.Stop() if err := s.nat.DeletePortMapping("tcp", int(lport), int(lport)); err != nil { srvrLog.Warnf("unable to remove UPnP port mapping: %v", err) } else { srvrLog.Debugf("succesfully disestablished UPnP port mapping") } s.wg.Done() } // newServer returns a new btcd server configured to listen on addr for the // bitcoin network type specified by chainParams. Use start to begin accepting // connections from peers. func newServer(listenAddrs []string, db database.Db, chainParams *chaincfg.Params) (*server, error) { services := defaultServices if cfg.NoPeerBloomFilters { services &^= wire.SFNodeBloom } amgr := addrmgr.New(cfg.DataDir, btcdLookup) var listeners []net.Listener var nat NAT if !cfg.DisableListen { ipv4Addrs, ipv6Addrs, wildcard, err := parseListeners(listenAddrs) if err != nil { return nil, err } listeners = make([]net.Listener, 0, len(ipv4Addrs)+len(ipv6Addrs)) discover := true if len(cfg.ExternalIPs) != 0 { discover = false // if this fails we have real issues. port, _ := strconv.ParseUint( activeNetParams.DefaultPort, 10, 16) for _, sip := range cfg.ExternalIPs { eport := uint16(port) host, portstr, err := net.SplitHostPort(sip) if err != nil { // no port, use default. host = sip } else { port, err := strconv.ParseUint( portstr, 10, 16) if err != nil { srvrLog.Warnf("Can not parse "+ "port from %s for "+ "externalip: %v", sip, err) continue } eport = uint16(port) } na, err := amgr.HostToNetAddress(host, eport, services) if err != nil { srvrLog.Warnf("Not adding %s as "+ "externalip: %v", sip, err) continue } err = amgr.AddLocalAddress(na, addrmgr.ManualPrio) if err != nil { amgrLog.Warnf("Skipping specified external IP: %v", err) } } } else if discover && cfg.Upnp { nat, err = Discover() if err != nil { srvrLog.Warnf("Can't discover upnp: %v", err) } // nil nat here is fine, just means no upnp on network. } // TODO(oga) nonstandard port... if wildcard { port, err := strconv.ParseUint(activeNetParams.DefaultPort, 10, 16) if err != nil { // I can't think of a cleaner way to do this... goto nowc } addrs, err := net.InterfaceAddrs() for _, a := range addrs { ip, _, err := net.ParseCIDR(a.String()) if err != nil { continue } na := wire.NewNetAddressIPPort(ip, uint16(port), services) if discover { err = amgr.AddLocalAddress(na, addrmgr.InterfacePrio) if err != nil { amgrLog.Debugf("Skipping local address: %v", err) } } } } nowc: for _, addr := range ipv4Addrs { listener, err := net.Listen("tcp4", addr) if err != nil { srvrLog.Warnf("Can't listen on %s: %v", addr, err) continue } listeners = append(listeners, listener) if discover { if na, err := amgr.DeserializeNetAddress(addr); err == nil { err = amgr.AddLocalAddress(na, addrmgr.BoundPrio) if err != nil { amgrLog.Warnf("Skipping bound address: %v", err) } } } } for _, addr := range ipv6Addrs { listener, err := net.Listen("tcp6", addr) if err != nil { srvrLog.Warnf("Can't listen on %s: %v", addr, err) continue } listeners = append(listeners, listener) if discover { if na, err := amgr.DeserializeNetAddress(addr); err == nil { err = amgr.AddLocalAddress(na, addrmgr.BoundPrio) if err != nil { amgrLog.Debugf("Skipping bound address: %v", err) } } } } if len(listeners) == 0 { return nil, errors.New("no valid listen address") } } s := server{ listeners: listeners, chainParams: chainParams, addrManager: amgr, newPeers: make(chan *serverPeer, cfg.MaxPeers), donePeers: make(chan *serverPeer, cfg.MaxPeers), banPeers: make(chan *serverPeer, cfg.MaxPeers), retryPeers: make(chan *serverPeer, cfg.MaxPeers), wakeup: make(chan struct{}), query: make(chan interface{}), relayInv: make(chan relayMsg, cfg.MaxPeers), broadcast: make(chan broadcastMsg, cfg.MaxPeers), quit: make(chan struct{}), modifyRebroadcastInv: make(chan interface{}), peerHeightsUpdate: make(chan updatePeerHeightsMsg), nat: nat, db: db, timeSource: blockchain.NewMedianTime(), services: services, sigCache: txscript.NewSigCache(cfg.SigCacheMaxSize), } bm, err := newBlockManager(&s) if err != nil { return nil, err } s.blockManager = bm s.txMemPool = newTxMemPool(&s) s.cpuMiner = newCPUMiner(&s) if cfg.AddrIndex { ai, err := newAddrIndexer(&s) if err != nil { return nil, err } s.addrIndexer = ai } if !cfg.DisableRPC { s.rpcServer, err = newRPCServer(cfg.RPCListeners, &s) if err != nil { return nil, err } } return &s, nil } // dynamicTickDuration is a convenience function used to dynamically choose a // tick duration based on remaining time. It is primarily used during // server shutdown to make shutdown warnings more frequent as the shutdown time // approaches. func dynamicTickDuration(remaining time.Duration) time.Duration { switch { case remaining <= time.Second*5: return time.Second case remaining <= time.Second*15: return time.Second * 5 case remaining <= time.Minute: return time.Second * 15 case remaining <= time.Minute*5: return time.Minute case remaining <= time.Minute*15: return time.Minute * 5 case remaining <= time.Hour: return time.Minute * 15 } return time.Hour }