// Copyright (c) 2014-2015 Conformal Systems LLC. // Use of this source code is governed by an ISC // license that can be found in the LICENSE file. // This file is ignored during the regular build due to the following build tag. // This build tag is set during go generate. // +build gensecp256k1 package btcec // References: // [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone) import ( "encoding/binary" "math/big" ) // secp256k1BytePoints are dummy points used so the code which generates the // real values can compile. var secp256k1BytePoints = []byte{} // getDoublingPoints returns all the possible G^(2^i) for i in // 0..n-1 where n is the curve's bit size (256 in the case of secp256k1) // the coordinates are recorded as Jacobian coordinates. func (curve *KoblitzCurve) getDoublingPoints() [][3]fieldVal { doublingPoints := make([][3]fieldVal, curve.BitSize) // initialize px, py, pz to the Jacobian coordinates for the base point px, py := curve.bigAffineToField(curve.Gx, curve.Gy) pz := new(fieldVal).SetInt(1) for i := 0; i < curve.BitSize; i++ { doublingPoints[i] = [3]fieldVal{*px, *py, *pz} // P = 2*P curve.doubleJacobian(px, py, pz, px, py, pz) } return doublingPoints } // SerializedBytePoints returns a serialized byte slice which contains all of // the possible points per 8-bit window. This is used to when generating // secp256k1.go. func (curve *KoblitzCurve) SerializedBytePoints() []byte { doublingPoints := curve.getDoublingPoints() // Segregate the bits into byte-sized windows serialized := make([]byte, curve.byteSize*256*3*10*4) offset := 0 for byteNum := 0; byteNum < curve.byteSize; byteNum++ { // Grab the 8 bits that make up this byte from doublingPoints. startingBit := 8 * (curve.byteSize - byteNum - 1) computingPoints := doublingPoints[startingBit : startingBit+8] // Compute all points in this window and serialize them. for i := 0; i < 256; i++ { px, py, pz := new(fieldVal), new(fieldVal), new(fieldVal) for j := 0; j < 8; j++ { if i>>uint(j)&1 == 1 { curve.addJacobian(px, py, pz, &computingPoints[j][0], &computingPoints[j][1], &computingPoints[j][2], px, py, pz) } } for i := 0; i < 10; i++ { binary.LittleEndian.PutUint32(serialized[offset:], px.n[i]) offset += 4 } for i := 0; i < 10; i++ { binary.LittleEndian.PutUint32(serialized[offset:], py.n[i]) offset += 4 } for i := 0; i < 10; i++ { binary.LittleEndian.PutUint32(serialized[offset:], pz.n[i]) offset += 4 } } } return serialized } // sqrt returns the square root of the provided big integer using Newton's // method. It's only compiled and used during generation of pre-computed // values, so speed is not a huge concern. func sqrt(n *big.Int) *big.Int { // Initial guess = 2^(log_2(n)/2) guess := big.NewInt(2) guess.Exp(guess, big.NewInt(int64(n.BitLen()/2)), nil) // Now refine using Newton's method. big2 := big.NewInt(2) prevGuess := big.NewInt(0) for { prevGuess.Set(guess) guess.Add(guess, new(big.Int).Div(n, guess)) guess.Div(guess, big2) if guess.Cmp(prevGuess) == 0 { break } } return guess } // EndomorphismVectors runs the first 3 steps of algorithm 3.74 from [GECC] to // generate the linearly independent vectors needed to generate a balanced // length-two representation of a multiplier such that k = k1 + k2λ (mod N) and // returns them. Since the values will always be the same given the fact that N // and λ are fixed, the final results can be accelerated by storing the // precomputed values with the curve. func (curve *KoblitzCurve) EndomorphismVectors() (a1, b1, a2, b2 *big.Int) { bigMinus1 := big.NewInt(-1) // This section uses an extended Euclidean algorithm to generate a // sequence of equations: // s[i] * N + t[i] * λ = r[i] nSqrt := sqrt(curve.N) u, v := new(big.Int).Set(curve.N), new(big.Int).Set(curve.lambda) x1, y1 := big.NewInt(1), big.NewInt(0) x2, y2 := big.NewInt(0), big.NewInt(1) q, r := new(big.Int), new(big.Int) qu, qx1, qy1 := new(big.Int), new(big.Int), new(big.Int) s, t := new(big.Int), new(big.Int) ri, ti := new(big.Int), new(big.Int) a1, b1, a2, b2 = new(big.Int), new(big.Int), new(big.Int), new(big.Int) found, oneMore := false, false for u.Sign() != 0 { // q = v/u q.Div(v, u) // r = v - q*u qu.Mul(q, u) r.Sub(v, qu) // s = x2 - q*x1 qx1.Mul(q, x1) s.Sub(x2, qx1) // t = y2 - q*y1 qy1.Mul(q, y1) t.Sub(y2, qy1) // v = u, u = r, x2 = x1, x1 = s, y2 = y1, y1 = t v.Set(u) u.Set(r) x2.Set(x1) x1.Set(s) y2.Set(y1) y1.Set(t) // As soon as the remainder is less than the sqrt of n, the // values of a1 and b1 are known. if !found && r.Cmp(nSqrt) < 0 { // When this condition executes ri and ti represent the // r[i] and t[i] values such that i is the greatest // index for which r >= sqrt(n). Meanwhile, the current // r and t values are r[i+1] and t[i+1], respectively. // a1 = r[i+1], b1 = -t[i+1] a1.Set(r) b1.Mul(t, bigMinus1) found = true oneMore = true // Skip to the next iteration so ri and ti are not // modified. continue } else if oneMore { // When this condition executes ri and ti still // represent the r[i] and t[i] values while the current // r and t are r[i+2] and t[i+2], respectively. // sum1 = r[i]^2 + t[i]^2 rSquared := new(big.Int).Mul(ri, ri) tSquared := new(big.Int).Mul(ti, ti) sum1 := new(big.Int).Add(rSquared, tSquared) // sum2 = r[i+2]^2 + t[i+2]^2 r2Squared := new(big.Int).Mul(r, r) t2Squared := new(big.Int).Mul(t, t) sum2 := new(big.Int).Add(r2Squared, t2Squared) // if (r[i]^2 + t[i]^2) <= (r[i+2]^2 + t[i+2]^2) if sum1.Cmp(sum2) <= 0 { // a2 = r[i], b2 = -t[i] a2.Set(ri) b2.Mul(ti, bigMinus1) } else { // a2 = r[i+2], b2 = -t[i+2] a2.Set(r) b2.Mul(t, bigMinus1) } // All done. break } ri.Set(r) ti.Set(t) } return a1, b1, a2, b2 }