// Copyright (c) 2013-2014 Conformal Systems LLC. // Use of this source code is governed by an ISC // license that can be found in the LICENSE file. package main import ( "container/list" "crypto/rand" "encoding/binary" "errors" "fmt" "math" "net" "runtime" "strconv" "sync" "sync/atomic" "time" "github.com/conformal/btcdb" "github.com/conformal/btcjson" "github.com/conformal/btcnet" "github.com/conformal/btcwire" ) const ( // These constants are used by the DNS seed code to pick a random last seen // time. secondsIn3Days int32 = 24 * 60 * 60 * 3 secondsIn4Days int32 = 24 * 60 * 60 * 4 ) const ( // supportedServices describes which services are supported by the // server. supportedServices = btcwire.SFNodeNetwork // connectionRetryInterval is the amount of time to wait in between // retries when connecting to persistent peers. connectionRetryInterval = time.Second * 10 // defaultMaxOutbound is the default number of max outbound peers. defaultMaxOutbound = 8 ) // broadcastMsg provides the ability to house a bitcoin message to be broadcast // to all connected peers except specified excluded peers. type broadcastMsg struct { message btcwire.Message excludePeers []*peer } // broadcastInventoryAdd is a type used to declare that the InvVect it contains // needs to be added to the rebroadcast map type broadcastInventoryAdd *btcwire.InvVect // broadcastInventoryDel is a type used to declare that the InvVect it contains // needs to be removed from the rebroadcast map type broadcastInventoryDel *btcwire.InvVect // server provides a bitcoin server for handling communications to and from // bitcoin peers. type server struct { nonce uint64 listeners []net.Listener netParams *btcnet.Params started int32 // atomic shutdown int32 // atomic shutdownSched int32 // atomic bytesMutex sync.Mutex // For the following two fields. bytesReceived uint64 // Total bytes received from all peers since start. bytesSent uint64 // Total bytes sent by all peers since start. addrManager *AddrManager rpcServer *rpcServer blockManager *blockManager txMemPool *txMemPool cpuMiner *CPUMiner modifyRebroadcastInv chan interface{} newPeers chan *peer donePeers chan *peer banPeers chan *peer wakeup chan bool query chan interface{} relayInv chan *btcwire.InvVect broadcast chan broadcastMsg wg sync.WaitGroup quit chan bool nat NAT db btcdb.Db } type peerState struct { peers *list.List outboundPeers *list.List persistentPeers *list.List banned map[string]time.Time outboundGroups map[string]int maxOutboundPeers int } // randomUint16Number returns a random uint16 in a specified input range. Note // that the range is in zeroth ordering; if you pass it 1800, you will get // values from 0 to 1800. func randomUint16Number(max uint16) uint16 { // In order to avoid modulo bias and ensure every possible outcome in // [0, max) has equal probability, the random number must be sampled // from a random source that has a range limited to a multiple of the // modulus. var randomNumber uint16 var limitRange = (math.MaxUint16 / max) * max for { binary.Read(rand.Reader, binary.LittleEndian, &randomNumber) if randomNumber < limitRange { return (randomNumber % max) } } } // AddRebroadcastInventory adds 'iv' to the list of inventories to be // rebroadcasted at random intervals until they show up in a block. func (s *server) AddRebroadcastInventory(iv *btcwire.InvVect) { // Ignore if shutting down. if atomic.LoadInt32(&s.shutdown) != 0 { return } s.modifyRebroadcastInv <- broadcastInventoryAdd(iv) } // RemoveRebroadcastInventory removes 'iv' from the list of items to be // rebroadcasted if present. func (s *server) RemoveRebroadcastInventory(iv *btcwire.InvVect) { // Ignore if shutting down. if atomic.LoadInt32(&s.shutdown) != 0 { return } s.modifyRebroadcastInv <- broadcastInventoryDel(iv) } func (p *peerState) Count() int { return p.peers.Len() + p.outboundPeers.Len() + p.persistentPeers.Len() } func (p *peerState) OutboundCount() int { return p.outboundPeers.Len() + p.persistentPeers.Len() } func (p *peerState) NeedMoreOutbound() bool { return p.OutboundCount() < p.maxOutboundPeers && p.Count() < cfg.MaxPeers } // forAllOutboundPeers is a helper function that runs closure on all outbound // peers known to peerState. func (p *peerState) forAllOutboundPeers(closure func(p *peer)) { for e := p.outboundPeers.Front(); e != nil; e = e.Next() { closure(e.Value.(*peer)) } for e := p.persistentPeers.Front(); e != nil; e = e.Next() { closure(e.Value.(*peer)) } } // forAllPeers is a helper function that runs closure on all peers known to // peerState. func (p *peerState) forAllPeers(closure func(p *peer)) { for e := p.peers.Front(); e != nil; e = e.Next() { closure(e.Value.(*peer)) } p.forAllOutboundPeers(closure) } // handleAddPeerMsg deals with adding new peers. It is invoked from the // peerHandler goroutine. func (s *server) handleAddPeerMsg(state *peerState, p *peer) bool { if p == nil { return false } // Ignore new peers if we're shutting down. if atomic.LoadInt32(&s.shutdown) != 0 { srvrLog.Infof("New peer %s ignored - server is shutting "+ "down", p) p.Shutdown() return false } // Disconnect banned peers. host, _, err := net.SplitHostPort(p.addr) if err != nil { srvrLog.Debugf("can't split hostport %v", err) p.Shutdown() return false } if banEnd, ok := state.banned[host]; ok { if time.Now().Before(banEnd) { srvrLog.Debugf("Peer %s is banned for another %v - "+ "disconnecting", host, banEnd.Sub(time.Now())) p.Shutdown() return false } srvrLog.Infof("Peer %s is no longer banned", host) delete(state.banned, host) } // TODO: Check for max peers from a single IP. // Limit max number of total peers. if state.Count() >= cfg.MaxPeers { srvrLog.Infof("Max peers reached [%d] - disconnecting "+ "peer %s", cfg.MaxPeers, p) p.Shutdown() // TODO(oga) how to handle permanent peers here? // they should be rescheduled. return false } // Add the new peer and start it. srvrLog.Debugf("New peer %s", p) if p.inbound { state.peers.PushBack(p) p.Start() } else { state.outboundGroups[GroupKey(p.na)]++ if p.persistent { state.persistentPeers.PushBack(p) } else { state.outboundPeers.PushBack(p) } } return true } // handleDonePeerMsg deals with peers that have signalled they are done. It is // invoked from the peerHandler goroutine. func (s *server) handleDonePeerMsg(state *peerState, p *peer) { var list *list.List if p.persistent { list = state.persistentPeers } else if p.inbound { list = state.peers } else { list = state.outboundPeers } for e := list.Front(); e != nil; e = e.Next() { if e.Value == p { // Issue an asynchronous reconnect if the peer was a // persistent outbound connection. if !p.inbound && p.persistent && atomic.LoadInt32(&s.shutdown) == 0 { e.Value = newOutboundPeer(s, p.addr, true) return } if !p.inbound { state.outboundGroups[GroupKey(p.na)]-- } list.Remove(e) srvrLog.Debugf("Removed peer %s", p) return } } // If we get here it means that either we didn't know about the peer // or we purposefully deleted it. } // handleBanPeerMsg deals with banning peers. It is invoked from the // peerHandler goroutine. func (s *server) handleBanPeerMsg(state *peerState, p *peer) { host, _, err := net.SplitHostPort(p.addr) if err != nil { srvrLog.Debugf("can't split ban peer %s %v", p.addr, err) return } direction := directionString(p.inbound) srvrLog.Infof("Banned peer %s (%s) for %v", host, direction, cfg.BanDuration) state.banned[host] = time.Now().Add(cfg.BanDuration) } // handleRelayInvMsg deals with relaying inventory to peers that are not already // known to have it. It is invoked from the peerHandler goroutine. func (s *server) handleRelayInvMsg(state *peerState, iv *btcwire.InvVect) { state.forAllPeers(func(p *peer) { if !p.Connected() { return } // Queue the inventory to be relayed with the next batch. It // will be ignored if the peer is already known to have the // inventory. p.QueueInventory(iv) }) } // handleBroadcastMsg deals with broadcasting messages to peers. It is invoked // from the peerHandler goroutine. func (s *server) handleBroadcastMsg(state *peerState, bmsg *broadcastMsg) { state.forAllPeers(func(p *peer) { excluded := false for _, ep := range bmsg.excludePeers { if p == ep { excluded = true } } // Don't broadcast to still connecting outbound peers . if !p.Connected() { excluded = true } if !excluded { p.QueueMessage(bmsg.message, nil) } }) } type getConnCountMsg struct { reply chan int32 } type getPeerInfoMsg struct { reply chan []*btcjson.GetPeerInfoResult } type addNodeMsg struct { addr string permanent bool reply chan error } type delNodeMsg struct { addr string reply chan error } type getAddedNodesMsg struct { reply chan []*peer } // handleQuery is the central handler for all queries and commands from other // goroutines related to peer state. func (s *server) handleQuery(querymsg interface{}, state *peerState) { switch msg := querymsg.(type) { case getConnCountMsg: nconnected := int32(0) state.forAllPeers(func(p *peer) { if p.Connected() { nconnected++ } }) msg.reply <- nconnected case getPeerInfoMsg: syncPeer := s.blockManager.SyncPeer() infos := make([]*btcjson.GetPeerInfoResult, 0, state.peers.Len()) state.forAllPeers(func(p *peer) { if !p.Connected() { return } // A lot of this will make the race detector go mad, // however it is statistics for purely informational purposes // and we don't really care if they are raced to get the new // version. p.StatsMtx.Lock() info := &btcjson.GetPeerInfoResult{ Addr: p.addr, Services: fmt.Sprintf("%08d", p.services), LastSend: p.lastSend.Unix(), LastRecv: p.lastRecv.Unix(), BytesSent: p.bytesSent, BytesRecv: p.bytesReceived, ConnTime: p.timeConnected.Unix(), Version: p.protocolVersion, SubVer: p.userAgent, Inbound: p.inbound, StartingHeight: p.lastBlock, BanScore: 0, SyncNode: p == syncPeer, } info.PingTime = float64(p.lastPingMicros) if p.lastPingNonce != 0 { wait := float64(time.Now().Sub(p.lastPingTime).Nanoseconds()) // We actually want microseconds. info.PingWait = wait / 1000 } p.StatsMtx.Unlock() infos = append(infos, info) }) msg.reply <- infos case addNodeMsg: // XXX(oga) duplicate oneshots? if msg.permanent { for e := state.persistentPeers.Front(); e != nil; e = e.Next() { peer := e.Value.(*peer) if peer.addr == msg.addr { msg.reply <- errors.New("peer already connected") return } } } // TODO(oga) if too many, nuke a non-perm peer. if s.handleAddPeerMsg(state, newOutboundPeer(s, msg.addr, msg.permanent)) { msg.reply <- nil } else { msg.reply <- errors.New("failed to add peer") } case delNodeMsg: found := false for e := state.persistentPeers.Front(); e != nil; e = e.Next() { peer := e.Value.(*peer) if peer.addr == msg.addr { // Keep group counts ok since we remove from // the list now. state.outboundGroups[GroupKey(peer.na)]-- // This is ok because we are not continuing // to iterate so won't corrupt the loop. state.persistentPeers.Remove(e) peer.Disconnect() found = true break } } if found { msg.reply <- nil } else { msg.reply <- errors.New("peer not found") } // Request a list of the persistent (added) peers. case getAddedNodesMsg: // Respond with a slice of the relavent peers. peers := make([]*peer, 0, state.persistentPeers.Len()) for e := state.persistentPeers.Front(); e != nil; e = e.Next() { peer := e.Value.(*peer) peers = append(peers, peer) } msg.reply <- peers } } // listenHandler is the main listener which accepts incoming connections for the // server. It must be run as a goroutine. func (s *server) listenHandler(listener net.Listener) { srvrLog.Infof("Server listening on %s", listener.Addr()) for atomic.LoadInt32(&s.shutdown) == 0 { conn, err := listener.Accept() if err != nil { // Only log the error if we're not forcibly shutting down. if atomic.LoadInt32(&s.shutdown) == 0 { srvrLog.Errorf("can't accept connection: %v", err) } continue } s.AddPeer(newInboundPeer(s, conn)) } s.wg.Done() srvrLog.Tracef("Listener handler done for %s", listener.Addr()) } // seedFromDNS uses DNS seeding to populate the address manager with peers. func (s *server) seedFromDNS() { // Nothing to do if DNS seeding is disabled. if cfg.DisableDNSSeed { return } for _, seeder := range activeNetParams.dnsSeeds { seedpeers := dnsDiscover(seeder) if len(seedpeers) == 0 { continue } addresses := make([]*btcwire.NetAddress, len(seedpeers)) // if this errors then we have *real* problems intPort, _ := strconv.Atoi(activeNetParams.DefaultPort) for i, peer := range seedpeers { addresses[i] = new(btcwire.NetAddress) addresses[i].SetAddress(peer, uint16(intPort)) // bitcoind seeds with addresses from // a time randomly selected between 3 // and 7 days ago. addresses[i].Timestamp = time.Now().Add(-1 * time.Second * time.Duration(secondsIn3Days+ s.addrManager.rand.Int31n(secondsIn4Days))) } // Bitcoind uses a lookup of the dns seeder here. This // is rather strange since the values looked up by the // DNS seed lookups will vary quite a lot. // to replicate this behaviour we put all addresses as // having come from the first one. s.addrManager.AddAddresses(addresses, addresses[0]) } // XXX if this is empty do we want to use hardcoded // XXX peers like bitcoind does? } // peerHandler is used to handle peer operations such as adding and removing // peers to and from the server, banning peers, and broadcasting messages to // peers. It must be run a a goroutine. func (s *server) peerHandler() { // Start the address manager and block manager, both of which are needed // by peers. This is done here since their lifecycle is closely tied // to this handler and rather than adding more channels to sychronize // things, it's easier and slightly faster to simply start and stop them // in this handler. s.addrManager.Start() s.blockManager.Start() srvrLog.Tracef("Starting peer handler") state := &peerState{ peers: list.New(), persistentPeers: list.New(), outboundPeers: list.New(), banned: make(map[string]time.Time), maxOutboundPeers: defaultMaxOutbound, outboundGroups: make(map[string]int), } if cfg.MaxPeers < state.maxOutboundPeers { state.maxOutboundPeers = cfg.MaxPeers } // Add peers discovered through DNS to the address manager. s.seedFromDNS() // Start up persistent peers. permanentPeers := cfg.ConnectPeers if len(permanentPeers) == 0 { permanentPeers = cfg.AddPeers } for _, addr := range permanentPeers { s.handleAddPeerMsg(state, newOutboundPeer(s, addr, true)) } // if nothing else happens, wake us up soon. time.AfterFunc(10*time.Second, func() { s.wakeup <- true }) out: for { select { // New peers connected to the server. case p := <-s.newPeers: s.handleAddPeerMsg(state, p) // Disconnected peers. case p := <-s.donePeers: s.handleDonePeerMsg(state, p) // Peer to ban. case p := <-s.banPeers: s.handleBanPeerMsg(state, p) // New inventory to potentially be relayed to other peers. case invMsg := <-s.relayInv: s.handleRelayInvMsg(state, invMsg) // Message to broadcast to all connected peers except those // which are excluded by the message. case bmsg := <-s.broadcast: s.handleBroadcastMsg(state, &bmsg) // Used by timers below to wake us back up. case <-s.wakeup: // this page left intentionally blank case qmsg := <-s.query: s.handleQuery(qmsg, state) // Shutdown the peer handler. case <-s.quit: // Shutdown peers. state.forAllPeers(func(p *peer) { p.Shutdown() }) break out } // Don't try to connect to more peers when running on the // simulation test network. The simulation network is only // intended to connect to specified peers and actively avoid // advertising and connecting to discovered peers. if cfg.SimNet { continue } // Only try connect to more peers if we actually need more. if !state.NeedMoreOutbound() || len(cfg.ConnectPeers) > 0 || atomic.LoadInt32(&s.shutdown) != 0 { continue } tries := 0 for state.NeedMoreOutbound() && atomic.LoadInt32(&s.shutdown) == 0 { // We bias like bitcoind does, 10 for no outgoing // up to 90 (8) for the selection of new vs tried //addresses. nPeers := state.OutboundCount() if nPeers > 8 { nPeers = 8 } addr := s.addrManager.GetAddress("any", 10+nPeers*10) if addr == nil { break } key := GroupKey(addr.na) // Address will not be invalid, local or unroutable // because addrmanager rejects those on addition. // Just check that we don't already have an address // in the same group so that we are not connecting // to the same network segment at the expense of // others. bitcoind breaks out of the loop here, but // we continue to try other addresses. if state.outboundGroups[key] != 0 { continue } tries++ // After 100 bad tries exit the loop and we'll try again // later. if tries > 100 { break } // XXX if we have limited that address skip // only allow recent nodes (10mins) after we failed 30 // times if time.Now().After(addr.lastattempt.Add(10*time.Minute)) && tries < 30 { continue } // allow nondefault ports after 50 failed tries. if fmt.Sprintf("%d", addr.na.Port) != activeNetParams.DefaultPort && tries < 50 { continue } addrStr := NetAddressKey(addr.na) tries = 0 // any failure will be due to banned peers etc. we have // already checked that we have room for more peers. if s.handleAddPeerMsg(state, newOutboundPeer(s, addrStr, false)) { } } // We we need more peers, wake up in ten seconds and try again. if state.NeedMoreOutbound() { time.AfterFunc(10*time.Second, func() { s.wakeup <- true }) } } s.blockManager.Stop() s.addrManager.Stop() s.wg.Done() srvrLog.Tracef("Peer handler done") } // AddPeer adds a new peer that has already been connected to the server. func (s *server) AddPeer(p *peer) { s.newPeers <- p } // BanPeer bans a peer that has already been connected to the server by ip. func (s *server) BanPeer(p *peer) { s.banPeers <- p } // RelayInventory relays the passed inventory to all connected peers that are // not already known to have it. func (s *server) RelayInventory(invVect *btcwire.InvVect) { s.relayInv <- invVect } // BroadcastMessage sends msg to all peers currently connected to the server // except those in the passed peers to exclude. func (s *server) BroadcastMessage(msg btcwire.Message, exclPeers ...*peer) { // XXX: Need to determine if this is an alert that has already been // broadcast and refrain from broadcasting again. bmsg := broadcastMsg{message: msg, excludePeers: exclPeers} s.broadcast <- bmsg } // ConnectedCount returns the number of currently connected peers. func (s *server) ConnectedCount() int32 { replyChan := make(chan int32) s.query <- getConnCountMsg{reply: replyChan} return <-replyChan } // AddedNodeInfo returns an array of btcjson.GetAddedNodeInfoResult structures // describing the persistent (added) nodes. func (s *server) AddedNodeInfo() []*peer { replyChan := make(chan []*peer) s.query <- getAddedNodesMsg{reply: replyChan} return <-replyChan } // PeerInfo returns an array of PeerInfo structures describing all connected // peers. func (s *server) PeerInfo() []*btcjson.GetPeerInfoResult { replyChan := make(chan []*btcjson.GetPeerInfoResult) s.query <- getPeerInfoMsg{reply: replyChan} return <-replyChan } // AddAddr adds `addr' as a new outbound peer. If permanent is true then the // peer will be persistent and reconnect if the connection is lost. // It is an error to call this with an already existing peer. func (s *server) AddAddr(addr string, permanent bool) error { replyChan := make(chan error) s.query <- addNodeMsg{addr: addr, permanent: permanent, reply: replyChan} return <-replyChan } // RemoveAddr removes `addr' from the list of persistent peers if present. // An error will be returned if the peer was not found. func (s *server) RemoveAddr(addr string) error { replyChan := make(chan error) s.query <- delNodeMsg{addr: addr, reply: replyChan} return <-replyChan } // AddBytesSent adds the passed number of bytes to the total bytes sent counter // for the server. It is safe for concurrent access. func (s *server) AddBytesSent(bytesSent uint64) { s.bytesMutex.Lock() defer s.bytesMutex.Unlock() s.bytesSent += bytesSent } // AddBytesReceived adds the passed number of bytes to the total bytes received // counter for the server. It is safe for concurrent access. func (s *server) AddBytesReceived(bytesReceived uint64) { s.bytesMutex.Lock() defer s.bytesMutex.Unlock() s.bytesReceived += bytesReceived } // NetTotals returns the sum of all bytes received and sent across the network // for all peers. It is safe for concurrent access. func (s *server) NetTotals() (uint64, uint64) { s.bytesMutex.Lock() defer s.bytesMutex.Unlock() return s.bytesReceived, s.bytesSent } // rebroadcastHandler keeps track of user submitted inventories that we have // sent out but have not yet made it into a block. We periodically rebroadcast // them in case our peers restarted or otherwise lost track of them. func (s *server) rebroadcastHandler() { // Wait 5 min before first tx rebroadcast. timer := time.NewTimer(5 * time.Minute) pendingInvs := make(map[btcwire.InvVect]struct{}) out: for { select { case riv := <-s.modifyRebroadcastInv: switch msg := riv.(type) { // Incoming InvVects are added to our map of RPC txs. case broadcastInventoryAdd: pendingInvs[*msg] = struct{}{} // When an InvVect has been added to a block, we can // now remove it, if it was present. case broadcastInventoryDel: if _, ok := pendingInvs[*msg]; ok { delete(pendingInvs, *msg) } } case <-timer.C: // Any inventory we have has not made it into a block // yet. We periodically resubmit them until they have. for iv := range pendingInvs { ivCopy := iv s.RelayInventory(&ivCopy) } // Process at a random time up to 30mins (in seconds) // in the future. timer.Reset(time.Second * time.Duration(randomUint16Number(1800))) case <-s.quit: break out } } timer.Stop() // Drain channels before exiting so nothing is left waiting around // to send. cleanup: for { select { case <-s.modifyRebroadcastInv: default: break cleanup } } s.wg.Done() } // Start begins accepting connections from peers. func (s *server) Start() { // Already started? if atomic.AddInt32(&s.started, 1) != 1 { return } srvrLog.Trace("Starting server") // Start all the listeners. There will not be any if listening is // disabled. for _, listener := range s.listeners { s.wg.Add(1) go s.listenHandler(listener) } // Start the peer handler which in turn starts the address and block // managers. s.wg.Add(1) go s.peerHandler() if s.nat != nil { s.wg.Add(1) go s.upnpUpdateThread() } if !cfg.DisableRPC { s.wg.Add(1) // Start the rebroadcastHandler, which ensures user tx received by // the RPC server are rebroadcast until being included in a block. go s.rebroadcastHandler() s.rpcServer.Start() } // Start the CPU miner if generation is enabled. if cfg.Generate { s.cpuMiner.Start() } } // Stop gracefully shuts down the server by stopping and disconnecting all // peers and the main listener. func (s *server) Stop() error { // Make sure this only happens once. if atomic.AddInt32(&s.shutdown, 1) != 1 { srvrLog.Infof("Server is already in the process of shutting down") return nil } srvrLog.Warnf("Server shutting down") // Stop all the listeners. There will not be any listeners if // listening is disabled. for _, listener := range s.listeners { err := listener.Close() if err != nil { return err } } // Stop the CPU miner if needed s.cpuMiner.Stop() // Shutdown the RPC server if it's not disabled. if !cfg.DisableRPC { s.rpcServer.Stop() } // Signal the remaining goroutines to quit. close(s.quit) return nil } // WaitForShutdown blocks until the main listener and peer handlers are stopped. func (s *server) WaitForShutdown() { s.wg.Wait() } // ScheduleShutdown schedules a server shutdown after the specified duration. // It also dynamically adjusts how often to warn the server is going down based // on remaining duration. func (s *server) ScheduleShutdown(duration time.Duration) { // Don't schedule shutdown more than once. if atomic.AddInt32(&s.shutdownSched, 1) != 1 { return } srvrLog.Warnf("Server shutdown in %v", duration) go func() { remaining := duration tickDuration := dynamicTickDuration(remaining) done := time.After(remaining) ticker := time.NewTicker(tickDuration) out: for { select { case <-done: ticker.Stop() s.Stop() break out case <-ticker.C: remaining = remaining - tickDuration if remaining < time.Second { continue } // Change tick duration dynamically based on remaining time. newDuration := dynamicTickDuration(remaining) if tickDuration != newDuration { tickDuration = newDuration ticker.Stop() ticker = time.NewTicker(tickDuration) } srvrLog.Warnf("Server shutdown in %v", remaining) } } }() } // parseListeners splits the list of listen addresses passed in addrs into // IPv4 and IPv6 slices and returns them. This allows easy creation of the // listeners on the correct interface "tcp4" and "tcp6". It also properly // detects addresses which apply to "all interfaces" and adds the address to // both slices. func parseListeners(addrs []string) ([]string, []string, bool, error) { ipv4ListenAddrs := make([]string, 0, len(addrs)*2) ipv6ListenAddrs := make([]string, 0, len(addrs)*2) haveWildcard := false for _, addr := range addrs { host, _, err := net.SplitHostPort(addr) if err != nil { // Shouldn't happen due to already being normalized. return nil, nil, false, err } // Empty host or host of * on plan9 is both IPv4 and IPv6. if host == "" || (host == "*" && runtime.GOOS == "plan9") { ipv4ListenAddrs = append(ipv4ListenAddrs, addr) ipv6ListenAddrs = append(ipv6ListenAddrs, addr) haveWildcard = true continue } // Parse the IP. ip := net.ParseIP(host) if ip == nil { return nil, nil, false, fmt.Errorf("'%s' is not a "+ "valid IP address", host) } // To4 returns nil when the IP is not an IPv4 address, so use // this determine the address type. if ip.To4() == nil { ipv6ListenAddrs = append(ipv6ListenAddrs, addr) } else { ipv4ListenAddrs = append(ipv4ListenAddrs, addr) } } return ipv4ListenAddrs, ipv6ListenAddrs, haveWildcard, nil } func (s *server) upnpUpdateThread() { // Go off immediately to prevent code duplication, thereafter we renew // lease every 15 minutes. timer := time.NewTimer(0 * time.Second) lport, _ := strconv.ParseInt(activeNetParams.DefaultPort, 10, 16) first := true out: for { select { case <-timer.C: // TODO(oga) pick external port more cleverly // TODO(oga) know which ports we are listening to on an external net. // TODO(oga) if specific listen port doesn't work then ask for wildcard // listen port? // XXX this assumes timeout is in seconds. listenPort, err := s.nat.AddPortMapping("tcp", int(lport), int(lport), "btcd listen port", 20*60) if err != nil { srvrLog.Warnf("can't add UPnP port mapping: %v", err) } if first && err == nil { // TODO(oga): look this up periodically to see if upnp domain changed // and so did ip. externalip, err := s.nat.GetExternalAddress() if err != nil { srvrLog.Warnf("UPnP can't get external address: %v", err) continue out } na := btcwire.NewNetAddressIPPort(externalip, uint16(listenPort), btcwire.SFNodeNetwork) s.addrManager.addLocalAddress(na, UpnpPrio) srvrLog.Warnf("Successfully bound via UPnP to %s", NetAddressKey(na)) first = false } timer.Reset(time.Minute * 15) case <-s.quit: break out } } timer.Stop() if err := s.nat.DeletePortMapping("tcp", int(lport), int(lport)); err != nil { srvrLog.Warnf("unable to remove UPnP port mapping: %v", err) } else { srvrLog.Debugf("succesfully disestablished UPnP port mapping") } s.wg.Done() } // newServer returns a new btcd server configured to listen on addr for the // bitcoin network type specified by netParams. Use start to begin accepting // connections from peers. func newServer(listenAddrs []string, db btcdb.Db, netParams *btcnet.Params) (*server, error) { nonce, err := btcwire.RandomUint64() if err != nil { return nil, err } amgr := NewAddrManager() var listeners []net.Listener var nat NAT if !cfg.DisableListen { ipv4Addrs, ipv6Addrs, wildcard, err := parseListeners(listenAddrs) if err != nil { return nil, err } listeners = make([]net.Listener, 0, len(ipv4Addrs)+len(ipv6Addrs)) discover := true if len(cfg.ExternalIPs) != 0 { discover = false // if this fails we have real issues. port, _ := strconv.ParseUint( activeNetParams.DefaultPort, 10, 16) for _, sip := range cfg.ExternalIPs { eport := uint16(port) host, portstr, err := net.SplitHostPort(sip) if err != nil { // no port, use default. host = sip } else { port, err := strconv.ParseUint( portstr, 10, 16) if err != nil { srvrLog.Warnf("Can not parse "+ "port from %s for "+ "externalip: %v", sip, err) continue } eport = uint16(port) } na, err := hostToNetAddress(host, eport, btcwire.SFNodeNetwork) if err != nil { srvrLog.Warnf("Not adding %s as "+ "externalip: %v", sip, err) continue } amgr.addLocalAddress(na, ManualPrio) } } else if discover && cfg.Upnp { nat, err = Discover() if err != nil { srvrLog.Warnf("Can't discover upnp: %v", err) } // nil nat here is fine, just means no upnp on network. } // TODO(oga) nonstandard port... if wildcard { port, err := strconv.ParseUint(activeNetParams.DefaultPort, 10, 16) if err != nil { // I can't think of a cleaner way to do this... goto nowc } addrs, err := net.InterfaceAddrs() for _, a := range addrs { ip, _, err := net.ParseCIDR(a.String()) if err != nil { continue } na := btcwire.NewNetAddressIPPort(ip, uint16(port), btcwire.SFNodeNetwork) if discover { amgr.addLocalAddress(na, InterfacePrio) } } } nowc: for _, addr := range ipv4Addrs { listener, err := net.Listen("tcp4", addr) if err != nil { srvrLog.Warnf("Can't listen on %s: %v", addr, err) continue } listeners = append(listeners, listener) if discover { if na, err := deserialiseNetAddress(addr); err == nil { amgr.addLocalAddress(na, BoundPrio) } } } for _, addr := range ipv6Addrs { listener, err := net.Listen("tcp6", addr) if err != nil { srvrLog.Warnf("Can't listen on %s: %v", addr, err) continue } listeners = append(listeners, listener) if discover { if na, err := deserialiseNetAddress(addr); err == nil { amgr.addLocalAddress(na, BoundPrio) } } } if len(listeners) == 0 { return nil, errors.New("no valid listen address") } } s := server{ nonce: nonce, listeners: listeners, netParams: netParams, addrManager: amgr, newPeers: make(chan *peer, cfg.MaxPeers), donePeers: make(chan *peer, cfg.MaxPeers), banPeers: make(chan *peer, cfg.MaxPeers), wakeup: make(chan bool), query: make(chan interface{}), relayInv: make(chan *btcwire.InvVect, cfg.MaxPeers), broadcast: make(chan broadcastMsg, cfg.MaxPeers), quit: make(chan bool), modifyRebroadcastInv: make(chan interface{}), nat: nat, db: db, } bm, err := newBlockManager(&s) if err != nil { return nil, err } s.blockManager = bm s.txMemPool = newTxMemPool(&s) s.cpuMiner = newCPUMiner(&s) if !cfg.DisableRPC { s.rpcServer, err = newRPCServer(cfg.RPCListeners, &s) if err != nil { return nil, err } } return &s, nil } // dynamicTickDuration is a convenience function used to dynamically choose a // tick duration based on remaining time. It is primarily used during // server shutdown to make shutdown warnings more frequent as the shutdown time // approaches. func dynamicTickDuration(remaining time.Duration) time.Duration { switch { case remaining <= time.Second*5: return time.Second case remaining <= time.Second*15: return time.Second * 5 case remaining <= time.Minute: return time.Second * 15 case remaining <= time.Minute*5: return time.Minute case remaining <= time.Minute*15: return time.Minute * 5 case remaining <= time.Hour: return time.Minute * 15 } return time.Hour }