// Copyright (c) 2014 Conformal Systems LLC. // Use of this source code is governed by an ISC // license that can be found in the LICENSE file. package main import ( "container/heap" "container/list" "fmt" "time" "github.com/btcsuite/btcchain" "github.com/btcsuite/btcdb" "github.com/btcsuite/btcscript" "github.com/btcsuite/btcutil" "github.com/btcsuite/btcwire" ) const ( // generatedBlockVersion is the version of the block being generated. // It is defined as a constant here rather than using the // btcwire.BlockVersion constant since a change in the block version // will require changes to the generated block. Using the btcwire // constant for generated block version could allow creation of invalid // blocks for the updated version. generatedBlockVersion = 2 // minHighPriority is the minimum priority value that allows a // transaction to be considered high priority. minHighPriority = btcutil.SatoshiPerBitcoin * 144.0 / 250 // blockHeaderOverhead is the max number of bytes it takes to serialize // a block header and max possible transaction count. blockHeaderOverhead = btcwire.MaxBlockHeaderPayload + btcwire.MaxVarIntPayload // coinbaseFlags is added to the coinbase script of a generated block // and is used to monitor BIP16 support as well as blocks that are // generated via btcd. coinbaseFlags = "/P2SH/btcd/" // standardScriptVerifyFlags are the script flags which are used when // executing transaction scripts to enforce additional checks which // are required for the script to be considered standard. These checks // help reduce issues related to transaction malleability as well as // allow pay-to-script hash transactions. Note these flags are // different than what is required for the consensus rules in that they // are more strict. standardScriptVerifyFlags = btcscript.ScriptBip16 | btcscript.ScriptCanonicalSignatures | btcscript.ScriptStrictMultiSig ) // txPrioItem houses a transaction along with extra information that allows the // transaction to be prioritized and track dependencies on other transactions // which have not been mined into a block yet. type txPrioItem struct { tx *btcutil.Tx fee int64 priority float64 feePerKB float64 // dependsOn holds a map of transaction hashes which this one depends // on. It will only be set when the transaction references other // transactions in the memory pool and hence must come after them in // a block. dependsOn map[btcwire.ShaHash]struct{} } // txPriorityQueueLessFunc describes a function that can be used as a compare // function for a transaction priority queue (txPriorityQueue). type txPriorityQueueLessFunc func(*txPriorityQueue, int, int) bool // txPriorityQueue implements a priority queue of txPrioItem elements that // supports an arbitrary compare function as defined by txPriorityQueueLessFunc. type txPriorityQueue struct { lessFunc txPriorityQueueLessFunc items []*txPrioItem } // Len returns the number of items in the priority queue. It is part of the // heap.Interface implementation. func (pq *txPriorityQueue) Len() int { return len(pq.items) } // Less returns whether the item in the priority queue with index i should sort // before the item with index j by deferring to the assigned less function. It // is part of the heap.Interface implementation. func (pq *txPriorityQueue) Less(i, j int) bool { return pq.lessFunc(pq, i, j) } // Swap swaps the items at the passed indices in the priority queue. It is // part of the heap.Interface implementation. func (pq *txPriorityQueue) Swap(i, j int) { pq.items[i], pq.items[j] = pq.items[j], pq.items[i] } // Push pushes the passed item onto the priority queue. It is part of the // heap.Interface implementation. func (pq *txPriorityQueue) Push(x interface{}) { pq.items = append(pq.items, x.(*txPrioItem)) } // Pop removes the highest priority item (according to Less) from the priority // queue and returns it. It is part of the heap.Interface implementation. func (pq *txPriorityQueue) Pop() interface{} { n := len(pq.items) item := pq.items[n-1] pq.items[n-1] = nil pq.items = pq.items[0 : n-1] return item } // SetLessFunc sets the compare function for the priority queue to the provided // function. It also invokes heap.Init on the priority queue using the new // function so it can immediately be used with heap.Push/Pop. func (pq *txPriorityQueue) SetLessFunc(lessFunc txPriorityQueueLessFunc) { pq.lessFunc = lessFunc heap.Init(pq) } // txPQByPriority sorts a txPriorityQueue by transaction priority and then fees // per kilobyte. func txPQByPriority(pq *txPriorityQueue, i, j int) bool { // Using > here so that pop gives the highest priority item as opposed // to the lowest. Sort by priority first, then fee. if pq.items[i].priority == pq.items[j].priority { return pq.items[i].feePerKB > pq.items[j].feePerKB } return pq.items[i].priority > pq.items[j].priority } // txPQByFee sorts a txPriorityQueue by fees per kilobyte and then transaction // priority. func txPQByFee(pq *txPriorityQueue, i, j int) bool { // Using > here so that pop gives the highest fee item as opposed // to the lowest. Sort by fee first, then priority. if pq.items[i].feePerKB == pq.items[j].feePerKB { return pq.items[i].priority > pq.items[j].priority } return pq.items[i].feePerKB > pq.items[j].feePerKB } // newTxPriorityQueue returns a new transaction priority queue that reserves the // passed amount of space for the elements. The new priority queue uses either // the txPQByPriority or the txPQByFee compare function depending on the // sortByFee parameter and is already initialized for use with heap.Push/Pop. // The priority queue can grow larger than the reserved space, but extra copies // of the underlying array can be avoided by reserving a sane value. func newTxPriorityQueue(reserve int, sortByFee bool) *txPriorityQueue { pq := &txPriorityQueue{ items: make([]*txPrioItem, 0, reserve), } if sortByFee { pq.SetLessFunc(txPQByFee) } else { pq.SetLessFunc(txPQByPriority) } return pq } // BlockTemplate houses a block that has yet to be solved along with additional // details about the fees and the number of signature operations for each // transaction in the block. type BlockTemplate struct { block *btcwire.MsgBlock fees []int64 sigOpCounts []int64 height int64 validPayAddress bool } // minInt is a helper function to return the minimum of two ints. This avoids // a math import and the need to cast to floats. func minInt(a, b int) int { if a < b { return a } return b } // mergeTxStore adds all of the transactions in txStoreB to txStoreA. The // result is that txStoreA will contain all of its original transactions plus // all of the transactions in txStoreB. func mergeTxStore(txStoreA btcchain.TxStore, txStoreB btcchain.TxStore) { for hash, txDataB := range txStoreB { if txDataA, exists := txStoreA[hash]; !exists || (txDataA.Err == btcdb.ErrTxShaMissing && txDataB.Err != btcdb.ErrTxShaMissing) { txStoreA[hash] = txDataB } } } // standardCoinbaseScript returns a standard script suitable for use as the // signature script of the coinbase transaction of a new block. In particular, // it starts with the block height that is required by version 2 blocks and adds // the extra nonce as well as additional coinbase flags. func standardCoinbaseScript(nextBlockHeight int64, extraNonce uint64) []byte { return btcscript.NewScriptBuilder().AddInt64(nextBlockHeight). AddUint64(extraNonce).AddData([]byte(coinbaseFlags)).Script() } // createCoinbaseTx returns a coinbase transaction paying an appropriate subsidy // based on the passed block height to the provided address. When the address // is nil, the coinbase transaction will instead be redeemable by anyone. // // See the comment for NewBlockTemplate for more information about why the nil // address handling is useful. func createCoinbaseTx(coinbaseScript []byte, nextBlockHeight int64, addr btcutil.Address) (*btcutil.Tx, error) { // Create the script to pay to the provided payment address if one was // specified. Otherwise create a script that allows the coinbase to be // redeemable by anyone. var pkScript []byte if addr != nil { var err error pkScript, err = btcscript.PayToAddrScript(addr) if err != nil { return nil, err } } else { scriptBuilder := btcscript.NewScriptBuilder() pkScript = scriptBuilder.AddOp(btcscript.OP_TRUE).Script() } tx := btcwire.NewMsgTx() tx.AddTxIn(&btcwire.TxIn{ // Coinbase transactions have no inputs, so previous outpoint is // zero hash and max index. PreviousOutPoint: *btcwire.NewOutPoint(&btcwire.ShaHash{}, btcwire.MaxPrevOutIndex), SignatureScript: coinbaseScript, Sequence: btcwire.MaxTxInSequenceNum, }) tx.AddTxOut(&btcwire.TxOut{ Value: btcchain.CalcBlockSubsidy(nextBlockHeight, activeNetParams.Params), PkScript: pkScript, }) return btcutil.NewTx(tx), nil } // calcPriority returns a transaction priority given a transaction and the sum // of each of its input values multiplied by their age (# of confirmations). // Thus, the final formula for the priority is: // sum(inputValue * inputAge) / adjustedTxSize func calcPriority(tx *btcutil.Tx, serializedTxSize int, inputValueAge float64) float64 { // In order to encourage spending multiple old unspent transaction // outputs thereby reducing the total set, don't count the constant // overhead for each input as well as enough bytes of the signature // script to cover a pay-to-script-hash redemption with a compressed // pubkey. This makes additional inputs free by boosting the priority // of the transaction accordingly. No more incentive is given to avoid // encouraging gaming future transactions through the use of junk // outputs. This is the same logic used in the reference // implementation. // // The constant overhead for a txin is 41 bytes since the previous // outpoint is 36 bytes + 4 bytes for the sequence + 1 byte the // signature script length. // // A compressed pubkey pay-to-script-hash redemption with a maximum len // signature is of the form: // [OP_DATA_73 <73-byte sig> + OP_DATA_35 + {OP_DATA_33 // <33 byte compresed pubkey> + OP_CHECKSIG}] // // Thus 1 + 73 + 1 + 1 + 33 + 1 = 110 overhead := 0 for _, txIn := range tx.MsgTx().TxIn { // Max inputs + size can't possibly overflow here. overhead += 41 + minInt(110, len(txIn.SignatureScript)) } if overhead >= serializedTxSize { return 0.0 } return inputValueAge / float64(serializedTxSize-overhead) } // spendTransaction updates the passed transaction store by marking the inputs // to the passed transaction as spent. It also adds the passed transaction to // the store at the provided height. func spendTransaction(txStore btcchain.TxStore, tx *btcutil.Tx, height int64) error { for _, txIn := range tx.MsgTx().TxIn { originHash := &txIn.PreviousOutPoint.Hash originIndex := txIn.PreviousOutPoint.Index if originTx, exists := txStore[*originHash]; exists { originTx.Spent[originIndex] = true } } txStore[*tx.Sha()] = &btcchain.TxData{ Tx: tx, Hash: tx.Sha(), BlockHeight: height, Spent: make([]bool, len(tx.MsgTx().TxOut)), Err: nil, } return nil } // logSkippedDeps logs any dependencies which are also skipped as a result of // skipping a transaction while generating a block template at the trace level. func logSkippedDeps(tx *btcutil.Tx, deps *list.List) { if deps == nil { return } for e := deps.Front(); e != nil; e = e.Next() { item := e.Value.(*txPrioItem) minrLog.Tracef("Skipping tx %s since it depends on %s\n", item.tx.Sha(), tx.Sha()) } } // minimumMedianTime returns the minimum allowed timestamp for a block building // on the end of the current best chain. In particular, it is one second after // the median timestamp of the last several blocks per the chain consensus // rules. func minimumMedianTime(chainState *chainState) (time.Time, error) { chainState.Lock() defer chainState.Unlock() if chainState.pastMedianTimeErr != nil { return time.Time{}, chainState.pastMedianTimeErr } return chainState.pastMedianTime.Add(time.Second), nil } // medianAdjustedTime returns the current time adjusted to ensure it is at least // one second after the median timestamp of the last several blocks per the // chain consensus rules. func medianAdjustedTime(chainState *chainState) (time.Time, error) { chainState.Lock() defer chainState.Unlock() if chainState.pastMedianTimeErr != nil { return time.Time{}, chainState.pastMedianTimeErr } // The timestamp for the block must not be before the median timestamp // of the last several blocks. Thus, choose the maximum between the // current time and one second after the past median time. The current // timestamp is truncated to a second boundary before comparison since a // block timestamp does not supported a precision greater than one // second. newTimestamp := time.Unix(time.Now().Unix(), 0) minTimestamp := chainState.pastMedianTime.Add(time.Second) if newTimestamp.Before(minTimestamp) { newTimestamp = minTimestamp } return newTimestamp, nil } // NewBlockTemplate returns a new block template that is ready to be solved // using the transactions from the passed transaction memory pool and a coinbase // that either pays to the passed address if it is not nil, or a coinbase that // is redeemable by anyone if the passed address is nil. The nil address // functionality is useful since there are cases such as the getblocktemplate // RPC where external mining software is responsible for creating their own // coinbase which will replace the one generated for the block template. Thus // the need to have configured address can be avoided. // // The transactions selected and included are prioritized according to several // factors. First, each transaction has a priority calculated based on its // value, age of inputs, and size. Transactions which consist of larger // amounts, older inputs, and small sizes have the highest priority. Second, a // fee per kilobyte is calculated for each transaction. Transactions with a // higher fee per kilobyte are preferred. Finally, the block generation related // configuration options are all taken into account. // // Transactions which only spend outputs from other transactions already in the // block chain are immediately added to a priority queue which either // prioritizes based on the priority (then fee per kilobyte) or the fee per // kilobyte (then priority) depending on whether or not the BlockPrioritySize // configuration option allots space for high-priority transactions. // Transactions which spend outputs from other transactions in the memory pool // are added to a dependency map so they can be added to the priority queue once // the transactions they depend on have been included. // // Once the high-priority area (if configured) has been filled with transactions, // or the priority falls below what is considered high-priority, the priority // queue is updated to prioritize by fees per kilobyte (then priority). // // When the fees per kilobyte drop below the TxMinFreeFee configuration option, // the transaction will be skipped unless there is a BlockMinSize set, in which // case the block will be filled with the low-fee/free transactions until the // block size reaches that minimum size. // // Any transactions which would cause the block to exceed the BlockMaxSize // configuration option, exceed the maximum allowed signature operations per // block, or otherwise cause the block to be invalid are skipped. // // Given the above, a block generated by this function is of the following form: // // ----------------------------------- -- -- // | Coinbase Transaction | | | // |-----------------------------------| | | // | | | | ----- cfg.BlockPrioritySize // | High-priority Transactions | | | // | | | | // |-----------------------------------| | -- // | | | // | | | // | | |--- cfg.BlockMaxSize // | Transactions prioritized by fee | | // | until <= cfg.TxMinFreeFee | | // | | | // | | | // | | | // |-----------------------------------| | // | Low-fee/Non high-priority (free) | | // | transactions (while block size | | // | <= cfg.BlockMinSize) | | // ----------------------------------- -- func NewBlockTemplate(mempool *txMemPool, payToAddress btcutil.Address) (*BlockTemplate, error) { blockManager := mempool.server.blockManager chainState := &blockManager.chainState chain := blockManager.blockChain // Extend the most recently known best block. chainState.Lock() prevHash := chainState.newestHash nextBlockHeight := chainState.newestHeight + 1 chainState.Unlock() // Create a standard coinbase transaction paying to the provided // address. NOTE: The coinbase value will be updated to include the // fees from the selected transactions later after they have actually // been selected. It is created here to detect any errors early // before potentially doing a lot of work below. The extra nonce helps // ensure the transaction is not a duplicate transaction (paying the // same value to the same public key address would otherwise be an // identical transaction for block version 1). extraNonce := uint64(0) coinbaseScript := standardCoinbaseScript(nextBlockHeight, extraNonce) coinbaseTx, err := createCoinbaseTx(coinbaseScript, nextBlockHeight, payToAddress) if err != nil { return nil, err } numCoinbaseSigOps := int64(btcchain.CountSigOps(coinbaseTx)) // Get the current memory pool transactions and create a priority queue // to hold the transactions which are ready for inclusion into a block // along with some priority related and fee metadata. Reserve the same // number of items that are in the memory pool for the priority queue. // Also, choose the initial sort order for the priority queue based on // whether or not there is an area allocated for high-priority // transactions. mempoolTxns := mempool.TxDescs() sortedByFee := cfg.BlockPrioritySize == 0 priorityQueue := newTxPriorityQueue(len(mempoolTxns), sortedByFee) // Create a slice to hold the transactions to be included in the // generated block with reserved space. Also create a transaction // store to house all of the input transactions so multiple lookups // can be avoided. blockTxns := make([]*btcutil.Tx, 0, len(mempoolTxns)) blockTxns = append(blockTxns, coinbaseTx) blockTxStore := make(btcchain.TxStore) // dependers is used to track transactions which depend on another // transaction in the memory pool. This, in conjunction with the // dependsOn map kept with each dependent transaction helps quickly // determine which dependent transactions are now eligible for inclusion // in the block once each transaction has been included. dependers := make(map[btcwire.ShaHash]*list.List) // Create slices to hold the fees and number of signature operations // for each of the selected transactions and add an entry for the // coinbase. This allows the code below to simply append details about // a transaction as it is selected for inclusion in the final block. // However, since the total fees aren't known yet, use a dummy value for // the coinbase fee which will be updated later. txFees := make([]int64, 0, len(mempoolTxns)) txSigOpCounts := make([]int64, 0, len(mempoolTxns)) txFees = append(txFees, -1) // Updated once known txSigOpCounts = append(txSigOpCounts, numCoinbaseSigOps) minrLog.Debugf("Considering %d mempool transactions for inclusion to "+ "new block", len(mempoolTxns)) mempoolLoop: for _, txDesc := range mempoolTxns { // A block can't have more than one coinbase or contain // non-finalized transactions. tx := txDesc.Tx if btcchain.IsCoinBase(tx) { minrLog.Tracef("Skipping coinbase tx %s", tx.Sha()) continue } if !btcchain.IsFinalizedTransaction(tx, nextBlockHeight, time.Now()) { minrLog.Tracef("Skipping non-finalized tx %s", tx.Sha()) continue } // Fetch all of the transactions referenced by the inputs to // this transaction. NOTE: This intentionally does not fetch // inputs from the mempool since a transaction which depends on // other transactions in the mempool must come after those // dependencies in the final generated block. txStore, err := chain.FetchTransactionStore(tx) if err != nil { minrLog.Warnf("Unable to fetch transaction store for "+ "tx %s: %v", tx.Sha(), err) continue } // Setup dependencies for any transactions which reference // other transactions in the mempool so they can be properly // ordered below. prioItem := &txPrioItem{tx: txDesc.Tx} for _, txIn := range tx.MsgTx().TxIn { originHash := &txIn.PreviousOutPoint.Hash originIndex := txIn.PreviousOutPoint.Index txData, exists := txStore[*originHash] if !exists || txData.Err != nil || txData.Tx == nil { if !mempool.HaveTransaction(originHash) { minrLog.Tracef("Skipping tx %s because "+ "it references tx %s which is "+ "not available", tx.Sha, originHash) continue mempoolLoop } // The transaction is referencing another // transaction in the memory pool, so setup an // ordering dependency. depList, exists := dependers[*originHash] if !exists { depList = list.New() dependers[*originHash] = depList } depList.PushBack(prioItem) if prioItem.dependsOn == nil { prioItem.dependsOn = make( map[btcwire.ShaHash]struct{}) } prioItem.dependsOn[*originHash] = struct{}{} // Skip the check below. We already know the // referenced transaction is available. continue } // Ensure the output index in the referenced transaction // is available. msgTx := txData.Tx.MsgTx() if originIndex > uint32(len(msgTx.TxOut)) { minrLog.Tracef("Skipping tx %s because "+ "it references output %d of tx %s "+ "which is out of bounds", tx.Sha, originIndex, originHash) continue mempoolLoop } } // Calculate the final transaction priority using the input // value age sum as well as the adjusted transaction size. The // formula is: sum(inputValue * inputAge) / adjustedTxSize prioItem.priority = txDesc.CurrentPriority(txStore, nextBlockHeight) // Calculate the fee in Satoshi/KB. // NOTE: This is a more precise value than the one calculated // during calcMinRelayFee which rounds up to the nearest full // kilobyte boundary. This is beneficial since it provides an // incentive to create smaller transactions. txSize := tx.MsgTx().SerializeSize() prioItem.feePerKB = float64(txDesc.Fee) / (float64(txSize) / 1000) prioItem.fee = txDesc.Fee // Add the transaction to the priority queue to mark it ready // for inclusion in the block unless it has dependencies. if prioItem.dependsOn == nil { heap.Push(priorityQueue, prioItem) } // Merge the store which contains all of the input transactions // for this transaction into the input transaction store. This // allows the code below to avoid a second lookup. mergeTxStore(blockTxStore, txStore) } minrLog.Tracef("Priority queue len %d, dependers len %d", priorityQueue.Len(), len(dependers)) // The starting block size is the size of the block header plus the max // possible transaction count size, plus the size of the coinbase // transaction. blockSize := blockHeaderOverhead + uint32(coinbaseTx.MsgTx().SerializeSize()) blockSigOps := numCoinbaseSigOps totalFees := int64(0) // Choose which transactions make it into the block. for priorityQueue.Len() > 0 { // Grab the highest priority (or highest fee per kilobyte // depending on the sort order) transaction. prioItem := heap.Pop(priorityQueue).(*txPrioItem) tx := prioItem.tx // Grab the list of transactions which depend on this one (if // any) and remove the entry for this transaction as it will // either be included or skipped, but in either case the deps // are no longer needed. deps := dependers[*tx.Sha()] delete(dependers, *tx.Sha()) // Enforce maximum block size. Also check for overflow. txSize := uint32(tx.MsgTx().SerializeSize()) blockPlusTxSize := blockSize + txSize if blockPlusTxSize < blockSize || blockPlusTxSize >= cfg.BlockMaxSize { minrLog.Tracef("Skipping tx %s because it would exceed "+ "the max block size", tx.Sha()) logSkippedDeps(tx, deps) continue } // Enforce maximum signature operations per block. Also check // for overflow. numSigOps := int64(btcchain.CountSigOps(tx)) if blockSigOps+numSigOps < blockSigOps || blockSigOps+numSigOps > btcchain.MaxSigOpsPerBlock { minrLog.Tracef("Skipping tx %s because it would "+ "exceed the maximum sigops per block", tx.Sha()) logSkippedDeps(tx, deps) continue } numP2SHSigOps, err := btcchain.CountP2SHSigOps(tx, false, blockTxStore) if err != nil { minrLog.Tracef("Skipping tx %s due to error in "+ "CountP2SHSigOps: %v", tx.Sha(), err) logSkippedDeps(tx, deps) continue } numSigOps += int64(numP2SHSigOps) if blockSigOps+numSigOps < blockSigOps || blockSigOps+numSigOps > btcchain.MaxSigOpsPerBlock { minrLog.Tracef("Skipping tx %s because it would "+ "exceed the maximum sigops per block (p2sh)", tx.Sha()) logSkippedDeps(tx, deps) continue } // Skip free transactions once the block is larger than the // minimum block size. if sortedByFee && prioItem.feePerKB < minTxRelayFee && blockPlusTxSize >= cfg.BlockMinSize { minrLog.Tracef("Skipping tx %s with feePerKB %.2f "+ "< minTxRelayFee %d and block size %d >= "+ "minBlockSize %d", tx.Sha(), prioItem.feePerKB, minTxRelayFee, blockPlusTxSize, cfg.BlockMinSize) logSkippedDeps(tx, deps) continue } // Prioritize by fee per kilobyte once the block is larger than // the priority size or there are no more high-priority // transactions. if !sortedByFee && (blockPlusTxSize >= cfg.BlockPrioritySize || prioItem.priority <= minHighPriority) { minrLog.Tracef("Switching to sort by fees per "+ "kilobyte blockSize %d >= BlockPrioritySize "+ "%d || priority %.2f <= minHighPriority %.2f", blockPlusTxSize, cfg.BlockPrioritySize, prioItem.priority, minHighPriority) sortedByFee = true priorityQueue.SetLessFunc(txPQByFee) // Put the transaction back into the priority queue and // skip it so it is re-priortized by fees if it won't // fit into the high-priority section or the priority is // too low. Otherwise this transaction will be the // final one in the high-priority section, so just fall // though to the code below so it is added now. if blockPlusTxSize > cfg.BlockPrioritySize || prioItem.priority < minHighPriority { heap.Push(priorityQueue, prioItem) continue } } // Ensure the transaction inputs pass all of the necessary // preconditions before allowing it to be added to the block. _, err = btcchain.CheckTransactionInputs(tx, nextBlockHeight, blockTxStore) if err != nil { minrLog.Tracef("Skipping tx %s due to error in "+ "CheckTransactionInputs: %v", tx.Sha(), err) logSkippedDeps(tx, deps) continue } err = btcchain.ValidateTransactionScripts(tx, blockTxStore, standardScriptVerifyFlags) if err != nil { minrLog.Tracef("Skipping tx %s due to error in "+ "ValidateTransactionScripts: %v", tx.Sha(), err) logSkippedDeps(tx, deps) continue } // Spend the transaction inputs in the block transaction store // and add an entry for it to ensure any transactions which // reference this one have it available as an input and can // ensure they aren't double spending. spendTransaction(blockTxStore, tx, nextBlockHeight) // Add the transaction to the block, increment counters, and // save the fees and signature operation counts to the block // template. blockTxns = append(blockTxns, tx) blockSize += txSize blockSigOps += numSigOps totalFees += prioItem.fee txFees = append(txFees, prioItem.fee) txSigOpCounts = append(txSigOpCounts, numSigOps) minrLog.Tracef("Adding tx %s (priority %.2f, feePerKB %.2f)", prioItem.tx.Sha(), prioItem.priority, prioItem.feePerKB) // Add transactions which depend on this one (and also do not // have any other unsatisified dependencies) to the priority // queue. if deps != nil { for e := deps.Front(); e != nil; e = e.Next() { // Add the transaction to the priority queue if // there are no more dependencies after this // one. item := e.Value.(*txPrioItem) delete(item.dependsOn, *tx.Sha()) if len(item.dependsOn) == 0 { heap.Push(priorityQueue, item) } } } } // Now that the actual transactions have been selected, update the // block size for the real transaction count and coinbase value with // the total fees accordingly. blockSize -= btcwire.MaxVarIntPayload - uint32(btcwire.VarIntSerializeSize(uint64(len(blockTxns)))) coinbaseTx.MsgTx().TxOut[0].Value += totalFees txFees[0] = -totalFees // Calculate the required difficulty for the block. The timestamp // is potentially adjusted to ensure it comes after the median time of // the last several blocks per the chain consensus rules. ts, err := medianAdjustedTime(chainState) if err != nil { return nil, err } requiredDifficulty, err := blockManager.CalcNextRequiredDifficulty(ts) if err != nil { return nil, err } // Create a new block ready to be solved. merkles := btcchain.BuildMerkleTreeStore(blockTxns) var msgBlock btcwire.MsgBlock msgBlock.Header = btcwire.BlockHeader{ Version: generatedBlockVersion, PrevBlock: *prevHash, MerkleRoot: *merkles[len(merkles)-1], Timestamp: ts, Bits: requiredDifficulty, } for _, tx := range blockTxns { if err := msgBlock.AddTransaction(tx.MsgTx()); err != nil { return nil, err } } // Finally, perform a full check on the created block against the chain // consensus rules to ensure it properly connects to the current best // chain with no issues. block := btcutil.NewBlock(&msgBlock) block.SetHeight(nextBlockHeight) if err := blockManager.CheckConnectBlock(block); err != nil { return nil, err } minrLog.Debugf("Created new block template (%d transactions, %d in "+ "fees, %d signature operations, %d bytes, target difficulty "+ "%064x)", len(msgBlock.Transactions), totalFees, blockSigOps, blockSize, btcchain.CompactToBig(msgBlock.Header.Bits)) return &BlockTemplate{ block: &msgBlock, fees: txFees, sigOpCounts: txSigOpCounts, height: nextBlockHeight, validPayAddress: payToAddress != nil, }, nil } // UpdateBlockTime updates the timestamp in the header of the passed block to // the current time while taking into account the median time of the last // several blocks to ensure the new time is after that time per the chain // consensus rules. Finally, it will update the target difficulty if needed // based on the new time for the test networks since their target difficulty can // change based upon time. func UpdateBlockTime(msgBlock *btcwire.MsgBlock, bManager *blockManager) error { // The new timestamp is potentially adjusted to ensure it comes after // the median time of the last several blocks per the chain consensus // rules. newTimestamp, err := medianAdjustedTime(&bManager.chainState) if err != nil { return err } msgBlock.Header.Timestamp = newTimestamp // If running on a network that requires recalculating the difficulty, // do so now. if activeNetParams.ResetMinDifficulty { difficulty, err := bManager.CalcNextRequiredDifficulty(newTimestamp) if err != nil { return err } msgBlock.Header.Bits = difficulty } return nil } // UpdateExtraNonce updates the extra nonce in the coinbase script of the passed // block by regenerating the coinbase script with the passed value and block // height. It also recalculates and updates the new merkle root that results // from changing the coinbase script. func UpdateExtraNonce(msgBlock *btcwire.MsgBlock, blockHeight int64, extraNonce uint64) error { coinbaseScript := standardCoinbaseScript(blockHeight, extraNonce) if len(coinbaseScript) > btcchain.MaxCoinbaseScriptLen { return fmt.Errorf("coinbase transaction script length "+ "of %d is out of range (min: %d, max: %d)", len(coinbaseScript), btcchain.MinCoinbaseScriptLen, btcchain.MaxCoinbaseScriptLen) } msgBlock.Transactions[0].TxIn[0].SignatureScript = coinbaseScript // TODO(davec): A btcutil.Block should use saved in the state to avoid // recalculating all of the other transaction hashes. // block.Transactions[0].InvalidateCache() // Recalculate the merkle root with the updated extra nonce. block := btcutil.NewBlock(msgBlock) merkles := btcchain.BuildMerkleTreeStore(block.Transactions()) msgBlock.Header.MerkleRoot = *merkles[len(merkles)-1] return nil }