// Copyright (c) 2015-2016 The btcsuite developers // Use of this source code is governed by an ISC // license that can be found in the LICENSE file. package treap import ( "bytes" "math/rand" "sync" ) var nodePool = &sync.Pool{New: func() interface{} { return newTreapNode(nil, nil, 0) }} // cloneTreapNode returns a shallow copy of the passed node. func cloneTreapNode(node *treapNode) *treapNode { clone := nodePool.Get().(*treapNode) clone.key = node.key clone.value = node.value clone.priority = node.priority clone.left = node.left clone.right = node.right return clone } // Immutable represents a treap data structure which is used to hold ordered // key/value pairs using a combination of binary search tree and heap semantics. // It is a self-organizing and randomized data structure that doesn't require // complex operations to maintain balance. Search, insert, and delete // operations are all O(log n). In addition, it provides O(1) snapshots for // multi-version concurrency control (MVCC). // // All operations which result in modifying the treap return a new version of // the treap with only the modified nodes updated. All unmodified nodes are // shared with the previous version. This is extremely useful in concurrent // applications since the caller only has to atomically replace the treap // pointer with the newly returned version after performing any mutations. All // readers can simply use their existing pointer as a snapshot since the treap // it points to is immutable. This effectively provides O(1) snapshot // capability with efficient memory usage characteristics since the old nodes // only remain allocated until there are no longer any references to them. type Immutable struct { root *treapNode count int // totalSize is the best estimate of the total size of of all data in // the treap including the keys, values, and node sizes. totalSize uint64 } // newImmutable returns a new immutable treap given the passed parameters. func newImmutable(root *treapNode, count int, totalSize uint64) *Immutable { return &Immutable{root: root, count: count, totalSize: totalSize} } // Len returns the number of items stored in the treap. func (t *Immutable) Len() int { return t.count } // Size returns a best estimate of the total number of bytes the treap is // consuming including all of the fields used to represent the nodes as well as // the size of the keys and values. Shared values are not detected, so the // returned size assumes each value is pointing to different memory. func (t *Immutable) Size() uint64 { return t.totalSize } // get returns the treap node that contains the passed key. It will return nil // when the key does not exist. func (t *Immutable) get(key []byte) *treapNode { for node := t.root; node != nil; { // Traverse left or right depending on the result of the // comparison. compareResult := bytes.Compare(key, node.key) if compareResult < 0 { node = node.left continue } if compareResult > 0 { node = node.right continue } // The key exists. return node } // A nil node was reached which means the key does not exist. return nil } // Has returns whether or not the passed key exists. func (t *Immutable) Has(key []byte) bool { if node := t.get(key); node != nil { return true } return false } // Get returns the value for the passed key. The function will return nil when // the key does not exist. func (t *Immutable) Get(key []byte) []byte { if node := t.get(key); node != nil { return node.value } return nil } // Put inserts the passed key/value pair. func (t *Immutable) Put(key, value []byte) *Immutable { // Use an empty byte slice for the value when none was provided. This // ultimately allows key existence to be determined from the value since // an empty byte slice is distinguishable from nil. if value == nil { value = emptySlice } // The node is the root of the tree if there isn't already one. if t.root == nil { root := newTreapNode(key, value, rand.Int()) return newImmutable(root, 1, nodeSize(root)) } // Find the binary tree insertion point and construct a replaced list of // parents while doing so. This is done because this is an immutable // data structure so regardless of where in the treap the new key/value // pair ends up, all ancestors up to and including the root need to be // replaced. // // When the key matches an entry already in the treap, replace the node // with a new one that has the new value set and return. var parents parentStack var compareResult int for node := t.root; node != nil; { // Clone the node and link its parent to it if needed. nodeCopy := cloneTreapNode(node) if oldParent := parents.At(0); oldParent != nil { if oldParent.left == node { oldParent.left = nodeCopy } else { oldParent.right = nodeCopy } } parents.Push(nodeCopy) // Traverse left or right depending on the result of comparing // the keys. compareResult = bytes.Compare(key, node.key) if compareResult < 0 { node = node.left continue } if compareResult > 0 { node = node.right continue } // The key already exists, so update its value. nodeCopy.value = value // Return new immutable treap with the replaced node and // ancestors up to and including the root of the tree. newRoot := parents.At(parents.Len() - 1) newTotalSize := t.totalSize - uint64(len(node.value)) + uint64(len(value)) return newImmutable(newRoot, t.count, newTotalSize) } // Link the new node into the binary tree in the correct position. node := nodePool.Get().(*treapNode) node.key = key node.value = value node.priority = rand.Int() parent := parents.At(0) if compareResult < 0 { parent.left = node } else { parent.right = node } // Perform any rotations needed to maintain the min-heap and replace // the ancestors up to and including the tree root. newRoot := parents.At(parents.Len() - 1) for parents.Len() > 0 { // There is nothing left to do when the node's priority is // greater than or equal to its parent's priority. parent = parents.Pop() if node.priority >= parent.priority { break } // Perform a right rotation if the node is on the left side or // a left rotation if the node is on the right side. if parent.left == node { node.right, parent.left = parent, node.right } else { node.left, parent.right = parent, node.left } // Either set the new root of the tree when there is no // grandparent or relink the grandparent to the node based on // which side the old parent the node is replacing was on. grandparent := parents.At(0) if grandparent == nil { newRoot = node } else if grandparent.left == parent { grandparent.left = node } else { grandparent.right = node } } return newImmutable(newRoot, t.count+1, t.totalSize+nodeSize(node)) } // Delete removes the passed key from the treap and returns the resulting treap // if it exists. The original immutable treap is returned if the key does not // exist. func (t *Immutable) Delete(key []byte) *Immutable { // Find the node for the key while constructing a list of parents while // doing so. var parents parentStack var delNode *treapNode for node := t.root; node != nil; { parents.Push(node) // Traverse left or right depending on the result of the // comparison. compareResult := bytes.Compare(key, node.key) if compareResult < 0 { node = node.left continue } if compareResult > 0 { node = node.right continue } // The key exists. delNode = node break } // There is nothing to do if the key does not exist. if delNode == nil { return t } // When the only node in the tree is the root node and it is the one // being deleted, there is nothing else to do besides removing it. parent := parents.At(1) if parent == nil && delNode.left == nil && delNode.right == nil { return newImmutable(nil, 0, 0) } // Construct a replaced list of parents and the node to delete itself. // This is done because this is an immutable data structure and // therefore all ancestors of the node that will be deleted, up to and // including the root, need to be replaced. var newParents parentStack for i := parents.Len(); i > 0; i-- { node := parents.At(i - 1) nodeCopy := cloneTreapNode(node) if oldParent := newParents.At(0); oldParent != nil { if oldParent.left == node { oldParent.left = nodeCopy } else { oldParent.right = nodeCopy } } newParents.Push(nodeCopy) } delNode = newParents.Pop() parent = newParents.At(0) // Perform rotations to move the node to delete to a leaf position while // maintaining the min-heap while replacing the modified children. var child *treapNode newRoot := newParents.At(newParents.Len() - 1) for delNode.left != nil || delNode.right != nil { // Choose the child with the higher priority. var isLeft bool if delNode.left == nil { child = delNode.right } else if delNode.right == nil { child = delNode.left isLeft = true } else if delNode.left.priority >= delNode.right.priority { child = delNode.left isLeft = true } else { child = delNode.right } // Rotate left or right depending on which side the child node // is on. This has the effect of moving the node to delete // towards the bottom of the tree while maintaining the // min-heap. child = cloneTreapNode(child) if isLeft { child.right, delNode.left = delNode, child.right } else { child.left, delNode.right = delNode, child.left } // Either set the new root of the tree when there is no // grandparent or relink the grandparent to the node based on // which side the old parent the node is replacing was on. // // Since the node to be deleted was just moved down a level, the // new grandparent is now the current parent and the new parent // is the current child. if parent == nil { newRoot = child } else if parent.left == delNode { parent.left = child } else { parent.right = child } // The parent for the node to delete is now what was previously // its child. parent = child } // Delete the node, which is now a leaf node, by disconnecting it from // its parent. if parent.right == delNode { parent.right = nil } else { parent.left = nil } return newImmutable(newRoot, t.count-1, t.totalSize-nodeSize(delNode)) } // ForEach invokes the passed function with every key/value pair in the treap // in ascending order. func (t *Immutable) ForEach(fn func(k, v []byte) bool) { // Add the root node and all children to the left of it to the list of // nodes to traverse and loop until they, and all of their child nodes, // have been traversed. var parents parentStack for node := t.root; node != nil; node = node.left { parents.Push(node) } for parents.Len() > 0 { node := parents.Pop() if !fn(node.key, node.value) { return } // Extend the nodes to traverse by all children to the left of // the current node's right child. for node := node.right; node != nil; node = node.left { parents.Push(node) } } } // NewImmutable returns a new empty immutable treap ready for use. See the // documentation for the Immutable structure for more details. func NewImmutable() *Immutable { return &Immutable{} } func (t *Immutable) Recycle() { var parents parentStack for node := t.root; node != nil; node = node.left { parents.Push(node) } for parents.Len() > 0 { node := parents.Pop() // Extend the nodes to traverse by all children to the left of // the current node's right child. for n := node.right; n != nil; n = n.left { parents.Push(n) } node.Reset() nodePool.Put(node) } }