// Copyright (c) 2013-2014 Conformal Systems LLC. // Use of this source code is governed by an ISC // license that can be found in the LICENSE file. package main import ( "container/list" "fmt" "github.com/conformal/btcchain" "github.com/conformal/btcdb" "github.com/conformal/btcutil" "github.com/conformal/btcwire" "net" "os" "path/filepath" "sync" "sync/atomic" "time" ) const ( chanBufferSize = 50 // blockDbNamePrefix is the prefix for the block database name. The // database type is appended to this value to form the full block // database name. blockDbNamePrefix = "blocks" ) // newPeerMsg signifies a newly connected peer to the block handler. type newPeerMsg struct { peer *peer } // blockMsg packages a bitcoin block message and the peer it came from together // so the block handler has access to that information. type blockMsg struct { block *btcutil.Block peer *peer } // invMsg packages a bitcoin inv message and the peer it came from together // so the block handler has access to that information. type invMsg struct { inv *btcwire.MsgInv peer *peer } // blockMsg packages a bitcoin block message and the peer it came from together // so the block handler has access to that information. type headersMsg struct { headers *btcwire.MsgHeaders peer *peer } // donePeerMsg signifies a newly disconnected peer to the block handler. type donePeerMsg struct { peer *peer } // txMsg packages a bitcoin tx message and the peer it came from together // so the block handler has access to that information. type txMsg struct { tx *btcutil.Tx peer *peer } // blockManager provides a concurrency safe block manager for handling all // incoming blocks. type blockManager struct { server *server started int32 shutdown int32 blockChain *btcchain.BlockChain blockPeer map[btcwire.ShaHash]*peer requestedTxns map[btcwire.ShaHash]bool requestedBlocks map[btcwire.ShaHash]bool receivedLogBlocks int64 receivedLogTx int64 lastBlockLogTime time.Time processingReqs bool syncPeer *peer msgChan chan interface{} wg sync.WaitGroup quit chan bool headerPool map[btcwire.ShaHash]*headerstr headerOrphan map[btcwire.ShaHash]*headerstr fetchingHeaders bool startBlock *btcwire.ShaHash fetchBlock *btcwire.ShaHash lastBlock *btcwire.ShaHash latestCheckpoint *btcchain.Checkpoint } type headerstr struct { header *btcwire.BlockHeader next *headerstr height int sha btcwire.ShaHash } // startSync will choose the best peer among the available candidate peers to // download/sync the blockchain from. When syncing is already running, it // simply returns. It also examines the candidates for any which are no longer // candidates and removes them as needed. func (b *blockManager) startSync(peers *list.List) { // Return now if we're already syncing. if b.syncPeer != nil { return } // Find the height of the current known best block. _, height, err := b.server.db.NewestSha() if err != nil { bmgrLog.Errorf("%v", err) return } var bestPeer *peer var enext *list.Element for e := peers.Front(); e != nil; e = enext { enext = e.Next() p := e.Value.(*peer) // Remove sync candidate peers that are no longer candidates due // to passing their latest known block. NOTE: The < is // intentional as opposed to <=. While techcnically the peer // doesn't have a later block when it's equal, it will likely // have one soon so it is a reasonable choice. It also allows // the case where both are at 0 such as during regression test. if p.lastBlock < int32(height) { peers.Remove(e) continue } // TODO(davec): Use a better algorithm to choose the best peer. // For now, just pick the first available candidate. bestPeer = p } // Start syncing from the best peer if one was selected. if bestPeer != nil { locator, err := b.blockChain.LatestBlockLocator() if err != nil { bmgrLog.Errorf("Failed to get block locator for the "+ "latest block: %v", err) return } bmgrLog.Infof("Syncing to block height %d from peer %v", bestPeer.lastBlock, bestPeer.addr) // if starting from the beginning fetch headers and download // blocks based on that, otherwise compute the block download // via inv messages. Regression test mode does not support the // headers-first approach so do normal block downloads when in // regression test mode. if height == 0 && !cfg.RegressionTest && !cfg.DisableCheckpoints { bestPeer.PushGetHeadersMsg(locator) b.fetchingHeaders = true } else { bestPeer.PushGetBlocksMsg(locator, &zeroHash) } b.syncPeer = bestPeer } else { bmgrLog.Warnf("No sync peer candidates available") } } // isSyncCandidate returns whether or not the peer is a candidate to consider // syncing from. func (b *blockManager) isSyncCandidate(p *peer) bool { // Typically a peer is not a candidate for sync if it's not a full node, // however regression test is special in that the regression tool is // not a full node and still needs to be considered a sync candidate. if cfg.RegressionTest { // The peer is not a candidate if it's not coming from localhost // or the hostname can't be determined for some reason. host, _, err := net.SplitHostPort(p.addr) if err != nil { return false } if host != "127.0.0.1" && host != "localhost" { return false } } else { // The peer is not a candidate for sync if it's not a full node. if p.services&btcwire.SFNodeNetwork != btcwire.SFNodeNetwork { return false } } // Candidate if all checks passed. return true } // handleNewPeerMsg deals with new peers that have signalled they may // be considered as a sync peer (they have already successfully negotiated). It // also starts syncing if needed. It is invoked from the syncHandler goroutine. func (b *blockManager) handleNewPeerMsg(peers *list.List, p *peer) { // Ignore if in the process of shutting down. if atomic.LoadInt32(&b.shutdown) != 0 { return } bmgrLog.Infof("New valid peer %s", p) // Ignore the peer if it's not a sync candidate. if !b.isSyncCandidate(p) { return } // Add the peer as a candidate to sync from. peers.PushBack(p) // Start syncing by choosing the best candidate if needed. b.startSync(peers) } // handleDonePeerMsg deals with peers that have signalled they are done. It // removes the peer as a candidate for syncing and in the case where it was // the current sync peer, attempts to select a new best peer to sync from. It // is invoked from the syncHandler goroutine. func (b *blockManager) handleDonePeerMsg(peers *list.List, p *peer) { // Remove the peer from the list of candidate peers. for e := peers.Front(); e != nil; e = e.Next() { if e.Value == p { peers.Remove(e) break } } bmgrLog.Infof("Lost peer %s", p) // Remove requested transactions from the global map so that they will // be fetched from elsewhere next time we get an inv. for k := range p.requestedTxns { delete(b.requestedTxns, k) } // Remove requested blocks from the global map so that they will be // fetched from elsewhere next time we get an inv. // TODO(oga) we could possibly here check which peers have these blocks // and request them now to speed things up a little. for k := range p.requestedBlocks { delete(b.requestedBlocks, k) } // Attempt to find a new peer to sync from if the quitting peer is the // sync peer. if b.syncPeer != nil && b.syncPeer == p { b.syncPeer = nil b.startSync(peers) } } // logBlockHeight logs a new block height as an information message to show // progress to the user. In order to prevent spam, it limits logging to one // message every 10 seconds with duration and totals included. func (b *blockManager) logBlockHeight(numTx, height int64, latestHash *btcwire.ShaHash) { b.receivedLogBlocks++ b.receivedLogTx += numTx now := time.Now() duration := now.Sub(b.lastBlockLogTime) if duration < time.Second*10 { return } // Truncated the duration to 10s of milliseconds. durationMillis := int64(duration / time.Millisecond) tDuration := 10 * time.Millisecond * time.Duration(durationMillis/10) // Attempt to get the timestamp of the latest block. blockTimeStr := "" block, err := b.server.db.FetchBlockBySha(latestHash) if err == nil { blockTimeStr = fmt.Sprintf(", %s", block.MsgBlock().Header.Timestamp) } // Log information about new block height. blockStr := "blocks" if b.receivedLogBlocks == 1 { blockStr = "block" } txStr := "transactions" if b.receivedLogTx == 1 { txStr = "transaction" } bmgrLog.Infof("Processed %d %s in the last %s (%d %s, height %d%s)", b.receivedLogBlocks, blockStr, tDuration, b.receivedLogTx, txStr, height, blockTimeStr) b.receivedLogBlocks = 0 b.receivedLogTx = 0 b.lastBlockLogTime = now } // handleTxMsg handles transaction messages from all peers. func (b *blockManager) handleTxMsg(tmsg *txMsg) { // Keep track of which peer the tx was sent from. txHash := tmsg.tx.Sha() // If we didn't ask for this transaction then the peer is misbehaving. if _, ok := tmsg.peer.requestedTxns[*txHash]; !ok { bmgrLog.Warnf("Got unrequested transaction %v from %s -- "+ "disconnecting", txHash, tmsg.peer.addr) tmsg.peer.Disconnect() return } // Process the transaction to include validation, insertion in the // memory pool, orphan handling, etc. err := tmsg.peer.server.txMemPool.ProcessTransaction(tmsg.tx) // Remove transaction from request maps. Either the mempool/chain // already knows about it and as such we shouldn't have any more // instances of trying to fetch it, or we failed to insert and thus // we'll retry next time we get an inv. delete(tmsg.peer.requestedTxns, *txHash) delete(b.requestedTxns, *txHash) if err != nil { // When the error is a rule error, it means the transaction was // simply rejected as opposed to something actually going wrong, // so log it as such. Otherwise, something really did go wrong, // so log it as an actual error. if _, ok := err.(TxRuleError); ok { bmgrLog.Debugf("Rejected transaction %v: %v", txHash, err) } else { bmgrLog.Errorf("Failed to process transaction %v: %v", txHash, err) } return } } // current returns true if we believe we are synced with our peers, false if we // still have blocks to check func (b *blockManager) current() bool { if !b.blockChain.IsCurrent() { return false } // if blockChain thinks we are current and we have no syncPeer it // is probably right. if b.syncPeer == nil { return true } _, height, err := b.server.db.NewestSha() // No matter what chain thinks, if we are below the block we are // syncing to we are not current. // TODO(oga) we can get chain to return the height of each block when we // parse an orphan, which would allow us to update the height of peers // from what it was at initial handshake. if err != nil || height < int64(b.syncPeer.lastBlock) { return false } return true } // handleBlockMsg handles block messages from all peers. func (b *blockManager) handleBlockMsg(bmsg *blockMsg) { defer func() { if b.startBlock != nil && len(bmsg.peer.requestedBlocks) < 10 { // block queue getting short, ask for more. b.fetchHeaderBlocks() } }() // Keep track of which peer the block was sent from so the notification // handler can request the parent blocks from the appropriate peer. blockSha, _ := bmsg.block.Sha() // If we didn't ask for this block then the peer is misbehaving. if _, ok := bmsg.peer.requestedBlocks[*blockSha]; !ok { // The regression test intentionally sends some blocks twice // to test duplicate block insertion fails. Don't disconnect // the peer or ignore the block when we're in regression test // mode in this case so the chain code is actually fed the // duplicate blocks. if !cfg.RegressionTest { bmgrLog.Warnf("Got unrequested block %v from %s -- "+ "disconnecting", blockSha, bmsg.peer.addr) bmsg.peer.Disconnect() return } } b.blockPeer[*blockSha] = bmsg.peer fastAdd := false if b.fetchBlock != nil && blockSha.IsEqual(b.fetchBlock) { firstblock, ok := b.headerPool[*blockSha] if ok { if b.latestCheckpoint == nil { b.latestCheckpoint = b.blockChain.LatestCheckpoint() } if int64(firstblock.height) <= b.latestCheckpoint.Height { fastAdd = true } if firstblock.next != nil { b.fetchBlock = &firstblock.next.sha } } } // Process the block to include validation, best chain selection, orphan // handling, etc. err := b.blockChain.ProcessBlock(bmsg.block, fastAdd) if fastAdd && blockSha.IsEqual(b.lastBlock) { // have processed all blocks, switch to normal handling b.fetchingHeaders = false b.startBlock = nil b.fetchBlock = nil b.lastBlock = nil b.headerPool = make(map[btcwire.ShaHash]*headerstr) b.headerOrphan = make(map[btcwire.ShaHash]*headerstr) } // Remove block from request maps. Either chain knows about it and such // we shouldn't have any more instances of trying to fetch it, or we // failed to insert and thus we'll retry next time we get an inv. delete(bmsg.peer.requestedBlocks, *blockSha) delete(b.requestedBlocks, *blockSha) if err != nil { delete(b.blockPeer, *blockSha) // When the error is a rule error, it means the block was simply // rejected as opposed to something actually going wrong, so log // it as such. Otherwise, something really did go wrong, so log // it as an actual error. if _, ok := err.(btcchain.RuleError); ok { bmgrLog.Infof("Rejected block %v: %v", blockSha, err) } else { bmgrLog.Errorf("Failed to process block %v: %v", blockSha, err) } return } // Don't keep track of the peer that sent the block any longer if it's // not an orphan. if !b.blockChain.IsKnownOrphan(blockSha) { delete(b.blockPeer, *blockSha) } // Log info about the new block height. latestHash, height, err := b.server.db.NewestSha() if err != nil { bmgrLog.Warnf("Failed to obtain latest sha - %v", err) return } b.logBlockHeight(int64(len(bmsg.block.MsgBlock().Transactions)), height, latestHash) // Sync the db to disk. b.server.db.Sync() } // haveInventory returns whether or not the inventory represented by the passed // inventory vector is known. This includes checking all of the various places // inventory can be when it is in different states such as blocks that are part // of the main chain, on a side chain, in the orphan pool, and transactions that // in the memory pool (either the main pool or orphan pool). func (b *blockManager) haveInventory(invVect *btcwire.InvVect) bool { switch invVect.Type { case btcwire.InvVect_Block: // Ask chain if the block is known to it in any form (main // chain, side chain, or orphan). return b.blockChain.HaveBlock(&invVect.Hash) case btcwire.InvVect_Tx: // Ask the transaction memory pool if the transaction is known // to it in any form (main pool or orphan). if b.server.txMemPool.HaveTransaction(&invVect.Hash) { return true } // Check if the transaction exists from the point of view of the // end of the main chain. return b.server.db.ExistsTxSha(&invVect.Hash) } // The requested inventory is is an unsupported type, so just claim // it is known to avoid requesting it. return true } // handleInvMsg handles inv messages from all peers. // We examine the inventory advertised by the remote peer and act accordingly. func (b *blockManager) handleInvMsg(imsg *invMsg) { // Ignore invs from peers that aren't the sync if we are not current. // Helps prevent fetching a mass of orphans. if imsg.peer != b.syncPeer && !b.current() { return } // Attempt to find the final block in the inventory list. There may // not be one. lastBlock := -1 invVects := imsg.inv.InvList for i := len(invVects) - 1; i >= 0; i-- { if invVects[i].Type == btcwire.InvTypeBlock { lastBlock = i break } } // Request the advertised inventory if we don't already have it. Also, // request parent blocks of orphans if we receive one we already have. // Finally, attempt to detect potential stalls due to long side chains // we already have and request more blocks to prevent them. chain := b.blockChain for i, iv := range invVects { // Ignore unsupported inventory types. if iv.Type != btcwire.InvTypeBlock && iv.Type != btcwire.InvTypeTx { continue } // Add the inventory to the cache of known inventory // for the peer. imsg.peer.AddKnownInventory(iv) if b.fetchingHeaders { // if we are fetching headers and already know // about a block, do not add process it. if _, ok := b.headerPool[iv.Hash]; ok { continue } } // Request the inventory if we don't already have it. if !b.haveInventory(iv) { // Add it to the request queue. imsg.peer.requestQueue.PushBack(iv) continue } if iv.Type == btcwire.InvTypeBlock { // The block is an orphan block that we already have. // When the existing orphan was processed, it requested // the missing parent blocks. When this scenario // happens, it means there were more blocks missing // than are allowed into a single inventory message. As // a result, once this peer requested the final // advertised block, the remote peer noticed and is now // resending the orphan block as an available block // to signal there are more missing blocks that need to // be requested. if chain.IsKnownOrphan(&iv.Hash) { // Request blocks starting at the latest known // up to the root of the orphan that just came // in. orphanRoot := chain.GetOrphanRoot(&iv.Hash) locator, err := chain.LatestBlockLocator() if err != nil { bmgrLog.Errorf("PEER: Failed to get block "+ "locator for the latest block: "+ "%v", err) continue } imsg.peer.PushGetBlocksMsg(locator, orphanRoot) continue } // We already have the final block advertised by this // inventory message, so force a request for more. This // should only happen if we're on a really long side // chain. if i == lastBlock { // Request blocks after this one up to the // final one the remote peer knows about (zero // stop hash). locator := chain.BlockLocatorFromHash(&iv.Hash) imsg.peer.PushGetBlocksMsg(locator, &zeroHash) } } } // Request as much as possible at once. Anything that won't fit into // the request will be requested on the next inv message. numRequested := 0 gdmsg := btcwire.NewMsgGetData() requestQueue := imsg.peer.requestQueue for e := requestQueue.Front(); e != nil; e = requestQueue.Front() { iv := e.Value.(*btcwire.InvVect) imsg.peer.requestQueue.Remove(e) switch iv.Type { case btcwire.InvVect_Block: // Request the block if there is not already a pending // request. if _, exists := b.requestedBlocks[iv.Hash]; !exists { b.requestedBlocks[iv.Hash] = true imsg.peer.requestedBlocks[iv.Hash] = true gdmsg.AddInvVect(iv) numRequested++ } case btcwire.InvVect_Tx: // Request the transaction if there is not already a // pending request. if _, exists := b.requestedTxns[iv.Hash]; !exists { b.requestedTxns[iv.Hash] = true imsg.peer.requestedTxns[iv.Hash] = true gdmsg.AddInvVect(iv) numRequested++ } } if numRequested >= btcwire.MaxInvPerMsg { break } } if len(gdmsg.InvList) > 0 { imsg.peer.QueueMessage(gdmsg, nil) } } // blockHandler is the main handler for the block manager. It must be run // as a goroutine. It processes block and inv messages in a separate goroutine // from the peer handlers so the block (MsgBlock) messages are handled by a // single thread without needing to lock memory data structures. This is // important because the block manager controls which blocks are needed and how // the fetching should proceed. func (b *blockManager) blockHandler() { candidatePeers := list.New() out: for { select { case m := <-b.msgChan: switch msg := m.(type) { case *newPeerMsg: b.handleNewPeerMsg(candidatePeers, msg.peer) case *txMsg: b.handleTxMsg(msg) msg.peer.txProcessed <- true case *blockMsg: b.handleBlockMsg(msg) msg.peer.blockProcessed <- true case *invMsg: b.handleInvMsg(msg) case *headersMsg: b.handleHeadersMsg(msg) case *donePeerMsg: b.handleDonePeerMsg(candidatePeers, msg.peer) default: // bitch and whine. } case <-b.quit: break out } } b.wg.Done() bmgrLog.Trace("Block handler done") } // handleNotifyMsg handles notifications from btcchain. It does things such // as request orphan block parents and relay accepted blocks to connected peers. func (b *blockManager) handleNotifyMsg(notification *btcchain.Notification) { switch notification.Type { // An orphan block has been accepted by the block chain. Request // its parents from the peer that sent it. case btcchain.NTOrphanBlock: orphanHash := notification.Data.(*btcwire.ShaHash) if peer, exists := b.blockPeer[*orphanHash]; exists { orphanRoot := b.blockChain.GetOrphanRoot(orphanHash) locator, err := b.blockChain.LatestBlockLocator() if err != nil { bmgrLog.Errorf("Failed to get block locator "+ "for the latest block: %v", err) break } peer.PushGetBlocksMsg(locator, orphanRoot) delete(b.blockPeer, *orphanRoot) } else { bmgrLog.Warnf("Notification for orphan %v with no peer", orphanHash) } // A block has been accepted into the block chain. Relay it to other // peers. case btcchain.NTBlockAccepted: // Don't relay if we are not current. Other peers that are // current should already know about it. if !b.current() { return } block, ok := notification.Data.(*btcutil.Block) if !ok { bmgrLog.Warnf("Chain accepted notification is not a block.") break } // It's ok to ignore the error here since the notification is // coming from the chain code which has already cached the hash. hash, _ := block.Sha() // Generate the inventory vector and relay it. iv := btcwire.NewInvVect(btcwire.InvTypeBlock, hash) b.server.RelayInventory(iv) // A block has been connected to the main block chain. case btcchain.NTBlockConnected: block, ok := notification.Data.(*btcutil.Block) if !ok { bmgrLog.Warnf("Chain connected notification is not a block.") break } // Remove all of the transactions (except the coinbase) in the // connected block from the transaction pool. Also, remove any // transactions which are now double spends as a result of these // new transactions. Note that removing a transaction from // pool also removes any transactions which depend on it, // recursively. for _, tx := range block.Transactions()[1:] { b.server.txMemPool.RemoveTransaction(tx) b.server.txMemPool.RemoveDoubleSpends(tx) } // Notify frontends if r := b.server.rpcServer; r != nil { go func() { r.NotifyBlockTXs(b.server.db, block) r.NotifyBlockConnected(block) }() } // A block has been disconnected from the main block chain. case btcchain.NTBlockDisconnected: block, ok := notification.Data.(*btcutil.Block) if !ok { bmgrLog.Warnf("Chain disconnected notification is not a block.") break } // Reinsert all of the transactions (except the coinbase) into // the transaction pool. for _, tx := range block.Transactions()[1:] { err := b.server.txMemPool.MaybeAcceptTransaction(tx, nil) if err != nil { // Remove the transaction and all transactions // that depend on it if it wasn't accepted into // the transaction pool. b.server.txMemPool.RemoveTransaction(tx) } } // Notify frontends if r := b.server.rpcServer; r != nil { go r.NotifyBlockDisconnected(block) } } } // NewPeer informs the block manager of a newly active peer. func (b *blockManager) NewPeer(p *peer) { // Ignore if we are shutting down. if atomic.LoadInt32(&b.shutdown) != 0 { return } b.msgChan <- &newPeerMsg{peer: p} } // QueueTx adds the passed transaction message and peer to the block handling // queue. func (b *blockManager) QueueTx(tx *btcutil.Tx, p *peer) { // Don't accept more transactions if we're shutting down. if atomic.LoadInt32(&b.shutdown) != 0 { p.txProcessed <- false return } b.msgChan <- &txMsg{tx: tx, peer: p} } // QueueBlock adds the passed block message and peer to the block handling queue. func (b *blockManager) QueueBlock(block *btcutil.Block, p *peer) { // Don't accept more blocks if we're shutting down. if atomic.LoadInt32(&b.shutdown) != 0 { p.blockProcessed <- false return } b.msgChan <- &blockMsg{block: block, peer: p} } // QueueInv adds the passed inv message and peer to the block handling queue. func (b *blockManager) QueueInv(inv *btcwire.MsgInv, p *peer) { // No channel handling here because peers do not need to block on inv // messages. if atomic.LoadInt32(&b.shutdown) != 0 { return } b.msgChan <- &invMsg{inv: inv, peer: p} } // QueueInv adds the passed headers message and peer to the block handling queue. func (b *blockManager) QueueHeaders(headers *btcwire.MsgHeaders, p *peer) { // No channel handling here because peers do not need to block on inv // messages. if atomic.LoadInt32(&b.shutdown) != 0 { return } b.msgChan <- &headersMsg{headers: headers, peer: p} } // DonePeer informs the blockmanager that a peer has disconnected. func (b *blockManager) DonePeer(p *peer) { // Ignore if we are shutting down. if atomic.LoadInt32(&b.shutdown) != 0 { return } b.msgChan <- &donePeerMsg{peer: p} } // Start begins the core block handler which processes block and inv messages. func (b *blockManager) Start() { // Already started? if atomic.AddInt32(&b.started, 1) != 1 { return } bmgrLog.Trace("Starting block manager") b.wg.Add(1) go b.blockHandler() } // Stop gracefully shuts down the block manager by stopping all asynchronous // handlers and waiting for them to finish. func (b *blockManager) Stop() error { if atomic.AddInt32(&b.shutdown, 1) != 1 { bmgrLog.Warnf("Block manager is already in the process of " + "shutting down") return nil } bmgrLog.Infof("Block manager shutting down") close(b.quit) b.wg.Wait() return nil } // newBlockManager returns a new bitcoin block manager. // Use Start to begin processing asynchronous block and inv updates. func newBlockManager(s *server) (*blockManager, error) { bm := blockManager{ server: s, blockPeer: make(map[btcwire.ShaHash]*peer), requestedTxns: make(map[btcwire.ShaHash]bool), requestedBlocks: make(map[btcwire.ShaHash]bool), lastBlockLogTime: time.Now(), msgChan: make(chan interface{}, cfg.MaxPeers*3), headerPool: make(map[btcwire.ShaHash]*headerstr), headerOrphan: make(map[btcwire.ShaHash]*headerstr), quit: make(chan bool), } bm.blockChain = btcchain.New(s.db, s.btcnet, bm.handleNotifyMsg) bm.blockChain.DisableCheckpoints(cfg.DisableCheckpoints) if cfg.DisableCheckpoints { bmgrLog.Info("Checkpoints are disabled") } bmgrLog.Infof("Generating initial block node index. This may " + "take a while...") err := bm.blockChain.GenerateInitialIndex() if err != nil { return nil, err } bmgrLog.Infof("Block index generation complete") return &bm, nil } // removeRegressionDB removes the existing regression test database if running // in regression test mode and it already exists. func removeRegressionDB(dbPath string) error { // Dont do anything if not in regression test mode. if !cfg.RegressionTest { return nil } // Remove the old regression test database if it already exists. fi, err := os.Stat(dbPath) if err == nil { btcdLog.Infof("Removing regression test database from '%s'", dbPath) if fi.IsDir() { err := os.RemoveAll(dbPath) if err != nil { return err } } else { err := os.Remove(dbPath) if err != nil { return err } } } return nil } // dbPath returns the path to the block database given a database type. func blockDbPath(dbType string) string { // The database name is based on the database type. dbName := blockDbNamePrefix + "_" + dbType if dbType == "sqlite" { dbName = dbName + ".db" } dbPath := filepath.Join(cfg.DataDir, dbName) return dbPath } // warnMultipeDBs shows a warning if multiple block database types are detected. // This is not a situation most users want. It is handy for development however // to support multiple side-by-side databases. func warnMultipeDBs() { // This is intentionally not using the known db types which depend // on the database types compiled into the binary since we want to // detect legacy db types as well. dbTypes := []string{"leveldb", "sqlite"} duplicateDbPaths := make([]string, 0, len(dbTypes)-1) for _, dbType := range dbTypes { if dbType == cfg.DbType { continue } // Store db path as a duplicate db if it exists. dbPath := blockDbPath(dbType) if fileExists(dbPath) { duplicateDbPaths = append(duplicateDbPaths, dbPath) } } // Warn if there are extra databases. if len(duplicateDbPaths) > 0 { selectedDbPath := blockDbPath(cfg.DbType) btcdLog.Warnf("WARNING: There are multiple block chain databases "+ "using different database types.\nYou probably don't "+ "want to waste disk space by having more than one.\n"+ "Your current database is located at [%v].\nThe "+ "additional database is located at %v", selectedDbPath, duplicateDbPaths) } } // loadBlockDB opens the block database and returns a handle to it. func loadBlockDB() (btcdb.Db, error) { warnMultipeDBs() // The database name is based on the database type. dbPath := blockDbPath(cfg.DbType) // The regression test is special in that it needs a clean database for // each run, so remove it now if it already exists. removeRegressionDB(dbPath) btcdLog.Infof("Loading block database from '%s'", dbPath) db, err := btcdb.OpenDB(cfg.DbType, dbPath) if err != nil { // Return the error if it's not because the database doesn't // exist. if err != btcdb.DbDoesNotExist { return nil, err } // Create the db if it does not exist. err = os.MkdirAll(cfg.DataDir, 0700) if err != nil { return nil, err } db, err = btcdb.CreateDB(cfg.DbType, dbPath) if err != nil { return nil, err } } // Get the latest block height from the database. _, height, err := db.NewestSha() if err != nil { db.Close() return nil, err } // Insert the appropriate genesis block for the bitcoin network being // connected to if needed. if height == -1 { genesis := btcutil.NewBlock(activeNetParams.genesisBlock) _, err := db.InsertBlock(genesis) if err != nil { db.Close() return nil, err } btcdLog.Infof("Inserted genesis block %v", activeNetParams.genesisHash) height = 0 } btcdLog.Infof("Block database loaded with block height %d", height) return db, nil } // handleHeadersMsg is invoked when a peer receives a headers bitcoin // message. func (b *blockManager) handleHeadersMsg(bmsg *headersMsg) { msg := bmsg.headers nheaders := len(msg.Headers) if nheaders == 0 { bmgrLog.Infof("Received %v0 block headers: Fetching blocks", len(b.headerPool)) b.fetchHeaderBlocks() return } var blockhash btcwire.ShaHash if b.latestCheckpoint == nil { b.latestCheckpoint = b.blockChain.LatestCheckpoint() } for hdridx := range msg.Headers { blockhash, _ = msg.Headers[hdridx].BlockSha() var headerst headerstr headerst.header = msg.Headers[hdridx] headerst.sha = blockhash prev, ok := b.headerPool[headerst.header.PrevBlock] if ok { if prev.next == nil { prev.next = &headerst } else { bmgrLog.Infof("two children of the same block ??? %v %v %v", prev.sha, prev.next.sha, blockhash) } headerst.height = prev.height + 1 } else if headerst.header.PrevBlock.IsEqual(activeNetParams.genesisHash) { ok = true headerst.height = 1 b.startBlock = &headerst.sha } if int64(headerst.height) == b.latestCheckpoint.Height { if headerst.sha.IsEqual(b.latestCheckpoint.Hash) { // we can trust this header first download // TODO flag this? } else { // XXX marker does not match, must throw // away headers !?!?! // XXX dont trust peer? } } if ok { b.headerPool[blockhash] = &headerst b.lastBlock = &blockhash } else { bmgrLog.Infof("found orphan block %v", blockhash) b.headerOrphan[headerst.header.PrevBlock] = &headerst } } // Construct the getheaders request and queue it to be sent. ghmsg := btcwire.NewMsgGetHeaders() err := ghmsg.AddBlockLocatorHash(&blockhash) if err != nil { bmgrLog.Infof("msgheaders bad addheaders", blockhash) return } b.syncPeer.QueueMessage(ghmsg, nil) } // fetchHeaderBlocks is creates and sends a request to the syncPeer for // the next list of blocks to downloaded. func (b *blockManager) fetchHeaderBlocks() { gdmsg := btcwire.NewMsgGetData() numRequested := 0 startBlock := b.startBlock for { if b.startBlock == nil { break } blockhash := b.startBlock firstblock, ok := b.headerPool[*blockhash] if !ok { bmgrLog.Warnf("current fetch block %v missing from headerPool", blockhash) break } var iv btcwire.InvVect iv.Hash = *blockhash iv.Type = btcwire.InvTypeBlock if !b.haveInventory(&iv) { b.requestedBlocks[*blockhash] = true b.syncPeer.requestedBlocks[*blockhash] = true gdmsg.AddInvVect(&iv) numRequested++ } if b.fetchBlock == nil { b.fetchBlock = b.startBlock } if firstblock.next == nil { b.startBlock = nil break } else { b.startBlock = &firstblock.next.sha } if numRequested >= btcwire.MaxInvPerMsg { break } } if len(gdmsg.InvList) > 0 { bmgrLog.Debugf("requesting block %v len %v\n", startBlock, len(gdmsg.InvList)) b.syncPeer.QueueMessage(gdmsg, nil) } }