// Copyright (c) 2015-2016 The btcsuite developers // Use of this source code is governed by an ISC // license that can be found in the LICENSE file. package ffldb import ( "bytes" "fmt" "sync" "time" "github.com/btcsuite/btcd/database/internal/treap" "github.com/btcsuite/goleveldb/leveldb" "github.com/btcsuite/goleveldb/leveldb/iterator" "github.com/btcsuite/goleveldb/leveldb/util" ) const ( // defaultCacheSize is the default size for the database cache. defaultCacheSize = 100 * 1024 * 1024 // 100 MB // defaultFlushSecs is the default number of seconds to use as a // threshold in between database cache flushes when the cache size has // not been exceeded. defaultFlushSecs = 300 // 5 minutes // ldbBatchHeaderSize is the size of a leveldb batch header which // includes the sequence header and record counter. // // ldbRecordIKeySize is the size of the ikey used internally by leveldb // when appending a record to a batch. // // These are used to help preallocate space needed for a batch in one // allocation instead of letting leveldb itself constantly grow it. // This results in far less pressure on the GC and consequently helps // prevent the GC from allocating a lot of extra unneeded space. ldbBatchHeaderSize = 12 ldbRecordIKeySize = 8 ) // ldbCacheIter wraps a treap iterator to provide the additional functionality // needed to satisfy the leveldb iterator.Iterator interface. type ldbCacheIter struct { *treap.Iterator } // Enforce ldbCacheIterator implements the leveldb iterator.Iterator interface. var _ iterator.Iterator = (*ldbCacheIter)(nil) // Error is only provided to satisfy the iterator interface as there are no // errors for this memory-only structure. // // This is part of the leveldb iterator.Iterator interface implementation. func (iter *ldbCacheIter) Error() error { return nil } // SetReleaser is only provided to satisfy the iterator interface as there is no // need to override it. // // This is part of the leveldb iterator.Iterator interface implementation. func (iter *ldbCacheIter) SetReleaser(releaser util.Releaser) { } // Release is only provided to satisfy the iterator interface. // // This is part of the leveldb iterator.Iterator interface implementation. func (iter *ldbCacheIter) Release() { } // newLdbCacheIter creates a new treap iterator for the given slice against the // pending keys for the passed cache snapshot and returns it wrapped in an // ldbCacheIter so it can be used as a leveldb iterator. func newLdbCacheIter(snap *dbCacheSnapshot, slice *util.Range) *ldbCacheIter { iter := snap.pendingKeys.Iterator(slice.Start, slice.Limit) return &ldbCacheIter{Iterator: iter} } // dbCacheIterator defines an iterator over the key/value pairs in the database // cache and underlying database. type dbCacheIterator struct { cacheSnapshot *dbCacheSnapshot dbIter iterator.Iterator cacheIter iterator.Iterator currentIter iterator.Iterator released bool } // Enforce dbCacheIterator implements the leveldb iterator.Iterator interface. var _ iterator.Iterator = (*dbCacheIterator)(nil) // skipPendingUpdates skips any keys at the current database iterator position // that are being updated by the cache. The forwards flag indicates the // direction the iterator is moving. func (iter *dbCacheIterator) skipPendingUpdates(forwards bool) { for iter.dbIter.Valid() { var skip bool key := iter.dbIter.Key() if iter.cacheSnapshot.pendingRemove.Has(key) { skip = true } else if iter.cacheSnapshot.pendingKeys.Has(key) { skip = true } if !skip { break } if forwards { iter.dbIter.Next() } else { iter.dbIter.Prev() } } } // chooseIterator first skips any entries in the database iterator that are // being updated by the cache and sets the current iterator to the appropriate // iterator depending on their validity and the order they compare in while taking // into account the direction flag. When the iterator is being moved forwards // and both iterators are valid, the iterator with the smaller key is chosen and // vice versa when the iterator is being moved backwards. func (iter *dbCacheIterator) chooseIterator(forwards bool) bool { // Skip any keys at the current database iterator position that are // being updated by the cache. iter.skipPendingUpdates(forwards) // When both iterators are exhausted, the iterator is exhausted too. if !iter.dbIter.Valid() && !iter.cacheIter.Valid() { iter.currentIter = nil return false } // Choose the database iterator when the cache iterator is exhausted. if !iter.cacheIter.Valid() { iter.currentIter = iter.dbIter return true } // Choose the cache iterator when the database iterator is exhausted. if !iter.dbIter.Valid() { iter.currentIter = iter.cacheIter return true } // Both iterators are valid, so choose the iterator with either the // smaller or larger key depending on the forwards flag. compare := bytes.Compare(iter.dbIter.Key(), iter.cacheIter.Key()) if (forwards && compare > 0) || (!forwards && compare < 0) { iter.currentIter = iter.cacheIter } else { iter.currentIter = iter.dbIter } return true } // First positions the iterator at the first key/value pair and returns whether // or not the pair exists. // // This is part of the leveldb iterator.Iterator interface implementation. func (iter *dbCacheIterator) First() bool { // Seek to the first key in both the database and cache iterators and // choose the iterator that is both valid and has the smaller key. iter.dbIter.First() iter.cacheIter.First() return iter.chooseIterator(true) } // Last positions the iterator at the last key/value pair and returns whether or // not the pair exists. // // This is part of the leveldb iterator.Iterator interface implementation. func (iter *dbCacheIterator) Last() bool { // Seek to the last key in both the database and cache iterators and // choose the iterator that is both valid and has the larger key. iter.dbIter.Last() iter.cacheIter.Last() return iter.chooseIterator(false) } // Next moves the iterator one key/value pair forward and returns whether or not // the pair exists. // // This is part of the leveldb iterator.Iterator interface implementation. func (iter *dbCacheIterator) Next() bool { // Nothing to return if cursor is exhausted. if iter.currentIter == nil { return false } // Move the current iterator to the next entry and choose the iterator // that is both valid and has the smaller key. iter.currentIter.Next() return iter.chooseIterator(true) } // Prev moves the iterator one key/value pair backward and returns whether or // not the pair exists. // // This is part of the leveldb iterator.Iterator interface implementation. func (iter *dbCacheIterator) Prev() bool { // Nothing to return if cursor is exhausted. if iter.currentIter == nil { return false } // Move the current iterator to the previous entry and choose the // iterator that is both valid and has the larger key. iter.currentIter.Prev() return iter.chooseIterator(false) } // Seek positions the iterator at the first key/value pair that is greater than // or equal to the passed seek key. Returns false if no suitable key was found. // // This is part of the leveldb iterator.Iterator interface implementation. func (iter *dbCacheIterator) Seek(key []byte) bool { // Seek to the provided key in both the database and cache iterators // then choose the iterator that is both valid and has the larger key. iter.dbIter.Seek(key) iter.cacheIter.Seek(key) return iter.chooseIterator(true) } // Valid indicates whether the iterator is positioned at a valid key/value pair. // It will be considered invalid when the iterator is newly created or exhausted. // // This is part of the leveldb iterator.Iterator interface implementation. func (iter *dbCacheIterator) Valid() bool { return iter.currentIter != nil } // Key returns the current key the iterator is pointing to. // // This is part of the leveldb iterator.Iterator interface implementation. func (iter *dbCacheIterator) Key() []byte { // Nothing to return if iterator is exhausted. if iter.currentIter == nil { return nil } return iter.currentIter.Key() } // Value returns the current value the iterator is pointing to. // // This is part of the leveldb iterator.Iterator interface implementation. func (iter *dbCacheIterator) Value() []byte { // Nothing to return if iterator is exhausted. if iter.currentIter == nil { return nil } return iter.currentIter.Value() } // SetReleaser is only provided to satisfy the iterator interface as there is no // need to override it. // // This is part of the leveldb iterator.Iterator interface implementation. func (iter *dbCacheIterator) SetReleaser(releaser util.Releaser) { } // Release releases the iterator by removing the underlying treap iterator from // the list of active iterators against the pending keys treap. // // This is part of the leveldb iterator.Iterator interface implementation. func (iter *dbCacheIterator) Release() { if !iter.released { iter.dbIter.Release() iter.cacheIter.Release() iter.currentIter = nil iter.released = true } } // Error is only provided to satisfy the iterator interface as there are no // errors for this memory-only structure. // // This is part of the leveldb iterator.Iterator interface implementation. func (iter *dbCacheIterator) Error() error { return nil } // dbCacheSnapshot defines a snapshot of the database cache and underlying // database at a particular point in time. type dbCacheSnapshot struct { dbSnapshot *leveldb.Snapshot pendingKeys *treap.Immutable pendingRemove *treap.Immutable } // Has returns whether or not the passed key exists. func (snap *dbCacheSnapshot) Has(key []byte) bool { // Check the cached entries first. if snap.pendingRemove.Has(key) { return false } if snap.pendingKeys.Has(key) { return true } // Consult the database. hasKey, _ := snap.dbSnapshot.Has(key, nil) return hasKey } // Get returns the value for the passed key. The function will return nil when // the key does not exist. func (snap *dbCacheSnapshot) Get(key []byte) []byte { // Check the cached entries first. if snap.pendingRemove.Has(key) { return nil } if value := snap.pendingKeys.Get(key); value != nil { return value } // Consult the database. value, err := snap.dbSnapshot.Get(key, nil) if err != nil { return nil } return value } // Release releases the snapshot. func (snap *dbCacheSnapshot) Release() { snap.dbSnapshot.Release() snap.pendingKeys = nil snap.pendingRemove = nil } // NewIterator returns a new iterator for the snapshot. The newly returned // iterator is not pointing to a valid item until a call to one of the methods // to position it is made. // // The slice parameter allows the iterator to be limited to a range of keys. // The start key is inclusive and the limit key is exclusive. Either or both // can be nil if the functionality is not desired. func (snap *dbCacheSnapshot) NewIterator(slice *util.Range) *dbCacheIterator { return &dbCacheIterator{ dbIter: snap.dbSnapshot.NewIterator(slice, nil), cacheIter: newLdbCacheIter(snap, slice), cacheSnapshot: snap, } } // dbCache provides a database cache layer backed by an underlying database. It // allows a maximum cache size and flush interval to be specified such that the // cache is flushed to the database when the cache size exceeds the maximum // configured value or it has been longer than the configured interval since the // last flush. This effectively provides transaction batching so that callers // can commit transactions at will without incurring large performance hits due // to frequent disk syncs. type dbCache struct { // ldb is the underlying leveldb DB for metadata. ldb *leveldb.DB // store is used to sync blocks to flat files. store *blockStore // The following fields are related to flushing the cache to persistent // storage. Note that all flushing is performed in an opportunistic // fashion. This means that it is only flushed during a transaction or // when the database cache is closed. // // maxSize is the maximum size threshold the cache can grow to before // it is flushed. // // flushInterval is the threshold interval of time that is allowed to // pass before the cache is flushed. // // lastFlush is the time the cache was last flushed. It is used in // conjunction with the current time and the flush interval. // // NOTE: These flush related fields are protected by the database write // lock. maxSize uint64 flushInterval time.Duration lastFlush time.Time // The following fields hold the keys that need to be stored or deleted // from the underlying database once the cache is full, enough time has // passed, or when the database is shutting down. Note that these are // stored using immutable treaps to support O(1) MVCC snapshots against // the cached data. The cacheLock is used to protect concurrent access // for cache updates and snapshots. cacheLock sync.RWMutex cachedKeys *treap.Immutable cachedRemove *treap.Immutable } // Snapshot returns a snapshot of the database cache and underlying database at // a particular point in time. // // The snapshot must be released after use by calling Release. func (c *dbCache) Snapshot() (*dbCacheSnapshot, error) { dbSnapshot, err := c.ldb.GetSnapshot() if err != nil { str := "failed to open transaction" return nil, convertErr(str, err) } // Since the cached keys to be added and removed use an immutable treap, // a snapshot is simply obtaining the root of the tree under the lock // which is used to atomically swap the root. c.cacheLock.RLock() cacheSnapshot := &dbCacheSnapshot{ dbSnapshot: dbSnapshot, pendingKeys: c.cachedKeys, pendingRemove: c.cachedRemove, } c.cacheLock.RUnlock() return cacheSnapshot, nil } // updateDB invokes the passed function in the context of a managed leveldb // transaction. Any errors returned from the user-supplied function will cause // the transaction to be rolled back and are returned from this function. // Otherwise, the transaction is committed when the user-supplied function // returns a nil error. func (c *dbCache) updateDB(fn func(ldbTx *leveldb.Transaction) error) error { // Start a leveldb transaction. ldbTx, err := c.ldb.OpenTransaction() if err != nil { return convertErr("failed to open ldb transaction", err) } if err := fn(ldbTx); err != nil { ldbTx.Discard() return err } // Commit the leveldb transaction and convert any errors as needed. if err := ldbTx.Commit(); err != nil { return convertErr("failed to commit leveldb transaction", err) } return nil } // TreapForEacher is an interface which allows iteration of a treap in ascending // order using a user-supplied callback for each key/value pair. It mainly // exists so both mutable and immutable treaps can be atomically committed to // the database with the same function. type TreapForEacher interface { ForEach(func(k, v []byte) bool) } // commitTreaps atomically commits all of the passed pending add/update/remove // updates to the underlying database. func (c *dbCache) commitTreaps(pendingKeys, pendingRemove TreapForEacher) error { // Perform all leveldb updates using an atomic transaction. return c.updateDB(func(ldbTx *leveldb.Transaction) error { var innerErr error pendingKeys.ForEach(func(k, v []byte) bool { if dbErr := ldbTx.Put(k, v, nil); dbErr != nil { str := fmt.Sprintf("failed to put key %q to "+ "ldb transaction", k) innerErr = convertErr(str, dbErr) return false } return true }) if innerErr != nil { return innerErr } pendingRemove.ForEach(func(k, v []byte) bool { if dbErr := ldbTx.Delete(k, nil); dbErr != nil { str := fmt.Sprintf("failed to delete "+ "key %q from ldb transaction", k) innerErr = convertErr(str, dbErr) return false } return true }) return innerErr }) } // flush flushes the database cache to persistent storage. This involes syncing // the block store and replaying all transactions that have been applied to the // cache to the underlying database. // // This function MUST be called with the database write lock held. func (c *dbCache) flush() error { c.lastFlush = time.Now() // Sync the current write file associated with the block store. This is // necessary before writing the metadata to prevent the case where the // metadata contains information about a block which actually hasn't // been written yet in unexpected shutdown scenarios. if err := c.store.syncBlocks(); err != nil { return err } // Since the cached keys to be added and removed use an immutable treap, // a snapshot is simply obtaining the root of the tree under the lock // which is used to atomically swap the root. c.cacheLock.RLock() cachedKeys := c.cachedKeys cachedRemove := c.cachedRemove c.cacheLock.RUnlock() // Nothing to do if there is no data to flush. if cachedKeys.Len() == 0 && cachedRemove.Len() == 0 { return nil } // Perform all leveldb updates using an atomic transaction. if err := c.commitTreaps(cachedKeys, cachedRemove); err != nil { return err } // Clear the cache since it has been flushed. c.cacheLock.Lock() c.cachedKeys = treap.NewImmutable() c.cachedRemove = treap.NewImmutable() c.cacheLock.Unlock() return nil } // needsFlush returns whether or not the database cache needs to be flushed to // persistent storage based on its current size, whether or not adding all of // the entries in the passed database transaction would cause it to exceed the // configured limit, and how much time has elapsed since the last time the cache // was flushed. // // This function MUST be called with the database write lock held. func (c *dbCache) needsFlush(tx *transaction) bool { // A flush is needed when more time has elapsed than the configured // flush interval. if time.Now().Sub(c.lastFlush) > c.flushInterval { return true } // A flush is needed when the size of the database cache exceeds the // specified max cache size. The total calculated size is multiplied by // 1.5 here to account for additional memory consumption that will be // needed during the flush as well as old nodes in the cache that are // referenced by the snapshot used by the transaction. snap := tx.snapshot totalSize := snap.pendingKeys.Size() + snap.pendingRemove.Size() totalSize = uint64(float64(totalSize) * 1.5) if totalSize > c.maxSize { return true } return false } // commitTx atomically adds all of the pending keys to add and remove into the // database cache. When adding the pending keys would cause the size of the // cache to exceed the max cache size, or the time since the last flush exceeds // the configured flush interval, the cache will be flushed to the underlying // persistent database. // // This is an atomic operation with respect to the cache in that either all of // the pending keys to add and remove in the transaction will be applied or none // of them will. // // The database cache itself might be flushed to the underlying persistent // database even if the transaction fails to apply, but it will only be the // state of the cache without the transaction applied. // // This function MUST be called during a database write transaction which in // turn implies the database write lock will be held. func (c *dbCache) commitTx(tx *transaction) error { // Flush the cache and write the current transaction directly to the // database if a flush is needed. if c.needsFlush(tx) { if err := c.flush(); err != nil { return err } // Perform all leveldb updates using an atomic transaction. err := c.commitTreaps(tx.pendingKeys, tx.pendingRemove) if err != nil { return err } // Clear the transaction entries since they have been committed. tx.pendingKeys = nil tx.pendingRemove = nil return nil } // At this point a database flush is not needed, so atomically commit // the transaction to the cache. // Since the cached keys to be added and removed use an immutable treap, // a snapshot is simply obtaining the root of the tree under the lock // which is used to atomically swap the root. c.cacheLock.RLock() newCachedKeys := c.cachedKeys newCachedRemove := c.cachedRemove c.cacheLock.RUnlock() // Apply every key to add in the database transaction to the cache. tx.pendingKeys.ForEach(func(k, v []byte) bool { newCachedRemove = newCachedRemove.Delete(k) newCachedKeys = newCachedKeys.Put(k, v) return true }) tx.pendingKeys = nil // Apply every key to remove in the database transaction to the cache. tx.pendingRemove.ForEach(func(k, v []byte) bool { newCachedKeys = newCachedKeys.Delete(k) newCachedRemove = newCachedRemove.Put(k, nil) return true }) tx.pendingRemove = nil // Atomically replace the immutable treaps which hold the cached keys to // add and delete. c.cacheLock.Lock() c.cachedKeys = newCachedKeys c.cachedRemove = newCachedRemove c.cacheLock.Unlock() return nil } // Close cleanly shuts down the database cache by syncing all data and closing // the underlying leveldb database. // // This function MUST be called with the database write lock held. func (c *dbCache) Close() error { // Flush any outstanding cached entries to disk. if err := c.flush(); err != nil { // Even if there is an error while flushing, attempt to close // the underlying database. The error is ignored since it would // mask the flush error. _ = c.ldb.Close() return err } // Close the underlying leveldb database. if err := c.ldb.Close(); err != nil { str := "failed to close underlying leveldb database" return convertErr(str, err) } return nil } // newDbCache returns a new database cache instance backed by the provided // leveldb instance. The cache will be flushed to leveldb when the max size // exceeds the provided value or it has been longer than the provided interval // since the last flush. func newDbCache(ldb *leveldb.DB, store *blockStore, maxSize uint64, flushIntervalSecs uint32) *dbCache { return &dbCache{ ldb: ldb, store: store, maxSize: maxSize, flushInterval: time.Second * time.Duration(flushIntervalSecs), lastFlush: time.Now(), cachedKeys: treap.NewImmutable(), cachedRemove: treap.NewImmutable(), } }