// Copyright (c) 2015-2017 The btcsuite developers // Use of this source code is governed by an ISC // license that can be found in the LICENSE file. package blockchain import ( "bytes" "encoding/binary" "fmt" "math/big" "sort" "time" "github.com/btcsuite/btcd/chaincfg/chainhash" "github.com/btcsuite/btcd/database" "github.com/btcsuite/btcd/wire" "github.com/btcsuite/btcutil" ) const ( // blockHdrSize is the size of a block header. This is simply the // constant from wire and is only provided here for convenience since // wire.MaxBlockHeaderPayload is quite long. blockHdrSize = wire.MaxBlockHeaderPayload ) var ( // blockIndexBucketName is the name of the db bucket used to house to the // block headers and contextual information. blockIndexBucketName = []byte("blockheaderidx") // hashIndexBucketName is the name of the db bucket used to house to the // block hash -> block height index. hashIndexBucketName = []byte("hashidx") // heightIndexBucketName is the name of the db bucket used to house to // the block height -> block hash index. heightIndexBucketName = []byte("heightidx") // chainStateKeyName is the name of the db key used to store the best // chain state. chainStateKeyName = []byte("chainstate") // spendJournalBucketName is the name of the db bucket used to house // transactions outputs that are spent in each block. spendJournalBucketName = []byte("spendjournal") // utxoSetBucketName is the name of the db bucket used to house the // unspent transaction output set. utxoSetBucketName = []byte("utxoset") // byteOrder is the preferred byte order used for serializing numeric // fields for storage in the database. byteOrder = binary.LittleEndian ) // errNotInMainChain signifies that a block hash or height that is not in the // main chain was requested. type errNotInMainChain string // Error implements the error interface. func (e errNotInMainChain) Error() string { return string(e) } // isNotInMainChainErr returns whether or not the passed error is an // errNotInMainChain error. func isNotInMainChainErr(err error) bool { _, ok := err.(errNotInMainChain) return ok } // errDeserialize signifies that a problem was encountered when deserializing // data. type errDeserialize string // Error implements the error interface. func (e errDeserialize) Error() string { return string(e) } // isDeserializeErr returns whether or not the passed error is an errDeserialize // error. func isDeserializeErr(err error) bool { _, ok := err.(errDeserialize) return ok } // isDbBucketNotFoundErr returns whether or not the passed error is a // database.Error with an error code of database.ErrBucketNotFound. func isDbBucketNotFoundErr(err error) bool { dbErr, ok := err.(database.Error) return ok && dbErr.ErrorCode == database.ErrBucketNotFound } // ----------------------------------------------------------------------------- // The transaction spend journal consists of an entry for each block connected // to the main chain which contains the transaction outputs the block spends // serialized such that the order is the reverse of the order they were spent. // // This is required because reorganizing the chain necessarily entails // disconnecting blocks to get back to the point of the fork which implies // unspending all of the transaction outputs that each block previously spent. // Since the utxo set, by definition, only contains unspent transaction outputs, // the spent transaction outputs must be resurrected from somewhere. There is // more than one way this could be done, however this is the most straight // forward method that does not require having a transaction index and unpruned // blockchain. // // NOTE: This format is NOT self describing. The additional details such as // the number of entries (transaction inputs) are expected to come from the // block itself and the utxo set. The rationale in doing this is to save a // significant amount of space. This is also the reason the spent outputs are // serialized in the reverse order they are spent because later transactions // are allowed to spend outputs from earlier ones in the same block. // // The serialized format is: // // [
],... // // Field Type Size // header code VLQ variable // version VLQ variable // compressed txout // compressed amount VLQ variable // compressed script []byte variable // // The serialized header code format is: // bit 0 - containing transaction is a coinbase // bits 1-x - height of the block that contains the spent txout // // NOTE: The header code and version are only encoded when the spent txout was // the final unspent output of the containing transaction. Otherwise, the // header code will be 0 and the version is not serialized at all. This is // done because that information is only needed when the utxo set no longer // has it. // // Example 1: // From block 170 in main blockchain. // // 1301320511db93e1dcdb8a016b49840f8c53bc1eb68a382e97b1482ecad7b148a6909a5c // <><><------------------------------------------------------------------> // | | | // | version compressed txout // header code // // - header code: 0x13 (coinbase, height 9) // - transaction version: 1 // - compressed txout 0: // - 0x32: VLQ-encoded compressed amount for 5000000000 (50 BTC) // - 0x05: special script type pay-to-pubkey // - 0x11...5c: x-coordinate of the pubkey // // Example 2: // Adapted from block 100025 in main blockchain. // // 0091f20f006edbc6c4d31bae9f1ccc38538a114bf42de65e868b99700186c64700b2fb57eadf61e106a100a7445a8c3f67898841ec // <><----------------------------------------------><----><><----------------------------------------------> // | | | | | // | compressed txout | version compressed txout // header code header code // // - Last spent output: // - header code: 0x00 (was not the final unspent output for containing tx) // - transaction version: Nothing since header code is 0 // - compressed txout: // - 0x91f20f: VLQ-encoded compressed amount for 34405000000 (344.05 BTC) // - 0x00: special script type pay-to-pubkey-hash // - 0x6e...86: pubkey hash // - Second to last spent output: // - header code: 0x8b9970 (not coinbase, height 100024) // - transaction version: 1 // - compressed txout: // - 0x86c647: VLQ-encoded compressed amount for 13761000000 (137.61 BTC) // - 0x00: special script type pay-to-pubkey-hash // - 0xb2...ec: pubkey hash // ----------------------------------------------------------------------------- // spentTxOut contains a spent transaction output and potentially additional // contextual information such as whether or not it was contained in a coinbase // transaction, the version of the transaction it was contained in, and which // block height the containing transaction was included in. As described in // the comments above, the additional contextual information will only be valid // when this spent txout is spending the last unspent output of the containing // transaction. type spentTxOut struct { compressed bool // The amount and public key script are compressed. version int32 // The version of creating tx. amount int64 // The amount of the output. pkScript []byte // The public key script for the output. // These fields are only set when this is spending the final output of // the creating tx. height int32 // Height of the the block containing the creating tx. isCoinBase bool // Whether creating tx is a coinbase. } // spentTxOutHeaderCode returns the calculated header code to be used when // serializing the provided stxo entry. func spentTxOutHeaderCode(stxo *spentTxOut) uint64 { // The header code is 0 when there is no height set for the stxo. if stxo.height == 0 { return 0 } // As described in the serialization format comments, the header code // encodes the height shifted over one bit and the coinbase flag in the // lowest bit. headerCode := uint64(stxo.height) << 1 if stxo.isCoinBase { headerCode |= 0x01 } return headerCode } // spentTxOutSerializeSize returns the number of bytes it would take to // serialize the passed stxo according to the format described above. func spentTxOutSerializeSize(stxo *spentTxOut) int { headerCode := spentTxOutHeaderCode(stxo) size := serializeSizeVLQ(headerCode) if headerCode != 0 { size += serializeSizeVLQ(uint64(stxo.version)) } return size + compressedTxOutSize(uint64(stxo.amount), stxo.pkScript, stxo.version, stxo.compressed) } // putSpentTxOut serializes the passed stxo according to the format described // above directly into the passed target byte slice. The target byte slice must // be at least large enough to handle the number of bytes returned by the // spentTxOutSerializeSize function or it will panic. func putSpentTxOut(target []byte, stxo *spentTxOut) int { headerCode := spentTxOutHeaderCode(stxo) offset := putVLQ(target, headerCode) if headerCode != 0 { offset += putVLQ(target[offset:], uint64(stxo.version)) } return offset + putCompressedTxOut(target[offset:], uint64(stxo.amount), stxo.pkScript, stxo.version, stxo.compressed) } // decodeSpentTxOut decodes the passed serialized stxo entry, possibly followed // by other data, into the passed stxo struct. It returns the number of bytes // read. // // Since the serialized stxo entry does not contain the height, version, or // coinbase flag of the containing transaction when it still has utxos, the // caller is responsible for passing in the containing transaction version in // that case. The provided version is ignore when it is serialized as a part of // the stxo. // // An error will be returned if the version is not serialized as a part of the // stxo and is also not provided to the function. func decodeSpentTxOut(serialized []byte, stxo *spentTxOut, txVersion int32) (int, error) { // Ensure there are bytes to decode. if len(serialized) == 0 { return 0, errDeserialize("no serialized bytes") } // Deserialize the header code. code, offset := deserializeVLQ(serialized) if offset >= len(serialized) { return offset, errDeserialize("unexpected end of data after " + "header code") } // Decode the header code and deserialize the containing transaction // version if needed. // // Bit 0 indicates containing transaction is a coinbase. // Bits 1-x encode height of containing transaction. if code != 0 { version, bytesRead := deserializeVLQ(serialized[offset:]) offset += bytesRead if offset >= len(serialized) { return offset, errDeserialize("unexpected end of data " + "after version") } stxo.isCoinBase = code&0x01 != 0 stxo.height = int32(code >> 1) stxo.version = int32(version) } else { // Ensure a tx version was specified if the stxo did not encode // it. This should never happen unless there is database // corruption or this function is being called without the // proper state. if txVersion == -1 { return offset, AssertError("decodeSpentTxOut called " + "without a containing tx version when the " + "serialized stxo that does not encode the " + "version") } stxo.version = txVersion } // Decode the compressed txout. compAmount, compScript, bytesRead, err := decodeCompressedTxOut( serialized[offset:], stxo.version) offset += bytesRead if err != nil { return offset, errDeserialize(fmt.Sprintf("unable to decode "+ "txout: %v", err)) } stxo.amount = int64(compAmount) stxo.pkScript = compScript stxo.compressed = true return offset, nil } // deserializeSpendJournalEntry decodes the passed serialized byte slice into a // slice of spent txouts according to the format described in detail above. // // Since the serialization format is not self describing, as noted in the // format comments, this function also requires the transactions that spend the // txouts and a utxo view that contains any remaining existing utxos in the // transactions referenced by the inputs to the passed transasctions. func deserializeSpendJournalEntry(serialized []byte, txns []*wire.MsgTx, view *UtxoViewpoint) ([]spentTxOut, error) { // Calculate the total number of stxos. var numStxos int for _, tx := range txns { numStxos += len(tx.TxIn) } // When a block has no spent txouts there is nothing to serialize. if len(serialized) == 0 { // Ensure the block actually has no stxos. This should never // happen unless there is database corruption or an empty entry // erroneously made its way into the database. if numStxos != 0 { return nil, AssertError(fmt.Sprintf("mismatched spend "+ "journal serialization - no serialization for "+ "expected %d stxos", numStxos)) } return nil, nil } // Loop backwards through all transactions so everything is read in // reverse order to match the serialization order. stxoIdx := numStxos - 1 stxoInFlight := make(map[chainhash.Hash]int) offset := 0 stxos := make([]spentTxOut, numStxos) for txIdx := len(txns) - 1; txIdx > -1; txIdx-- { tx := txns[txIdx] // Loop backwards through all of the transaction inputs and read // the associated stxo. for txInIdx := len(tx.TxIn) - 1; txInIdx > -1; txInIdx-- { txIn := tx.TxIn[txInIdx] stxo := &stxos[stxoIdx] stxoIdx-- // Get the transaction version for the stxo based on // whether or not it should be serialized as a part of // the stxo. Recall that it is only serialized when the // stxo spends the final utxo of a transaction. Since // they are deserialized in reverse order, this means // the first time an entry for a given containing tx is // encountered that is not already in the utxo view it // must have been the final spend and thus the extra // data will be serialized with the stxo. Otherwise, // the version must be pulled from the utxo entry. // // Since the view is not actually modified as the stxos // are read here and it's possible later entries // reference earlier ones, an inflight map is maintained // to detect this case and pull the tx version from the // entry that contains the version information as just // described. txVersion := int32(-1) originHash := &txIn.PreviousOutPoint.Hash entry := view.LookupEntry(originHash) if entry != nil { txVersion = entry.Version() } else if idx, ok := stxoInFlight[*originHash]; ok { txVersion = stxos[idx].version } else { stxoInFlight[*originHash] = stxoIdx + 1 } n, err := decodeSpentTxOut(serialized[offset:], stxo, txVersion) offset += n if err != nil { return nil, errDeserialize(fmt.Sprintf("unable "+ "to decode stxo for %v: %v", txIn.PreviousOutPoint, err)) } } } return stxos, nil } // serializeSpendJournalEntry serializes all of the passed spent txouts into a // single byte slice according to the format described in detail above. func serializeSpendJournalEntry(stxos []spentTxOut) []byte { if len(stxos) == 0 { return nil } // Calculate the size needed to serialize the entire journal entry. var size int for i := range stxos { size += spentTxOutSerializeSize(&stxos[i]) } serialized := make([]byte, size) // Serialize each individual stxo directly into the slice in reverse // order one after the other. var offset int for i := len(stxos) - 1; i > -1; i-- { offset += putSpentTxOut(serialized[offset:], &stxos[i]) } return serialized } // dbFetchSpendJournalEntry fetches the spend journal entry for the passed // block and deserializes it into a slice of spent txout entries. The provided // view MUST have the utxos referenced by all of the transactions available for // the passed block since that information is required to reconstruct the spent // txouts. func dbFetchSpendJournalEntry(dbTx database.Tx, block *btcutil.Block, view *UtxoViewpoint) ([]spentTxOut, error) { // Exclude the coinbase transaction since it can't spend anything. spendBucket := dbTx.Metadata().Bucket(spendJournalBucketName) serialized := spendBucket.Get(block.Hash()[:]) blockTxns := block.MsgBlock().Transactions[1:] stxos, err := deserializeSpendJournalEntry(serialized, blockTxns, view) if err != nil { // Ensure any deserialization errors are returned as database // corruption errors. if isDeserializeErr(err) { return nil, database.Error{ ErrorCode: database.ErrCorruption, Description: fmt.Sprintf("corrupt spend "+ "information for %v: %v", block.Hash(), err), } } return nil, err } return stxos, nil } // dbPutSpendJournalEntry uses an existing database transaction to update the // spend journal entry for the given block hash using the provided slice of // spent txouts. The spent txouts slice must contain an entry for every txout // the transactions in the block spend in the order they are spent. func dbPutSpendJournalEntry(dbTx database.Tx, blockHash *chainhash.Hash, stxos []spentTxOut) error { spendBucket := dbTx.Metadata().Bucket(spendJournalBucketName) serialized := serializeSpendJournalEntry(stxos) return spendBucket.Put(blockHash[:], serialized) } // dbRemoveSpendJournalEntry uses an existing database transaction to remove the // spend journal entry for the passed block hash. func dbRemoveSpendJournalEntry(dbTx database.Tx, blockHash *chainhash.Hash) error { spendBucket := dbTx.Metadata().Bucket(spendJournalBucketName) return spendBucket.Delete(blockHash[:]) } // ----------------------------------------------------------------------------- // The unspent transaction output (utxo) set consists of an entry for each // transaction which contains a utxo serialized using a format that is highly // optimized to reduce space using domain specific compression algorithms. This // format is a slightly modified version of the format used in Bitcoin Core. // // The serialized format is: // //
[,...] // // Field Type Size // version VLQ variable // block height VLQ variable // header code VLQ variable // unspentness bitmap []byte variable // compressed txouts // compressed amount VLQ variable // compressed script []byte variable // // The serialized header code format is: // bit 0 - containing transaction is a coinbase // bit 1 - output zero is unspent // bit 2 - output one is unspent // bits 3-x - number of bytes in unspentness bitmap. When both bits 1 and 2 // are unset, it encodes N-1 since there must be at least one unspent // output. // // The rationale for the header code scheme is as follows: // - Transactions which only pay to a single output and a change output are // extremely common, thus an extra byte for the unspentness bitmap can be // avoided for them by encoding those two outputs in the low order bits. // - Given it is encoded as a VLQ which can encode values up to 127 with a // single byte, that leaves 4 bits to represent the number of bytes in the // unspentness bitmap while still only consuming a single byte for the // header code. In other words, an unspentness bitmap with up to 120 // transaction outputs can be encoded with a single-byte header code. // This covers the vast majority of transactions. // - Encoding N-1 bytes when both bits 1 and 2 are unset allows an additional // 8 outpoints to be encoded before causing the header code to require an // additional byte. // // Example 1: // From tx in main blockchain: // Blk 1, 0e3e2357e806b6cdb1f70b54c3a3a17b6714ee1f0e68bebb44a74b1efd512098 // // 010103320496b538e853519c726a2c91e61ec11600ae1390813a627c66fb8be7947be63c52 // <><><><------------------------------------------------------------------> // | | \--------\ | // | height | compressed txout 0 // version header code // // - version: 1 // - height: 1 // - header code: 0x03 (coinbase, output zero unspent, 0 bytes of unspentness) // - unspentness: Nothing since it is zero bytes // - compressed txout 0: // - 0x32: VLQ-encoded compressed amount for 5000000000 (50 BTC) // - 0x04: special script type pay-to-pubkey // - 0x96...52: x-coordinate of the pubkey // // Example 2: // From tx in main blockchain: // Blk 113931, 4a16969aa4764dd7507fc1de7f0baa4850a246de90c45e59a3207f9a26b5036f // // 0185f90b0a011200e2ccd6ec7c6e2e581349c77e067385fa8236bf8a800900b8025be1b3efc63b0ad48e7f9f10e87544528d58 // <><----><><><------------------------------------------><--------------------------------------------> // | | | \-------------------\ | | // version | \--------\ unspentness | compressed txout 2 // height header code compressed txout 0 // // - version: 1 // - height: 113931 // - header code: 0x0a (output zero unspent, 1 byte in unspentness bitmap) // - unspentness: [0x01] (bit 0 is set, so output 0+2 = 2 is unspent) // NOTE: It's +2 since the first two outputs are encoded in the header code // - compressed txout 0: // - 0x12: VLQ-encoded compressed amount for 20000000 (0.2 BTC) // - 0x00: special script type pay-to-pubkey-hash // - 0xe2...8a: pubkey hash // - compressed txout 2: // - 0x8009: VLQ-encoded compressed amount for 15000000 (0.15 BTC) // - 0x00: special script type pay-to-pubkey-hash // - 0xb8...58: pubkey hash // // Example 3: // From tx in main blockchain: // Blk 338156, 1b02d1c8cfef60a189017b9a420c682cf4a0028175f2f563209e4ff61c8c3620 // // 0193d06c100000108ba5b9e763011dd46a006572d820e448e12d2bbb38640bc718e6 // <><----><><----><--------------------------------------------------> // | | | \-----------------\ | // version | \--------\ unspentness | // height header code compressed txout 22 // // - version: 1 // - height: 338156 // - header code: 0x10 (2+1 = 3 bytes in unspentness bitmap) // NOTE: It's +1 since neither bit 1 nor 2 are set, so N-1 is encoded. // - unspentness: [0x00 0x00 0x10] (bit 20 is set, so output 20+2 = 22 is unspent) // NOTE: It's +2 since the first two outputs are encoded in the header code // - compressed txout 22: // - 0x8ba5b9e763: VLQ-encoded compressed amount for 366875659 (3.66875659 BTC) // - 0x01: special script type pay-to-script-hash // - 0x1d...e6: script hash // ----------------------------------------------------------------------------- // utxoEntryHeaderCode returns the calculated header code to be used when // serializing the provided utxo entry and the number of bytes needed to encode // the unspentness bitmap. func utxoEntryHeaderCode(entry *UtxoEntry, highestOutputIndex uint32) (uint64, int, error) { // The first two outputs are encoded separately, so offset the index // accordingly to calculate the correct number of bytes needed to encode // up to the highest unspent output index. numBitmapBytes := int((highestOutputIndex + 6) / 8) // As previously described, one less than the number of bytes is encoded // when both output 0 and 1 are spent because there must be at least one // unspent output. Adjust the number of bytes to encode accordingly and // encode the value by shifting it over 3 bits. output0Unspent := !entry.IsOutputSpent(0) output1Unspent := !entry.IsOutputSpent(1) var numBitmapBytesAdjustment int if !output0Unspent && !output1Unspent { if numBitmapBytes == 0 { return 0, 0, AssertError("attempt to serialize utxo " + "header for fully spent transaction") } numBitmapBytesAdjustment = 1 } headerCode := uint64(numBitmapBytes-numBitmapBytesAdjustment) << 3 // Set the coinbase, output 0, and output 1 bits in the header code // accordingly. if entry.isCoinBase { headerCode |= 0x01 // bit 0 } if output0Unspent { headerCode |= 0x02 // bit 1 } if output1Unspent { headerCode |= 0x04 // bit 2 } return headerCode, numBitmapBytes, nil } // serializeUtxoEntry returns the entry serialized to a format that is suitable // for long-term storage. The format is described in detail above. func serializeUtxoEntry(entry *UtxoEntry) ([]byte, error) { // Fully spent entries have no serialization. if entry.IsFullySpent() { return nil, nil } // Determine the output order by sorting the sparse output index keys. outputOrder := make([]int, 0, len(entry.sparseOutputs)) for outputIndex := range entry.sparseOutputs { outputOrder = append(outputOrder, int(outputIndex)) } sort.Ints(outputOrder) // Encode the header code and determine the number of bytes the // unspentness bitmap needs. highIndex := uint32(outputOrder[len(outputOrder)-1]) headerCode, numBitmapBytes, err := utxoEntryHeaderCode(entry, highIndex) if err != nil { return nil, err } // Calculate the size needed to serialize the entry. size := serializeSizeVLQ(uint64(entry.version)) + serializeSizeVLQ(uint64(entry.blockHeight)) + serializeSizeVLQ(headerCode) + numBitmapBytes for _, outputIndex := range outputOrder { out := entry.sparseOutputs[uint32(outputIndex)] if out.spent { continue } size += compressedTxOutSize(uint64(out.amount), out.pkScript, entry.version, out.compressed) } // Serialize the version, block height of the containing transaction, // and header code. serialized := make([]byte, size) offset := putVLQ(serialized, uint64(entry.version)) offset += putVLQ(serialized[offset:], uint64(entry.blockHeight)) offset += putVLQ(serialized[offset:], headerCode) // Serialize the unspentness bitmap. for i := uint32(0); i < uint32(numBitmapBytes); i++ { unspentBits := byte(0) for j := uint32(0); j < 8; j++ { // The first 2 outputs are encoded via the header code, // so adjust the output index accordingly. if !entry.IsOutputSpent(2 + i*8 + j) { unspentBits |= 1 << uint8(j) } } serialized[offset] = unspentBits offset++ } // Serialize the compressed unspent transaction outputs. Outputs that // are already compressed are serialized without modifications. for _, outputIndex := range outputOrder { out := entry.sparseOutputs[uint32(outputIndex)] if out.spent { continue } offset += putCompressedTxOut(serialized[offset:], uint64(out.amount), out.pkScript, entry.version, out.compressed) } return serialized, nil } // deserializeUtxoEntry decodes a utxo entry from the passed serialized byte // slice into a new UtxoEntry using a format that is suitable for long-term // storage. The format is described in detail above. func deserializeUtxoEntry(serialized []byte) (*UtxoEntry, error) { // Deserialize the version. version, bytesRead := deserializeVLQ(serialized) offset := bytesRead if offset >= len(serialized) { return nil, errDeserialize("unexpected end of data after version") } // Deserialize the block height. blockHeight, bytesRead := deserializeVLQ(serialized[offset:]) offset += bytesRead if offset >= len(serialized) { return nil, errDeserialize("unexpected end of data after height") } // Deserialize the header code. code, bytesRead := deserializeVLQ(serialized[offset:]) offset += bytesRead if offset >= len(serialized) { return nil, errDeserialize("unexpected end of data after header") } // Decode the header code. // // Bit 0 indicates whether the containing transaction is a coinbase. // Bit 1 indicates output 0 is unspent. // Bit 2 indicates output 1 is unspent. // Bits 3-x encodes the number of non-zero unspentness bitmap bytes that // follow. When both output 0 and 1 are spent, it encodes N-1. isCoinBase := code&0x01 != 0 output0Unspent := code&0x02 != 0 output1Unspent := code&0x04 != 0 numBitmapBytes := code >> 3 if !output0Unspent && !output1Unspent { numBitmapBytes++ } // Ensure there are enough bytes left to deserialize the unspentness // bitmap. if uint64(len(serialized[offset:])) < numBitmapBytes { return nil, errDeserialize("unexpected end of data for " + "unspentness bitmap") } // Create a new utxo entry with the details deserialized above to house // all of the utxos. entry := newUtxoEntry(int32(version), isCoinBase, int32(blockHeight)) // Add sparse output for unspent outputs 0 and 1 as needed based on the // details provided by the header code. var outputIndexes []uint32 if output0Unspent { outputIndexes = append(outputIndexes, 0) } if output1Unspent { outputIndexes = append(outputIndexes, 1) } // Decode the unspentness bitmap adding a sparse output for each unspent // output. for i := uint32(0); i < uint32(numBitmapBytes); i++ { unspentBits := serialized[offset] for j := uint32(0); j < 8; j++ { if unspentBits&0x01 != 0 { // The first 2 outputs are encoded via the // header code, so adjust the output number // accordingly. outputNum := 2 + i*8 + j outputIndexes = append(outputIndexes, outputNum) } unspentBits >>= 1 } offset++ } // Decode and add all of the utxos. for i, outputIndex := range outputIndexes { // Decode the next utxo. The script and amount fields of the // utxo output are left compressed so decompression can be // avoided on those that are not accessed. This is done since // it is quite common for a redeeming transaction to only // reference a single utxo from a referenced transaction. compAmount, compScript, bytesRead, err := decodeCompressedTxOut( serialized[offset:], int32(version)) if err != nil { return nil, errDeserialize(fmt.Sprintf("unable to "+ "decode utxo at index %d: %v", i, err)) } offset += bytesRead entry.sparseOutputs[outputIndex] = &utxoOutput{ spent: false, compressed: true, pkScript: compScript, amount: int64(compAmount), } } return entry, nil } // dbFetchUtxoEntry uses an existing database transaction to fetch all unspent // outputs for the provided Bitcoin transaction hash from the utxo set. // // When there is no entry for the provided hash, nil will be returned for the // both the entry and the error. func dbFetchUtxoEntry(dbTx database.Tx, hash *chainhash.Hash) (*UtxoEntry, error) { // Fetch the unspent transaction output information for the passed // transaction hash. Return now when there is no entry. utxoBucket := dbTx.Metadata().Bucket(utxoSetBucketName) serializedUtxo := utxoBucket.Get(hash[:]) if serializedUtxo == nil { return nil, nil } // A non-nil zero-length entry means there is an entry in the database // for a fully spent transaction which should never be the case. if len(serializedUtxo) == 0 { return nil, AssertError(fmt.Sprintf("database contains entry "+ "for fully spent tx %v", hash)) } // Deserialize the utxo entry and return it. entry, err := deserializeUtxoEntry(serializedUtxo) if err != nil { // Ensure any deserialization errors are returned as database // corruption errors. if isDeserializeErr(err) { return nil, database.Error{ ErrorCode: database.ErrCorruption, Description: fmt.Sprintf("corrupt utxo entry "+ "for %v: %v", hash, err), } } return nil, err } return entry, nil } // dbPutUtxoView uses an existing database transaction to update the utxo set // in the database based on the provided utxo view contents and state. In // particular, only the entries that have been marked as modified are written // to the database. func dbPutUtxoView(dbTx database.Tx, view *UtxoViewpoint) error { utxoBucket := dbTx.Metadata().Bucket(utxoSetBucketName) for txHashIter, entry := range view.entries { // No need to update the database if the entry was not modified. if entry == nil || !entry.modified { continue } // Serialize the utxo entry without any entries that have been // spent. serialized, err := serializeUtxoEntry(entry) if err != nil { return err } // Make a copy of the hash because the iterator changes on each // loop iteration and thus slicing it directly would cause the // data to change out from under the put/delete funcs below. txHash := txHashIter // Remove the utxo entry if it is now fully spent. if serialized == nil { if err := utxoBucket.Delete(txHash[:]); err != nil { return err } continue } // At this point the utxo entry is not fully spent, so store its // serialization in the database. err = utxoBucket.Put(txHash[:], serialized) if err != nil { return err } } return nil } // ----------------------------------------------------------------------------- // The block index consists of two buckets with an entry for every block in the // main chain. One bucket is for the hash to height mapping and the other is // for the height to hash mapping. // // The serialized format for values in the hash to height bucket is: // // // Field Type Size // height uint32 4 bytes // // The serialized format for values in the height to hash bucket is: // // // Field Type Size // hash chainhash.Hash chainhash.HashSize // ----------------------------------------------------------------------------- // dbPutBlockIndex uses an existing database transaction to update or add the // block index entries for the hash to height and height to hash mappings for // the provided values. func dbPutBlockIndex(dbTx database.Tx, hash *chainhash.Hash, height int32) error { // Serialize the height for use in the index entries. var serializedHeight [4]byte byteOrder.PutUint32(serializedHeight[:], uint32(height)) // Add the block hash to height mapping to the index. meta := dbTx.Metadata() hashIndex := meta.Bucket(hashIndexBucketName) if err := hashIndex.Put(hash[:], serializedHeight[:]); err != nil { return err } // Add the block height to hash mapping to the index. heightIndex := meta.Bucket(heightIndexBucketName) return heightIndex.Put(serializedHeight[:], hash[:]) } // dbRemoveBlockIndex uses an existing database transaction remove block index // entries from the hash to height and height to hash mappings for the provided // values. func dbRemoveBlockIndex(dbTx database.Tx, hash *chainhash.Hash, height int32) error { // Remove the block hash to height mapping. meta := dbTx.Metadata() hashIndex := meta.Bucket(hashIndexBucketName) if err := hashIndex.Delete(hash[:]); err != nil { return err } // Remove the block height to hash mapping. var serializedHeight [4]byte byteOrder.PutUint32(serializedHeight[:], uint32(height)) heightIndex := meta.Bucket(heightIndexBucketName) return heightIndex.Delete(serializedHeight[:]) } // dbFetchHeightByHash uses an existing database transaction to retrieve the // height for the provided hash from the index. func dbFetchHeightByHash(dbTx database.Tx, hash *chainhash.Hash) (int32, error) { meta := dbTx.Metadata() hashIndex := meta.Bucket(hashIndexBucketName) serializedHeight := hashIndex.Get(hash[:]) if serializedHeight == nil { str := fmt.Sprintf("block %s is not in the main chain", hash) return 0, errNotInMainChain(str) } return int32(byteOrder.Uint32(serializedHeight)), nil } // dbFetchHashByHeight uses an existing database transaction to retrieve the // hash for the provided height from the index. func dbFetchHashByHeight(dbTx database.Tx, height int32) (*chainhash.Hash, error) { var serializedHeight [4]byte byteOrder.PutUint32(serializedHeight[:], uint32(height)) meta := dbTx.Metadata() heightIndex := meta.Bucket(heightIndexBucketName) hashBytes := heightIndex.Get(serializedHeight[:]) if hashBytes == nil { str := fmt.Sprintf("no block at height %d exists", height) return nil, errNotInMainChain(str) } var hash chainhash.Hash copy(hash[:], hashBytes) return &hash, nil } // ----------------------------------------------------------------------------- // The best chain state consists of the best block hash and height, the total // number of transactions up to and including those in the best block, and the // accumulated work sum up to and including the best block. // // The serialized format is: // // // // Field Type Size // block hash chainhash.Hash chainhash.HashSize // block height uint32 4 bytes // total txns uint64 8 bytes // work sum length uint32 4 bytes // work sum big.Int work sum length // ----------------------------------------------------------------------------- // bestChainState represents the data to be stored the database for the current // best chain state. type bestChainState struct { hash chainhash.Hash height uint32 totalTxns uint64 workSum *big.Int } // serializeBestChainState returns the serialization of the passed block best // chain state. This is data to be stored in the chain state bucket. func serializeBestChainState(state bestChainState) []byte { // Calculate the full size needed to serialize the chain state. workSumBytes := state.workSum.Bytes() workSumBytesLen := uint32(len(workSumBytes)) serializedLen := chainhash.HashSize + 4 + 8 + 4 + workSumBytesLen // Serialize the chain state. serializedData := make([]byte, serializedLen) copy(serializedData[0:chainhash.HashSize], state.hash[:]) offset := uint32(chainhash.HashSize) byteOrder.PutUint32(serializedData[offset:], state.height) offset += 4 byteOrder.PutUint64(serializedData[offset:], state.totalTxns) offset += 8 byteOrder.PutUint32(serializedData[offset:], workSumBytesLen) offset += 4 copy(serializedData[offset:], workSumBytes) return serializedData[:] } // deserializeBestChainState deserializes the passed serialized best chain // state. This is data stored in the chain state bucket and is updated after // every block is connected or disconnected form the main chain. // block. func deserializeBestChainState(serializedData []byte) (bestChainState, error) { // Ensure the serialized data has enough bytes to properly deserialize // the hash, height, total transactions, and work sum length. if len(serializedData) < chainhash.HashSize+16 { return bestChainState{}, database.Error{ ErrorCode: database.ErrCorruption, Description: "corrupt best chain state", } } state := bestChainState{} copy(state.hash[:], serializedData[0:chainhash.HashSize]) offset := uint32(chainhash.HashSize) state.height = byteOrder.Uint32(serializedData[offset : offset+4]) offset += 4 state.totalTxns = byteOrder.Uint64(serializedData[offset : offset+8]) offset += 8 workSumBytesLen := byteOrder.Uint32(serializedData[offset : offset+4]) offset += 4 // Ensure the serialized data has enough bytes to deserialize the work // sum. if uint32(len(serializedData[offset:])) < workSumBytesLen { return bestChainState{}, database.Error{ ErrorCode: database.ErrCorruption, Description: "corrupt best chain state", } } workSumBytes := serializedData[offset : offset+workSumBytesLen] state.workSum = new(big.Int).SetBytes(workSumBytes) return state, nil } // dbPutBestState uses an existing database transaction to update the best chain // state with the given parameters. func dbPutBestState(dbTx database.Tx, snapshot *BestState, workSum *big.Int) error { // Serialize the current best chain state. serializedData := serializeBestChainState(bestChainState{ hash: snapshot.Hash, height: uint32(snapshot.Height), totalTxns: snapshot.TotalTxns, workSum: workSum, }) // Store the current best chain state into the database. return dbTx.Metadata().Put(chainStateKeyName, serializedData) } // createChainState initializes both the database and the chain state to the // genesis block. This includes creating the necessary buckets and inserting // the genesis block, so it must only be called on an uninitialized database. func (b *BlockChain) createChainState() error { // Create a new node from the genesis block and set it as the best node. genesisBlock := btcutil.NewBlock(b.chainParams.GenesisBlock) genesisBlock.SetHeight(0) header := &genesisBlock.MsgBlock().Header node := newBlockNode(header, nil) node.status = statusDataStored | statusValid b.bestChain.SetTip(node) // Add the new node to the index which is used for faster lookups. b.index.addNode(node) // Initialize the state related to the best block. Since it is the // genesis block, use its timestamp for the median time. numTxns := uint64(len(genesisBlock.MsgBlock().Transactions)) blockSize := uint64(genesisBlock.MsgBlock().SerializeSize()) blockWeight := uint64(GetBlockWeight(genesisBlock)) b.stateSnapshot = newBestState(node, blockSize, blockWeight, numTxns, numTxns, time.Unix(node.timestamp, 0)) // Create the initial the database chain state including creating the // necessary index buckets and inserting the genesis block. err := b.db.Update(func(dbTx database.Tx) error { meta := dbTx.Metadata() // Create the bucket that houses the block index data. _, err := meta.CreateBucket(blockIndexBucketName) if err != nil { return err } // Create the bucket that houses the chain block hash to height // index. _, err = meta.CreateBucket(hashIndexBucketName) if err != nil { return err } // Create the bucket that houses the chain block height to hash // index. _, err = meta.CreateBucket(heightIndexBucketName) if err != nil { return err } // Create the bucket that houses the spend journal data. _, err = meta.CreateBucket(spendJournalBucketName) if err != nil { return err } // Create the bucket that houses the utxo set. Note that the // genesis block coinbase transaction is intentionally not // inserted here since it is not spendable by consensus rules. _, err = meta.CreateBucket(utxoSetBucketName) if err != nil { return err } // Save the genesis block to the block index database. err = dbStoreBlockNode(dbTx, node) if err != nil { return err } // Add the genesis block hash to height and height to hash // mappings to the index. err = dbPutBlockIndex(dbTx, &node.hash, node.height) if err != nil { return err } // Store the current best chain state into the database. err = dbPutBestState(dbTx, b.stateSnapshot, node.workSum) if err != nil { return err } // Store the genesis block into the database. return dbStoreBlock(dbTx, genesisBlock) }) return err } // initChainState attempts to load and initialize the chain state from the // database. When the db does not yet contain any chain state, both it and the // chain state are initialized to the genesis block. func (b *BlockChain) initChainState() error { // Determine the state of the chain database. We may need to initialize // everything from scratch or upgrade certain buckets. var initialized, hasBlockIndex bool err := b.db.View(func(dbTx database.Tx) error { initialized = dbTx.Metadata().Get(chainStateKeyName) != nil hasBlockIndex = dbTx.Metadata().Bucket(blockIndexBucketName) != nil return nil }) if err != nil { return err } if !initialized { // At this point the database has not already been initialized, so // initialize both it and the chain state to the genesis block. return b.createChainState() } if !hasBlockIndex { err := migrateBlockIndex(b.db) if err != nil { return nil } } // Attempt to load the chain state from the database. return b.db.View(func(dbTx database.Tx) error { // Fetch the stored chain state from the database metadata. // When it doesn't exist, it means the database hasn't been // initialized for use with chain yet, so break out now to allow // that to happen under a writable database transaction. serializedData := dbTx.Metadata().Get(chainStateKeyName) log.Tracef("Serialized chain state: %x", serializedData) state, err := deserializeBestChainState(serializedData) if err != nil { return err } // Load all of the headers from the data for the known best // chain and construct the block index accordingly. Since the // number of nodes are already known, perform a single alloc // for them versus a whole bunch of little ones to reduce // pressure on the GC. log.Infof("Loading block index...") blockIndexBucket := dbTx.Metadata().Bucket(blockIndexBucketName) // Determine how many blocks will be loaded into the index so we can // allocate the right amount. var blockCount int32 cursor := blockIndexBucket.Cursor() for ok := cursor.First(); ok; ok = cursor.Next() { blockCount++ } blockNodes := make([]blockNode, blockCount) var i int32 var lastNode *blockNode cursor = blockIndexBucket.Cursor() for ok := cursor.First(); ok; ok = cursor.Next() { header, status, err := deserializeBlockRow(cursor.Value()) if err != nil { return err } // Determine the parent block node. Since we iterate block headers // in order of height, if the blocks are mostly linear there is a // very good chance the previous header processed is the parent. var parent *blockNode if lastNode == nil { blockHash := header.BlockHash() if !blockHash.IsEqual(b.chainParams.GenesisHash) { return AssertError(fmt.Sprintf("initChainState: Expected "+ "first entry in block index to be genesis block, "+ "found %s", blockHash)) } } else if header.PrevBlock == lastNode.hash { // Since we iterate block headers in order of height, if the // blocks are mostly linear there is a very good chance the // previous header processed is the parent. parent = lastNode } else { parent = b.index.LookupNode(&header.PrevBlock) if parent == nil { return AssertError(fmt.Sprintf("initChainState: Could "+ "not find parent for block %s", header.BlockHash())) } } // Initialize the block node for the block, connect it, // and add it to the block index. node := &blockNodes[i] initBlockNode(node, header, parent) node.status = status b.index.addNode(node) lastNode = node i++ } // Set the best chain view to the stored best state. tip := b.index.LookupNode(&state.hash) if tip == nil { return AssertError(fmt.Sprintf("initChainState: cannot find "+ "chain tip %s in block index", state.hash)) } b.bestChain.SetTip(tip) // Load the raw block bytes for the best block. blockBytes, err := dbTx.FetchBlock(&state.hash) if err != nil { return err } var block wire.MsgBlock err = block.Deserialize(bytes.NewReader(blockBytes)) if err != nil { return err } // Initialize the state related to the best block. blockSize := uint64(len(blockBytes)) blockWeight := uint64(GetBlockWeight(btcutil.NewBlock(&block))) numTxns := uint64(len(block.Transactions)) b.stateSnapshot = newBestState(tip, blockSize, blockWeight, numTxns, state.totalTxns, tip.CalcPastMedianTime()) return nil }) } // deserializeBlockRow parses a value in the block index bucket into a block // header and block status bitfield. func deserializeBlockRow(blockRow []byte) (*wire.BlockHeader, blockStatus, error) { buffer := bytes.NewReader(blockRow) var header wire.BlockHeader err := header.Deserialize(buffer) if err != nil { return nil, statusNone, err } statusByte, err := buffer.ReadByte() if err != nil { return nil, statusNone, err } return &header, blockStatus(statusByte), nil } // dbFetchHeaderByHash uses an existing database transaction to retrieve the // block header for the provided hash. func dbFetchHeaderByHash(dbTx database.Tx, hash *chainhash.Hash) (*wire.BlockHeader, error) { headerBytes, err := dbTx.FetchBlockHeader(hash) if err != nil { return nil, err } var header wire.BlockHeader err = header.Deserialize(bytes.NewReader(headerBytes)) if err != nil { return nil, err } return &header, nil } // dbFetchHeaderByHeight uses an existing database transaction to retrieve the // block header for the provided height. func dbFetchHeaderByHeight(dbTx database.Tx, height int32) (*wire.BlockHeader, error) { hash, err := dbFetchHashByHeight(dbTx, height) if err != nil { return nil, err } return dbFetchHeaderByHash(dbTx, hash) } // dbFetchBlockByNode uses an existing database transaction to retrieve the // raw block for the provided node, deserialize it, and return a btcutil.Block // with the height set. func dbFetchBlockByNode(dbTx database.Tx, node *blockNode) (*btcutil.Block, error) { // Load the raw block bytes from the database. blockBytes, err := dbTx.FetchBlock(&node.hash) if err != nil { return nil, err } // Create the encapsulated block and set the height appropriately. block, err := btcutil.NewBlockFromBytes(blockBytes) if err != nil { return nil, err } block.SetHeight(node.height) return block, nil } // dbStoreBlockNode stores the block header and validation status to the block // index bucket. This overwrites the current entry if there exists one. func dbStoreBlockNode(dbTx database.Tx, node *blockNode) error { // Serialize block data to be stored. w := bytes.NewBuffer(make([]byte, 0, blockHdrSize+1)) header := node.Header() err := header.Serialize(w) if err != nil { return err } err = w.WriteByte(byte(node.status)) if err != nil { return err } value := w.Bytes() // Write block header data to block index bucket. blockIndexBucket := dbTx.Metadata().Bucket(blockIndexBucketName) key := blockIndexKey(&node.hash, uint32(node.height)) return blockIndexBucket.Put(key, value) } // dbStoreBlock stores the provided block in the database if it is not already // there. The full block data is written to ffldb. func dbStoreBlock(dbTx database.Tx, block *btcutil.Block) error { hasBlock, err := dbTx.HasBlock(block.Hash()) if err != nil { return err } if hasBlock { return nil } return dbTx.StoreBlock(block) } // blockIndexKey generates the binary key for an entry in the block index // bucket. The key is composed of the block height encoded as a big-endian // 32-bit unsigned int followed by the 32 byte block hash. func blockIndexKey(blockHash *chainhash.Hash, blockHeight uint32) []byte { indexKey := make([]byte, chainhash.HashSize+4) binary.BigEndian.PutUint32(indexKey[0:4], blockHeight) copy(indexKey[4:chainhash.HashSize+4], blockHash[:]) return indexKey } // BlockByHeight returns the block at the given height in the main chain. // // This function is safe for concurrent access. func (b *BlockChain) BlockByHeight(blockHeight int32) (*btcutil.Block, error) { // Lookup the block height in the best chain. node := b.bestChain.NodeByHeight(blockHeight) if node == nil { str := fmt.Sprintf("no block at height %d exists", blockHeight) return nil, errNotInMainChain(str) } // Load the block from the database and return it. var block *btcutil.Block err := b.db.View(func(dbTx database.Tx) error { var err error block, err = dbFetchBlockByNode(dbTx, node) return err }) return block, err } // BlockByHash returns the block from the main chain with the given hash with // the appropriate chain height set. // // This function is safe for concurrent access. func (b *BlockChain) BlockByHash(hash *chainhash.Hash) (*btcutil.Block, error) { // Lookup the block hash in block index and ensure it is in the best // chain. node := b.index.LookupNode(hash) if node == nil || !b.bestChain.Contains(node) { str := fmt.Sprintf("block %s is not in the main chain", hash) return nil, errNotInMainChain(str) } // Load the block from the database and return it. var block *btcutil.Block err := b.db.View(func(dbTx database.Tx) error { var err error block, err = dbFetchBlockByNode(dbTx, node) return err }) return block, err }