// Copyright 2011 The Go Authors. All rights reserved. // Copyright 2011 ThePiachu. All rights reserved. // Copyright 2013-2016 The btcsuite developers // Use of this source code is governed by an ISC // license that can be found in the LICENSE file. package btcec import ( "crypto/rand" "fmt" "math/big" "testing" ) // isJacobianOnS256Curve returns boolean if the point (x,y,z) is on the // secp256k1 curve. func isJacobianOnS256Curve(x, y, z *fieldVal) bool { // Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7 // In Jacobian coordinates, Y = y/z^3 and X = x/z^2 // Thus: // (y/z^3)^2 = (x/z^2)^3 + 7 // y^2/z^6 = x^3/z^6 + 7 // y^2 = x^3 + 7*z^6 var y2, z2, x3, result fieldVal y2.SquareVal(y).Normalize() z2.SquareVal(z) x3.SquareVal(x).Mul(x) result.SquareVal(&z2).Mul(&z2).MulInt(7).Add(&x3).Normalize() return y2.Equals(&result) } // TestAddJacobian tests addition of points projected in Jacobian coordinates. func TestAddJacobian(t *testing.T) { tests := []struct { x1, y1, z1 string // Coordinates (in hex) of first point to add x2, y2, z2 string // Coordinates (in hex) of second point to add x3, y3, z3 string // Coordinates (in hex) of expected point }{ // Addition with a point at infinity (left hand side). // ∞ + P = P { "0", "0", "0", "d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575", "131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d", "1", "d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575", "131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d", "1", }, // Addition with a point at infinity (right hand side). // P + ∞ = P { "d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575", "131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d", "1", "0", "0", "0", "d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575", "131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d", "1", }, // Addition with z1=z2=1 different x values. { "34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6", "0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232", "1", "d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575", "131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d", "1", "0cfbc7da1e569b334460788faae0286e68b3af7379d5504efc25e4dba16e46a6", "e205f79361bbe0346b037b4010985dbf4f9e1e955e7d0d14aca876bfa79aad87", "44a5646b446e3877a648d6d381370d9ef55a83b666ebce9df1b1d7d65b817b2f", }, // Addition with z1=z2=1 same x opposite y. // P(x, y, z) + P(x, -y, z) = infinity { "34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6", "0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232", "1", "34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6", "f48e156428cf0276dc092da5856e182288d7569f97934a56fe44be60f0d359fd", "1", "0", "0", "0", }, // Addition with z1=z2=1 same point. // P(x, y, z) + P(x, y, z) = 2P { "34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6", "0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232", "1", "34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6", "0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232", "1", "ec9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee64f87c50c27", "b082b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd0755c8f2a", "16e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c1e594464", }, // Addition with z1=z2 (!=1) different x values. { "d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718", "5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190", "2", "5d2fe112c21891d440f65a98473cb626111f8a234d2cd82f22172e369f002147", "98e3386a0a622a35c4561ffb32308d8e1c6758e10ebb1b4ebd3d04b4eb0ecbe8", "2", "cfbc7da1e569b334460788faae0286e68b3af7379d5504efc25e4dba16e46a60", "817de4d86ef80d1ac0ded00426176fd3e787a5579f43452b2a1db021e6ac3778", "129591ad11b8e1de99235b4e04dc367bd56a0ed99baf3a77c6c75f5a6e05f08d", }, // Addition with z1=z2 (!=1) same x opposite y. // P(x, y, z) + P(x, -y, z) = infinity { "d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718", "5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190", "2", "d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718", "a470ab21467813b6e0496d2c2b70c11446bab4fcbc9a52b7f225f30e869aea9f", "2", "0", "0", "0", }, // Addition with z1=z2 (!=1) same point. // P(x, y, z) + P(x, y, z) = 2P { "d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718", "5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190", "2", "d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718", "5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190", "2", "9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac", "2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988", "6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11", }, // Addition with z1!=z2 and z2=1 different x values. { "d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718", "5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190", "2", "d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575", "131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d", "1", "3ef1f68795a6ccd1181e23eab80a1b9a2cebdcde755413bf097936eb5b91b4f3", "0bef26c377c068d606f6802130bb7e9f3c3d2abcfa1a295950ed81133561cb04", "252b235a2371c3bd3246b69c09b86cf7aad41db3375e74ef8d8ebeb4dc0be11a", }, // Addition with z1!=z2 and z2=1 same x opposite y. // P(x, y, z) + P(x, -y, z) = infinity { "d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718", "5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190", "2", "34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6", "f48e156428cf0276dc092da5856e182288d7569f97934a56fe44be60f0d359fd", "1", "0", "0", "0", }, // Addition with z1!=z2 and z2=1 same point. // P(x, y, z) + P(x, y, z) = 2P { "d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718", "5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190", "2", "34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6", "0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232", "1", "9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac", "2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988", "6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11", }, // Addition with z1!=z2 and z2!=1 different x values. // P(x, y, z) + P(x, y, z) = 2P { "d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718", "5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190", "2", "91abba6a34b7481d922a4bd6a04899d5a686f6cf6da4e66a0cb427fb25c04bd4", "03fede65e30b4e7576a2abefc963ddbf9fdccbf791b77c29beadefe49951f7d1", "3", "3f07081927fd3f6dadd4476614c89a09eba7f57c1c6c3b01fa2d64eac1eef31e", "949166e04ebc7fd95a9d77e5dfd88d1492ecffd189792e3944eb2b765e09e031", "eb8cba81bcffa4f44d75427506737e1f045f21e6d6f65543ee0e1d163540c931", }, // Addition with z1!=z2 and z2!=1 same x opposite y. // P(x, y, z) + P(x, -y, z) = infinity { "d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718", "5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190", "2", "dcc3768780c74a0325e2851edad0dc8a566fa61a9e7fc4a34d13dcb509f99bc7", "cafc41904dd5428934f7d075129c8ba46eb622d4fc88d72cd1401452664add18", "3", "0", "0", "0", }, // Addition with z1!=z2 and z2!=1 same point. // P(x, y, z) + P(x, y, z) = 2P { "d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718", "5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190", "2", "dcc3768780c74a0325e2851edad0dc8a566fa61a9e7fc4a34d13dcb509f99bc7", "3503be6fb22abd76cb082f8aed63745b9149dd2b037728d32ebfebac99b51f17", "3", "9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac", "2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988", "6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11", }, } t.Logf("Running %d tests", len(tests)) for i, test := range tests { // Convert hex to field values. x1 := new(fieldVal).SetHex(test.x1) y1 := new(fieldVal).SetHex(test.y1) z1 := new(fieldVal).SetHex(test.z1) x2 := new(fieldVal).SetHex(test.x2) y2 := new(fieldVal).SetHex(test.y2) z2 := new(fieldVal).SetHex(test.z2) x3 := new(fieldVal).SetHex(test.x3) y3 := new(fieldVal).SetHex(test.y3) z3 := new(fieldVal).SetHex(test.z3) // Ensure the test data is using points that are actually on // the curve (or the point at infinity). if !z1.IsZero() && !isJacobianOnS256Curve(x1, y1, z1) { t.Errorf("#%d first point is not on the curve -- "+ "invalid test data", i) continue } if !z2.IsZero() && !isJacobianOnS256Curve(x2, y2, z2) { t.Errorf("#%d second point is not on the curve -- "+ "invalid test data", i) continue } if !z3.IsZero() && !isJacobianOnS256Curve(x3, y3, z3) { t.Errorf("#%d expected point is not on the curve -- "+ "invalid test data", i) continue } // Add the two points. rx, ry, rz := new(fieldVal), new(fieldVal), new(fieldVal) S256().addJacobian(x1, y1, z1, x2, y2, z2, rx, ry, rz) // Ensure result matches expected. if !rx.Equals(x3) || !ry.Equals(y3) || !rz.Equals(z3) { t.Errorf("#%d wrong result\ngot: (%v, %v, %v)\n"+ "want: (%v, %v, %v)", i, rx, ry, rz, x3, y3, z3) continue } } } // TestAddAffine tests addition of points in affine coordinates. func TestAddAffine(t *testing.T) { tests := []struct { x1, y1 string // Coordinates (in hex) of first point to add x2, y2 string // Coordinates (in hex) of second point to add x3, y3 string // Coordinates (in hex) of expected point }{ // Addition with a point at infinity (left hand side). // ∞ + P = P { "0", "0", "d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575", "131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d", "d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575", "131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d", }, // Addition with a point at infinity (right hand side). // P + ∞ = P { "d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575", "131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d", "0", "0", "d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575", "131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d", }, // Addition with different x values. { "34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6", "0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232", "d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575", "131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d", "fd5b88c21d3143518d522cd2796f3d726793c88b3e05636bc829448e053fed69", "21cf4f6a5be5ff6380234c50424a970b1f7e718f5eb58f68198c108d642a137f", }, // Addition with same x opposite y. // P(x, y) + P(x, -y) = infinity { "34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6", "0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232", "34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6", "f48e156428cf0276dc092da5856e182288d7569f97934a56fe44be60f0d359fd", "0", "0", }, // Addition with same point. // P(x, y) + P(x, y) = 2P { "34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6", "0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232", "34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6", "0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232", "59477d88ae64a104dbb8d31ec4ce2d91b2fe50fa628fb6a064e22582196b365b", "938dc8c0f13d1e75c987cb1a220501bd614b0d3dd9eb5c639847e1240216e3b6", }, } t.Logf("Running %d tests", len(tests)) for i, test := range tests { // Convert hex to field values. x1, y1 := fromHex(test.x1), fromHex(test.y1) x2, y2 := fromHex(test.x2), fromHex(test.y2) x3, y3 := fromHex(test.x3), fromHex(test.y3) // Ensure the test data is using points that are actually on // the curve (or the point at infinity). if !(x1.Sign() == 0 && y1.Sign() == 0) && !S256().IsOnCurve(x1, y1) { t.Errorf("#%d first point is not on the curve -- "+ "invalid test data", i) continue } if !(x2.Sign() == 0 && y2.Sign() == 0) && !S256().IsOnCurve(x2, y2) { t.Errorf("#%d second point is not on the curve -- "+ "invalid test data", i) continue } if !(x3.Sign() == 0 && y3.Sign() == 0) && !S256().IsOnCurve(x3, y3) { t.Errorf("#%d expected point is not on the curve -- "+ "invalid test data", i) continue } // Add the two points. rx, ry := S256().Add(x1, y1, x2, y2) // Ensure result matches expected. if rx.Cmp(x3) != 00 || ry.Cmp(y3) != 0 { t.Errorf("#%d wrong result\ngot: (%x, %x)\n"+ "want: (%x, %x)", i, rx, ry, x3, y3) continue } } } // TestDoubleJacobian tests doubling of points projected in Jacobian // coordinates. func TestDoubleJacobian(t *testing.T) { tests := []struct { x1, y1, z1 string // Coordinates (in hex) of point to double x3, y3, z3 string // Coordinates (in hex) of expected point }{ // Doubling a point at infinity is still infinity. { "0", "0", "0", "0", "0", "0", }, // Doubling with z1=1. { "34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6", "0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232", "1", "ec9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee64f87c50c27", "b082b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd0755c8f2a", "16e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c1e594464", }, // Doubling with z1!=1. { "d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718", "5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190", "2", "9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac", "2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988", "6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11", }, // From btcd issue #709. { "201e3f75715136d2f93c4f4598f91826f94ca01f4233a5bd35de9708859ca50d", "bdf18566445e7562c6ada68aef02d498d7301503de5b18c6aef6e2b1722412e1", "0000000000000000000000000000000000000000000000000000000000000001", "4a5e0559863ebb4e9ed85f5c4fa76003d05d9a7626616e614a1f738621e3c220", "00000000000000000000000000000000000000000000000000000001b1388778", "7be30acc88bceac58d5b4d15de05a931ae602a07bcb6318d5dedc563e4482993", }, } t.Logf("Running %d tests", len(tests)) for i, test := range tests { // Convert hex to field values. x1 := new(fieldVal).SetHex(test.x1) y1 := new(fieldVal).SetHex(test.y1) z1 := new(fieldVal).SetHex(test.z1) x3 := new(fieldVal).SetHex(test.x3) y3 := new(fieldVal).SetHex(test.y3) z3 := new(fieldVal).SetHex(test.z3) // Ensure the test data is using points that are actually on // the curve (or the point at infinity). if !z1.IsZero() && !isJacobianOnS256Curve(x1, y1, z1) { t.Errorf("#%d first point is not on the curve -- "+ "invalid test data", i) continue } if !z3.IsZero() && !isJacobianOnS256Curve(x3, y3, z3) { t.Errorf("#%d expected point is not on the curve -- "+ "invalid test data", i) continue } // Double the point. rx, ry, rz := new(fieldVal), new(fieldVal), new(fieldVal) S256().doubleJacobian(x1, y1, z1, rx, ry, rz) // Ensure result matches expected. if !rx.Equals(x3) || !ry.Equals(y3) || !rz.Equals(z3) { t.Errorf("#%d wrong result\ngot: (%v, %v, %v)\n"+ "want: (%v, %v, %v)", i, rx, ry, rz, x3, y3, z3) continue } } } // TestDoubleAffine tests doubling of points in affine coordinates. func TestDoubleAffine(t *testing.T) { tests := []struct { x1, y1 string // Coordinates (in hex) of point to double x3, y3 string // Coordinates (in hex) of expected point }{ // Doubling a point at infinity is still infinity. // 2*∞ = ∞ (point at infinity) { "0", "0", "0", "0", }, // Random points. { "e41387ffd8baaeeb43c2faa44e141b19790e8ac1f7ff43d480dc132230536f86", "1b88191d430f559896149c86cbcb703193105e3cf3213c0c3556399836a2b899", "88da47a089d333371bd798c548ef7caae76e737c1980b452d367b3cfe3082c19", "3b6f659b09a362821dfcfefdbfbc2e59b935ba081b6c249eb147b3c2100b1bc1", }, { "b3589b5d984f03ef7c80aeae444f919374799edf18d375cab10489a3009cff0c", "c26cf343875b3630e15bccc61202815b5d8f1fd11308934a584a5babe69db36a", "e193860172998751e527bb12563855602a227fc1f612523394da53b746bb2fb1", "2bfcf13d2f5ab8bb5c611fab5ebbed3dc2f057062b39a335224c22f090c04789", }, { "2b31a40fbebe3440d43ac28dba23eee71c62762c3fe3dbd88b4ab82dc6a82340", "9ba7deb02f5c010e217607fd49d58db78ec273371ea828b49891ce2fd74959a1", "2c8d5ef0d343b1a1a48aa336078eadda8481cb048d9305dc4fdf7ee5f65973a2", "bb4914ac729e26d3cd8f8dc8f702f3f4bb7e0e9c5ae43335f6e94c2de6c3dc95", }, { "61c64b760b51981fab54716d5078ab7dffc93730b1d1823477e27c51f6904c7a", "ef6eb16ea1a36af69d7f66524c75a3a5e84c13be8fbc2e811e0563c5405e49bd", "5f0dcdd2595f5ad83318a0f9da481039e36f135005420393e72dfca985b482f4", "a01c849b0837065c1cb481b0932c441f49d1cab1b4b9f355c35173d93f110ae0", }, } t.Logf("Running %d tests", len(tests)) for i, test := range tests { // Convert hex to field values. x1, y1 := fromHex(test.x1), fromHex(test.y1) x3, y3 := fromHex(test.x3), fromHex(test.y3) // Ensure the test data is using points that are actually on // the curve (or the point at infinity). if !(x1.Sign() == 0 && y1.Sign() == 0) && !S256().IsOnCurve(x1, y1) { t.Errorf("#%d first point is not on the curve -- "+ "invalid test data", i) continue } if !(x3.Sign() == 0 && y3.Sign() == 0) && !S256().IsOnCurve(x3, y3) { t.Errorf("#%d expected point is not on the curve -- "+ "invalid test data", i) continue } // Double the point. rx, ry := S256().Double(x1, y1) // Ensure result matches expected. if rx.Cmp(x3) != 00 || ry.Cmp(y3) != 0 { t.Errorf("#%d wrong result\ngot: (%x, %x)\n"+ "want: (%x, %x)", i, rx, ry, x3, y3) continue } } } func TestOnCurve(t *testing.T) { s256 := S256() if !s256.IsOnCurve(s256.Params().Gx, s256.Params().Gy) { t.Errorf("FAIL S256") } } type baseMultTest struct { k string x, y string } // TODO: add more test vectors var s256BaseMultTests = []baseMultTest{ { "AA5E28D6A97A2479A65527F7290311A3624D4CC0FA1578598EE3C2613BF99522", "34F9460F0E4F08393D192B3C5133A6BA099AA0AD9FD54EBCCFACDFA239FF49C6", "B71EA9BD730FD8923F6D25A7A91E7DD7728A960686CB5A901BB419E0F2CA232", }, { "7E2B897B8CEBC6361663AD410835639826D590F393D90A9538881735256DFAE3", "D74BF844B0862475103D96A611CF2D898447E288D34B360BC885CB8CE7C00575", "131C670D414C4546B88AC3FF664611B1C38CEB1C21D76369D7A7A0969D61D97D", }, { "6461E6DF0FE7DFD05329F41BF771B86578143D4DD1F7866FB4CA7E97C5FA945D", "E8AECC370AEDD953483719A116711963CE201AC3EB21D3F3257BB48668C6A72F", "C25CAF2F0EBA1DDB2F0F3F47866299EF907867B7D27E95B3873BF98397B24EE1", }, { "376A3A2CDCD12581EFFF13EE4AD44C4044B8A0524C42422A7E1E181E4DEECCEC", "14890E61FCD4B0BD92E5B36C81372CA6FED471EF3AA60A3E415EE4FE987DABA1", "297B858D9F752AB42D3BCA67EE0EB6DCD1C2B7B0DBE23397E66ADC272263F982", }, { "1B22644A7BE026548810C378D0B2994EEFA6D2B9881803CB02CEFF865287D1B9", "F73C65EAD01C5126F28F442D087689BFA08E12763E0CEC1D35B01751FD735ED3", "F449A8376906482A84ED01479BD18882B919C140D638307F0C0934BA12590BDE", }, } // TODO: test different curves as well? func TestBaseMult(t *testing.T) { s256 := S256() for i, e := range s256BaseMultTests { k, ok := new(big.Int).SetString(e.k, 16) if !ok { t.Errorf("%d: bad value for k: %s", i, e.k) } x, y := s256.ScalarBaseMult(k.Bytes()) if fmt.Sprintf("%X", x) != e.x || fmt.Sprintf("%X", y) != e.y { t.Errorf("%d: bad output for k=%s: got (%X, %X), want (%s, %s)", i, e.k, x, y, e.x, e.y) } if testing.Short() && i > 5 { break } } } func TestBaseMultVerify(t *testing.T) { s256 := S256() for bytes := 1; bytes < 40; bytes++ { for i := 0; i < 30; i++ { data := make([]byte, bytes) _, err := rand.Read(data) if err != nil { t.Errorf("failed to read random data for %d", i) continue } x, y := s256.ScalarBaseMult(data) xWant, yWant := s256.ScalarMult(s256.Gx, s256.Gy, data) if x.Cmp(xWant) != 0 || y.Cmp(yWant) != 0 { t.Errorf("%d: bad output for %X: got (%X, %X), want (%X, %X)", i, data, x, y, xWant, yWant) } if testing.Short() && i > 2 { break } } } } func TestScalarMult(t *testing.T) { tests := []struct { x string y string k string rx string ry string }{ // base mult, essentially. { "79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798", "483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8", "18e14a7b6a307f426a94f8114701e7c8e774e7f9a47e2c2035db29a206321725", "50863ad64a87ae8a2fe83c1af1a8403cb53f53e486d8511dad8a04887e5b2352", "2cd470243453a299fa9e77237716103abc11a1df38855ed6f2ee187e9c582ba6", }, // From btcd issue #709. { "000000000000000000000000000000000000000000000000000000000000002c", "420e7a99bba18a9d3952597510fd2b6728cfeafc21a4e73951091d4d8ddbe94e", "a2e8ba2e8ba2e8ba2e8ba2e8ba2e8ba219b51835b55cc30ebfe2f6599bc56f58", "a2112dcdfbcd10ae1133a358de7b82db68e0a3eb4b492cc8268d1e7118c98788", "27fc7463b7bb3c5f98ecf2c84a6272bb1681ed553d92c69f2dfe25a9f9fd3836", }, } s256 := S256() for i, test := range tests { x, _ := new(big.Int).SetString(test.x, 16) y, _ := new(big.Int).SetString(test.y, 16) k, _ := new(big.Int).SetString(test.k, 16) xWant, _ := new(big.Int).SetString(test.rx, 16) yWant, _ := new(big.Int).SetString(test.ry, 16) xGot, yGot := s256.ScalarMult(x, y, k.Bytes()) if xGot.Cmp(xWant) != 0 || yGot.Cmp(yWant) != 0 { t.Fatalf("%d: bad output: got (%X, %X), want (%X, %X)", i, xGot, yGot, xWant, yWant) } } } func TestScalarMultRand(t *testing.T) { // Strategy for this test: // Get a random exponent from the generator point at first // This creates a new point which is used in the next iteration // Use another random exponent on the new point. // We use BaseMult to verify by multiplying the previous exponent // and the new random exponent together (mod N) s256 := S256() x, y := s256.Gx, s256.Gy exponent := big.NewInt(1) for i := 0; i < 1024; i++ { data := make([]byte, 32) _, err := rand.Read(data) if err != nil { t.Fatalf("failed to read random data at %d", i) break } x, y = s256.ScalarMult(x, y, data) exponent.Mul(exponent, new(big.Int).SetBytes(data)) xWant, yWant := s256.ScalarBaseMult(exponent.Bytes()) if x.Cmp(xWant) != 0 || y.Cmp(yWant) != 0 { t.Fatalf("%d: bad output for %X: got (%X, %X), want (%X, %X)", i, data, x, y, xWant, yWant) break } } } func TestSplitK(t *testing.T) { tests := []struct { k string k1, k2 string s1, s2 int }{ { "6df2b5d30854069ccdec40ae022f5c948936324a4e9ebed8eb82cfd5a6b6d766", "00000000000000000000000000000000b776e53fb55f6b006a270d42d64ec2b1", "00000000000000000000000000000000d6cc32c857f1174b604eefc544f0c7f7", -1, -1, }, { "6ca00a8f10632170accc1b3baf2a118fa5725f41473f8959f34b8f860c47d88d", "0000000000000000000000000000000007b21976c1795723c1bfbfa511e95b84", "00000000000000000000000000000000d8d2d5f9d20fc64fd2cf9bda09a5bf90", 1, -1, }, { "b2eda8ab31b259032d39cbc2a234af17fcee89c863a8917b2740b67568166289", "00000000000000000000000000000000507d930fecda7414fc4a523b95ef3c8c", "00000000000000000000000000000000f65ffb179df189675338c6185cb839be", -1, -1, }, { "f6f00e44f179936f2befc7442721b0633f6bafdf7161c167ffc6f7751980e3a0", "0000000000000000000000000000000008d0264f10bcdcd97da3faa38f85308d", "0000000000000000000000000000000065fed1506eb6605a899a54e155665f79", -1, -1, }, { "8679085ab081dc92cdd23091ce3ee998f6b320e419c3475fae6b5b7d3081996e", "0000000000000000000000000000000089fbf24fbaa5c3c137b4f1cedc51d975", "00000000000000000000000000000000d38aa615bd6754d6f4d51ccdaf529fea", -1, -1, }, { "6b1247bb7931dfcae5b5603c8b5ae22ce94d670138c51872225beae6bba8cdb3", "000000000000000000000000000000008acc2a521b21b17cfb002c83be62f55d", "0000000000000000000000000000000035f0eff4d7430950ecb2d94193dedc79", -1, -1, }, { "a2e8ba2e8ba2e8ba2e8ba2e8ba2e8ba219b51835b55cc30ebfe2f6599bc56f58", "0000000000000000000000000000000045c53aa1bb56fcd68c011e2dad6758e4", "00000000000000000000000000000000a2e79d200f27f2360fba57619936159b", -1, -1, }, } s256 := S256() for i, test := range tests { k, ok := new(big.Int).SetString(test.k, 16) if !ok { t.Errorf("%d: bad value for k: %s", i, test.k) } k1, k2, k1Sign, k2Sign := s256.splitK(k.Bytes()) k1str := fmt.Sprintf("%064x", k1) if test.k1 != k1str { t.Errorf("%d: bad k1: got %v, want %v", i, k1str, test.k1) } k2str := fmt.Sprintf("%064x", k2) if test.k2 != k2str { t.Errorf("%d: bad k2: got %v, want %v", i, k2str, test.k2) } if test.s1 != k1Sign { t.Errorf("%d: bad k1 sign: got %d, want %d", i, k1Sign, test.s1) } if test.s2 != k2Sign { t.Errorf("%d: bad k2 sign: got %d, want %d", i, k2Sign, test.s2) } k1Int := new(big.Int).SetBytes(k1) k1SignInt := new(big.Int).SetInt64(int64(k1Sign)) k1Int.Mul(k1Int, k1SignInt) k2Int := new(big.Int).SetBytes(k2) k2SignInt := new(big.Int).SetInt64(int64(k2Sign)) k2Int.Mul(k2Int, k2SignInt) gotK := new(big.Int).Mul(k2Int, s256.lambda) gotK.Add(k1Int, gotK) gotK.Mod(gotK, s256.N) if k.Cmp(gotK) != 0 { t.Errorf("%d: bad k: got %X, want %X", i, gotK.Bytes(), k.Bytes()) } } } func TestSplitKRand(t *testing.T) { s256 := S256() for i := 0; i < 1024; i++ { bytesK := make([]byte, 32) _, err := rand.Read(bytesK) if err != nil { t.Fatalf("failed to read random data at %d", i) break } k := new(big.Int).SetBytes(bytesK) k1, k2, k1Sign, k2Sign := s256.splitK(bytesK) k1Int := new(big.Int).SetBytes(k1) k1SignInt := new(big.Int).SetInt64(int64(k1Sign)) k1Int.Mul(k1Int, k1SignInt) k2Int := new(big.Int).SetBytes(k2) k2SignInt := new(big.Int).SetInt64(int64(k2Sign)) k2Int.Mul(k2Int, k2SignInt) gotK := new(big.Int).Mul(k2Int, s256.lambda) gotK.Add(k1Int, gotK) gotK.Mod(gotK, s256.N) if k.Cmp(gotK) != 0 { t.Errorf("%d: bad k: got %X, want %X", i, gotK.Bytes(), k.Bytes()) } } } // Test this curve's usage with the ecdsa package. func testKeyGeneration(t *testing.T, c *KoblitzCurve, tag string) { priv, err := NewPrivateKey(c) if err != nil { t.Errorf("%s: error: %s", tag, err) return } if !c.IsOnCurve(priv.PublicKey.X, priv.PublicKey.Y) { t.Errorf("%s: public key invalid: %s", tag, err) } } func TestKeyGeneration(t *testing.T) { testKeyGeneration(t, S256(), "S256") } func testSignAndVerify(t *testing.T, c *KoblitzCurve, tag string) { priv, _ := NewPrivateKey(c) pub := priv.PubKey() hashed := []byte("testing") sig, err := priv.Sign(hashed) if err != nil { t.Errorf("%s: error signing: %s", tag, err) return } if !sig.Verify(hashed, pub) { t.Errorf("%s: Verify failed", tag) } hashed[0] ^= 0xff if sig.Verify(hashed, pub) { t.Errorf("%s: Verify always works!", tag) } } func TestSignAndVerify(t *testing.T) { testSignAndVerify(t, S256(), "S256") } func TestNAF(t *testing.T) { tests := []string{ "6df2b5d30854069ccdec40ae022f5c948936324a4e9ebed8eb82cfd5a6b6d766", "b776e53fb55f6b006a270d42d64ec2b1", "d6cc32c857f1174b604eefc544f0c7f7", "45c53aa1bb56fcd68c011e2dad6758e4", "a2e79d200f27f2360fba57619936159b", } negOne := big.NewInt(-1) one := big.NewInt(1) two := big.NewInt(2) for i, test := range tests { want, _ := new(big.Int).SetString(test, 16) nafPos, nafNeg := NAF(want.Bytes()) got := big.NewInt(0) // Check that the NAF representation comes up with the right number for i := 0; i < len(nafPos); i++ { bytePos := nafPos[i] byteNeg := nafNeg[i] for j := 7; j >= 0; j-- { got.Mul(got, two) if bytePos&0x80 == 0x80 { got.Add(got, one) } else if byteNeg&0x80 == 0x80 { got.Add(got, negOne) } bytePos <<= 1 byteNeg <<= 1 } } if got.Cmp(want) != 0 { t.Errorf("%d: Failed NAF got %X want %X", i, got, want) } } } func TestNAFRand(t *testing.T) { negOne := big.NewInt(-1) one := big.NewInt(1) two := big.NewInt(2) for i := 0; i < 1024; i++ { data := make([]byte, 32) _, err := rand.Read(data) if err != nil { t.Fatalf("failed to read random data at %d", i) break } nafPos, nafNeg := NAF(data) want := new(big.Int).SetBytes(data) got := big.NewInt(0) // Check that the NAF representation comes up with the right number for i := 0; i < len(nafPos); i++ { bytePos := nafPos[i] byteNeg := nafNeg[i] for j := 7; j >= 0; j-- { got.Mul(got, two) if bytePos&0x80 == 0x80 { got.Add(got, one) } else if byteNeg&0x80 == 0x80 { got.Add(got, negOne) } bytePos <<= 1 byteNeg <<= 1 } } if got.Cmp(want) != 0 { t.Errorf("%d: Failed NAF got %X want %X", i, got, want) } } }