// Copyright (c) 2013-2014 Conformal Systems LLC. // Use of this source code is governed by an ISC // license that can be found in the LICENSE file. package btcscript import ( "bytes" "crypto/ecdsa" "crypto/rand" "encoding/binary" "errors" "fmt" "github.com/conformal/btcec" "github.com/conformal/btcutil" "github.com/conformal/btcwire" "github.com/davecgh/go-spew/spew" "io" "time" ) var ( // StackErrShortScript is returned if the script has an opcode that is // too long for the length of the script. StackErrShortScript = errors.New("execute past end of script") // StackErrUnderflow is returned if an opcode requires more items on the // stack than is present. StackErrUnderflow = errors.New("stack underflow") // StackErrInvalidArgs is returned if the argument for an opcode is out // of acceptable range. StackErrInvalidArgs = errors.New("invalid argument") // StackErrOpDisabled is returned when a disabled opcode is encountered // in the script. StackErrOpDisabled = errors.New("Disabled Opcode") // StackErrVerifyFailed is returned when one of the OP_VERIFY or // OP_*VERIFY instructions is executed and the conditions fails. StackErrVerifyFailed = errors.New("Verify failed") // StackErrNumberTooBig is returned when the argument for an opcode that // should be an offset is obviously far too large. StackErrNumberTooBig = errors.New("number too big") // StackErrInvalidOpcode is returned when an opcode marked as invalid or // a completely undefined opcode is encountered. StackErrInvalidOpcode = errors.New("Invalid Opcode") // StackErrReservedOpcode is returned when an opcode marked as reserved // is encountered. StackErrReservedOpcode = errors.New("Reserved Opcode") // StackErrEarlyReturn is returned when OP_RETURN is executed in the // script. StackErrEarlyReturn = errors.New("Script returned early") // StackErrNoIf is returned if an OP_ELSE or OP_ENDIF is encountered // without first having an OP_IF or OP_NOTIF in the script. StackErrNoIf = errors.New("OP_ELSE or OP_ENDIF with no matching OP_IF") // StackErrMissingEndif is returned if the end of a script is reached // without and OP_ENDIF to correspond to a conditional expression. StackErrMissingEndif = fmt.Errorf("execute fail, in conditional execution") // StackErrTooManyPubkeys is returned if an OP_CHECKMULTISIG is // encountered with more than MaxPubKeysPerMultiSig pubkeys present. StackErrTooManyPubkeys = errors.New("Invalid pubkey count in OP_CHECKMULTISIG") // StackErrTooManyOperations is returned if a script has more than // MaxOpsPerScript opcodes that do not push data. StackErrTooManyOperations = errors.New("Too many operations in script") // StackErrElementTooBig is returned if the size of an element to be // pushed to the stack is over MaxScriptElementSize. StackErrElementTooBig = errors.New("Element in script too large") // StackErrUnknownAddress is returned when ScriptToAddrHash does not // recognise the pattern of the script and thus can not find the address // for payment. StackErrUnknownAddress = errors.New("non-recognised address") // StackErrScriptFailed is returned when at the end of a script the // boolean on top of the stack is false signifying that the script has // failed. StackErrScriptFailed = errors.New("execute fail, fail on stack") // StackErrScriptUnfinished is returned when CheckErrorCondition is // called on a script that has not finished executing. StackErrScriptUnfinished = errors.New("Error check when script unfinished") // StackErrEmpyStack is returned when the stack is empty at the end of // execution. Normal operation requires that a boolean is on top of the // stack when the scripts have finished executing. StackErrEmptyStack = errors.New("Stack empty at end of execution") // StackErrP2SHNonPushOnly is returned when a Pay-to-Script-Hash // transaction is encountered and the ScriptSig does operations other // than push data (in violation of bip16). StackErrP2SHNonPushOnly = errors.New("pay to script hash with non " + "pushonly input") // StackErrInvalidParseType is an internal error returned from // ScriptToAddrHash ony if the internal data tables are wrong. StackErrInvalidParseType = errors.New("internal error: invalid parsetype found") // StackErrInvalidAddrOffset is an internal error returned from // ScriptToAddrHash ony if the internal data tables are wrong. StackErrInvalidAddrOffset = errors.New("internal error: invalid offset found") // StackErrInvalidIndex is returned when an out-of-bounds index was // passed to a function. StackErrInvalidIndex = errors.New("Invalid script index") // StackErrNonPushOnly is returned when ScriptInfo is called with a // pkScript that peforms operations other that pushing data to the stack. StackErrNonPushOnly = errors.New("SigScript is non pushonly") ) // ErrUnsupportedAddress is returned when a concrete type that implements // a btcutil.Address is not a supported type. var ErrUnsupportedAddress = errors.New("unsupported address type") // Bip16Activation is the timestamp where BIP0016 is valid to use in the // blockchain. To be used to determine if BIP0016 should be called for or not. // This timestamp corresponds to Sun Apr 1 00:00:00 UTC 2012. var Bip16Activation = time.Unix(1333238400, 0) // Hash type bits from the end of a signature. const ( SigHashOld = 0x0 SigHashAll = 0x1 SigHashNone = 0x2 SigHashSingle = 0x3 SigHashAnyOneCanPay = 0x80 ) // These are the constants specified for maximums in individual scripts. const ( MaxOpsPerScript = 201 // Max number of non-push operations. MaxPubKeysPerMultiSig = 20 // Multisig can't have more sigs than this. MaxScriptElementSize = 520 // Max bytes pushable to the stack. ) // ScriptClass is an enumeration for the list of standard types of script. type ScriptClass byte // Classes of script payment known about in the blockchain. const ( NonStandardTy ScriptClass = iota // None of the recognized forms. PubKeyTy // Pay pubkey. PubKeyHashTy // Pay pubkey hash. ScriptHashTy // Pay to script hash. MultiSigTy // Multi signature. NullDataTy // Empty data-only (provably prunable). ) var scriptClassToName = []string{ NonStandardTy: "nonstandard", PubKeyTy: "pubkey", PubKeyHashTy: "pubkeyhash", ScriptHashTy: "scripthash", MultiSigTy: "multisig", NullDataTy: "nulldata", } // String implements the Stringer interface by returning the name of // the enum script class. If the enum is invalid then "Invalid" will be // returned. func (t ScriptClass) String() string { if int(t) > len(scriptClassToName) || int(t) < 0 { return "Invalid" } return scriptClassToName[t] } // Script is the virtual machine that executes btcscripts. type Script struct { scripts [][]parsedOpcode scriptidx int scriptoff int lastcodesep int dstack Stack // data stack astack Stack // alt stack tx btcwire.MsgTx txidx int condStack []int numOps int bip16 bool // treat execution as pay-to-script-hash der bool // enforce DER encoding savedFirstStack [][]byte // stack from first script for bip16 scripts } // isSmallInt returns whether or not the opcode is considered a small integer, // which is an OP_0, or OP_1 through OP_16. func isSmallInt(op *opcode) bool { if op.value == OP_0 || (op.value >= OP_1 && op.value <= OP_16) { return true } return false } // isPubkey returns true if the script passed is a pubkey transaction, false // otherwise. func isPubkey(pops []parsedOpcode) bool { return len(pops) == 2 && pops[0].opcode.value > OP_FALSE && pops[0].opcode.value <= OP_DATA_75 && pops[1].opcode.value == OP_CHECKSIG } // isPubkeyHash returns true if the script passed is a pubkey hash transaction, // false otherwise. func isPubkeyHash(pops []parsedOpcode) bool { return len(pops) == 5 && pops[0].opcode.value == OP_DUP && pops[1].opcode.value == OP_HASH160 && pops[2].opcode.value == OP_DATA_20 && pops[3].opcode.value == OP_EQUALVERIFY && pops[4].opcode.value == OP_CHECKSIG } // isScriptHash returns true if the script passed is a pay-to-script-hash (P2SH) // transction, false otherwise. func isScriptHash(pops []parsedOpcode) bool { return len(pops) == 3 && pops[0].opcode.value == OP_HASH160 && pops[1].opcode.value == OP_DATA_20 && pops[2].opcode.value == OP_EQUAL } // IsPayToScriptHash returns true if the script is in the standard // Pay-To-Script-Hash format, false otherwise. func IsPayToScriptHash(script []byte) bool { pops, err := parseScript(script) if err != nil { return false } return isScriptHash(pops) } // isMultiSig returns true if the passed script is a multisig transaction, false // otherwise. func isMultiSig(pops []parsedOpcode) bool { l := len(pops) // absolute minimum is 1 pubkey so // OP_0/OP_1-16, pubkey, OP_1, OP_CHECKMULTISIG if l < 4 { return false } if !isSmallInt(pops[0].opcode) { return false } if !isSmallInt(pops[l-2].opcode) { return false } if pops[l-1].opcode.value != OP_CHECKMULTISIG { return false } for _, pop := range pops[1 : l-2] { // valid pubkeys are either 65 or 33 bytes if len(pop.data) != 33 && len(pop.data) != 65 { return false } } return true } // isNullData returns true if the passed script is a null data transaction, // false otherwise. func isNullData(pops []parsedOpcode) bool { // A nulldata transaction is either a single OP_RETURN or an // OP_RETURN SMALLDATA (where SMALLDATA is a push data up to 80 bytes). l := len(pops) if l == 1 && pops[0].opcode.value == OP_RETURN { return true } return l == 2 && pops[0].opcode.value == OP_RETURN && pops[1].opcode.value <= OP_PUSHDATA4 && len(pops[1].data) <= 80 } // isPushOnly returns true if the script only pushes data, false otherwise. func isPushOnly(pops []parsedOpcode) bool { // technically we cheat here, we don't look at opcodes for _, pop := range pops { // all opcodes up to OP_16 are data instructions. if pop.opcode.value < OP_FALSE || pop.opcode.value > OP_16 { return false } } return true } // IsPushOnlyScript returns whether or not the passed script only pushes data. // If the script does not parse false will be returned. func IsPushOnlyScript(script []byte) bool { pops, err := parseScript(script) if err != nil { return false } return isPushOnly(pops) } // HasCanonicalPushes returns whether or not the passed script only contains // canonical data pushes. A canonical data push one where the fewest number of // bytes possible to encode the size of the data being pushed is used. This // includes using the small integer opcodes for single byte data that can be // represented directly. func HasCanonicalPushes(script []byte) bool { pops, err := parseScript(script) if err != nil { return false } for _, pop := range pops { opcode := pop.opcode.value data := pop.data dataLen := len(pop.data) if opcode > OP_16 { continue } if opcode < OP_PUSHDATA1 && opcode > OP_0 && (dataLen == 1 && data[0] <= 16) { return false } if opcode == OP_PUSHDATA1 && dataLen < OP_PUSHDATA1 { return false } if opcode == OP_PUSHDATA2 && dataLen <= 0xff { return false } if opcode == OP_PUSHDATA4 && dataLen <= 0xffff { return false } } return true } // GetScriptClass returns the class of the script passed. If the script does not // parse then NonStandardTy will be returned. func GetScriptClass(script []byte) ScriptClass { pops, err := parseScript(script) if err != nil { return NonStandardTy } return typeOfScript(pops) } // scriptType returns the type of the script being inspected from the known // standard types. func typeOfScript(pops []parsedOpcode) ScriptClass { // XXX dubious optimisation: order these in order of popularity in the // blockchain if isPubkey(pops) { return PubKeyTy } else if isPubkeyHash(pops) { return PubKeyHashTy } else if isScriptHash(pops) { return ScriptHashTy } else if isMultiSig(pops) { return MultiSigTy } else if isNullData(pops) { return NullDataTy } return NonStandardTy } // parseScript preparses the script in bytes into a list of parsedOpcodes while // applying a number of sanity checks. func parseScript(script []byte) ([]parsedOpcode, error) { return parseScriptTemplate(script, opcodemap) } // parseScriptTemplate is the same as parseScript but allows the passing of the // template list for testing purposes. On error we return the list of parsed // opcodes so far. func parseScriptTemplate(script []byte, opcodemap map[byte]*opcode) ([]parsedOpcode, error) { retScript := make([]parsedOpcode, 0, len(script)) for i := 0; i < len(script); { instr := script[i] op, ok := opcodemap[instr] if !ok { return retScript, StackErrInvalidOpcode } pop := parsedOpcode{opcode: op} // parse data out of instruction. switch { case op.length == 1: // no data, done here i++ case op.length > 1: if len(script[i:]) < op.length { return retScript, StackErrShortScript } // slice out the data. pop.data = script[i+1 : i+op.length] i += op.length case op.length < 0: var err error var l uint off := i + 1 switch op.length { case -1: l, err = scriptUInt8(script[off:]) case -2: l, err = scriptUInt16(script[off:]) case -4: l, err = scriptUInt32(script[off:]) default: return retScript, fmt.Errorf("invalid opcode length %d", op.length) } if err != nil { return nil, err } off = i + 1 - op.length // beginning of data // Disallow entries that do not fit script or were // sign extended. if int(l) > len(script[off:]) || int(l) < 0 { return retScript, StackErrShortScript } pop.data = script[off : off+int(l)] i += 1 - op.length + int(l) } retScript = append(retScript, pop) } return retScript, nil } // unparseScript reversed the action of parseScript and returns the // parsedOpcodes as a list of bytes func unparseScript(pops []parsedOpcode) ([]byte, error) { script := make([]byte, 0, len(pops)) for _, pop := range pops { b, err := pop.bytes() if err != nil { return nil, err } script = append(script, b...) } return script, nil } // ScriptFlags is a bitmask defining additional operations or // tests that will be done when executing a Script. type ScriptFlags uint32 const ( // ScriptBip16 defines whether the bip16 threshhold has passed and thus // pay-to-script hash transactions will be fully validated. ScriptBip16 ScriptFlags = 1 << iota // ScriptCanonicalSignatures defines whether additional canonical // signature checks are performed when parsing a signature. // // Canonical (DER) signatures are not required in the tx rules for // block acceptance, but are checked in recent versions of bitcoind // when accepting transactions to the mempool. Non-canonical (valid // BER but not valid DER) transactions can potentially be changed // before mined into a block, either by adding extra padding or // flipping the sign of the R or S value in the signature, creating a // transaction that still validates and spends the inputs, but is not // recognized by creator of the transaction. Performing a canonical // check enforces script signatures use a unique DER format. ScriptCanonicalSignatures ) // NewScript returns a new script engine for the provided tx and input idx with // a signature script scriptSig and a pubkeyscript scriptPubKey. If bip16 is // true then it will be treated as if the bip16 threshhold has passed and thus // pay-to-script hash transactions will be fully validated. func NewScript(scriptSig []byte, scriptPubKey []byte, txidx int, tx *btcwire.MsgTx, flags ScriptFlags) (*Script, error) { var m Script scripts := [][]byte{scriptSig, scriptPubKey} m.scripts = make([][]parsedOpcode, len(scripts)) for i, scr := range scripts { var err error m.scripts[i], err = parseScript(scr) if err != nil { return nil, err } // If the first scripts(s) are empty, must start on later ones. if i == 0 && len(scr) == 0 { // This could end up seeing an invalid initial pc if // all scripts were empty. However, that is an invalid // case and should fail. m.scriptidx = i + 1 } } // Parse flags. bip16 := flags&ScriptBip16 == ScriptBip16 if bip16 && isScriptHash(m.scripts[1]) { // if we are pay to scripthash then we only accept input // scripts that push data if !isPushOnly(m.scripts[0]) { return nil, StackErrP2SHNonPushOnly } m.bip16 = true } if flags&ScriptCanonicalSignatures == ScriptCanonicalSignatures { m.der = true } m.tx = *tx m.txidx = txidx m.condStack = []int{OpCondTrue} return &m, nil } // Execute will execute all script in the script engine and return either nil // for successful validation or an error if one occurred. func (s *Script) Execute() (err error) { done := false for done != true { log.Tracef("%v", newLogClosure(func() string { dis, err := s.DisasmPC() if err != nil { return fmt.Sprintf("stepping (%v)", err) } return fmt.Sprintf("stepping %v", dis) })) done, err = s.Step() if err != nil { return err } log.Tracef("%v", newLogClosure(func() string { var dstr, astr string // if we're tracing, dump the stacks. if s.dstack.Depth() != 0 { dstr = "Stack\n" + spew.Sdump(s.dstack) } if s.astack.Depth() != 0 { astr = "AltStack\n" + spew.Sdump(s.astack) } return dstr + astr })) } return s.CheckErrorCondition() } // CheckErrorCondition returns nil if the running script has ended and was // successful, leaving a a true boolean on the stack. An error otherwise, // including if the script has not finished. func (s *Script) CheckErrorCondition() (err error) { // Check we are actually done. if pc is past the end of script array // then we have run out of scripts to run. if s.scriptidx < len(s.scripts) { return StackErrScriptUnfinished } if s.dstack.Depth() < 1 { return StackErrEmptyStack } v, err := s.dstack.PopBool() if err == nil && v == false { // log interesting data. log.Tracef("%v", newLogClosure(func() string { dis0, _ := s.DisasmScript(0) dis1, _ := s.DisasmScript(1) return fmt.Sprintf("scripts failed: script0: %s\n"+ "script1: %s", dis0, dis1) })) err = StackErrScriptFailed } if err == nil && len(s.condStack) != 1 { // conditional execution stack context left active err = StackErrMissingEndif } return err } // Step will execute the next instruction and move the program counter to the // next opcode in the script, or the next script if the curent has ended. Step // will return true in the case that the last opcode was successfully executed. // if an error is returned then the result of calling Step or any other method // is undefined. func (m *Script) Step() (done bool, err error) { // verify that it is pointing to a valid script address err = m.validPC() if err != nil { return } opcode := m.scripts[m.scriptidx][m.scriptoff] executeInstr := true if m.condStack[0] != OpCondTrue { // some opcodes still 'activate' if on the non-executing side // of conditional execution if opcode.conditional() { executeInstr = true } else { executeInstr = false } } if executeInstr { err = opcode.exec(m) if err != nil { return } } // prepare for next instruction m.scriptoff++ if m.scriptoff >= len(m.scripts[m.scriptidx]) { m.numOps = 0 // number of ops is per script. m.scriptoff = 0 if m.scriptidx == 0 && m.bip16 { m.scriptidx++ m.savedFirstStack = m.GetStack() } else if m.scriptidx == 1 && m.bip16 { // Put us past the end for CheckErrorCondition() m.scriptidx++ // We check script ran ok, if so then we pull // the script out of the first stack and executre that. err := m.CheckErrorCondition() if err != nil { return false, err } script := m.savedFirstStack[len(m.savedFirstStack)-1] pops, err := parseScript(script) if err != nil { return false, err } m.scripts = append(m.scripts, pops) // Set stack to be the stack from first script // minus the script itself m.SetStack(m.savedFirstStack[:len(m.savedFirstStack)-1]) } else { m.scriptidx++ } // there are zero length scripts in the wild if m.scriptidx < len(m.scripts) && m.scriptoff >= len(m.scripts[m.scriptidx]) { m.scriptidx++ } m.lastcodesep = 0 if m.scriptidx >= len(m.scripts) { done = true } } return } // curPC returns either the current script and offset, or an error if the // position isn't valid. func (m *Script) curPC() (script int, off int, err error) { err = m.validPC() if err != nil { return 0, 0, err } return m.scriptidx, m.scriptoff, nil } // validPC returns an error if the current script position is valid for // execution, nil otherwise. func (m *Script) validPC() error { if m.scriptidx >= len(m.scripts) { return fmt.Errorf("Past input scripts %v:%v %v:xxxx", m.scriptidx, m.scriptoff, len(m.scripts)) } if m.scriptoff >= len(m.scripts[m.scriptidx]) { return fmt.Errorf("Past input scripts %v:%v %v:%04d", m.scriptidx, m.scriptoff, m.scriptidx, len(m.scripts[m.scriptidx])) } return nil } // DisasmScript returns the disassembly string for the script at offset // ``idx''. Where 0 is the scriptSig and 1 is the scriptPubKey. func (m *Script) DisasmScript(idx int) (disstr string, err error) { if idx >= len(m.scripts) { return "", StackErrInvalidIndex } for i := range m.scripts[idx] { disstr = disstr + m.disasm(idx, i) + "\n" } return disstr, nil } // DisasmPC returns the string for the disassembly of the opcode that will be // next to execute when Step() is called. func (m *Script) DisasmPC() (disstr string, err error) { scriptidx, scriptoff, err := m.curPC() if err != nil { return "", err } return m.disasm(scriptidx, scriptoff), nil } // disasm is a helper member to produce the output for DisasmPC and // DisasmScript. It produces the opcode prefixed by the program counter at the // provided position in the script. it does no error checking and leaves that // to the caller to provide a valid offse. func (m *Script) disasm(scriptidx int, scriptoff int) string { return fmt.Sprintf("%02x:%04x: %s", scriptidx, scriptoff, m.scripts[scriptidx][scriptoff].print(false)) } // subScript will return the script since the last OP_CODESEPARATOR func (s *Script) subScript() []parsedOpcode { return s.scripts[s.scriptidx][s.lastcodesep:] } // removeOpcode will remove any opcode matching ``opcode'' from the opcode // stream in pkscript func removeOpcode(pkscript []parsedOpcode, opcode byte) []parsedOpcode { retScript := make([]parsedOpcode, 0, len(pkscript)) for _, pop := range pkscript { if pop.opcode.value != opcode { retScript = append(retScript, pop) } } return retScript } // removeOpcodeByData will return the pkscript minus any opcodes that would // push the data in ``data'' to the stack. func removeOpcodeByData(pkscript []parsedOpcode, data []byte) []parsedOpcode { retScript := make([]parsedOpcode, 0, len(pkscript)) for _, pop := range pkscript { if !bytes.Equal(pop.data, data) { retScript = append(retScript, pop) } } return retScript } // DisasmString formats a disassembled script for one line printing. When the // script fails to parse, the returned string will contain the disassembled // script up to the point the failure occurred along with the string '[error]' // appended. In addition, the reason the script failed to parse is returned // if the caller wants more information about the failure. func DisasmString(buf []byte) (string, error) { disbuf := "" opcodes, err := parseScript(buf) for _, pop := range opcodes { disbuf += pop.print(true) + " " } if disbuf != "" { disbuf = disbuf[:len(disbuf)-1] } if err != nil { disbuf += "[error]" } return disbuf, err } // calcScriptHash will, given the a script and hashtype for the current // scriptmachine, calculate the doubleSha256 hash of the transaction and // script to be used for signature signing and verification. func calcScriptHash(script []parsedOpcode, hashType byte, tx *btcwire.MsgTx, idx int) []byte { // remove all instances of OP_CODESEPARATOR still left in the script script = removeOpcode(script, OP_CODESEPARATOR) // Make a deep copy of the transaction, zeroing out the script // for all inputs that are not currently being processed. txCopy := tx.Copy() for i := range txCopy.TxIn { var txIn btcwire.TxIn txIn = *txCopy.TxIn[i] txCopy.TxIn[i] = &txIn if i == idx { // unparseScript cannot fail here, because removeOpcode // above only returns a valid script. sigscript, _ := unparseScript(script) txCopy.TxIn[idx].SignatureScript = sigscript } else { txCopy.TxIn[i].SignatureScript = []byte{} } } // Default behaviour has all outputs set up. for i := range txCopy.TxOut { var txOut btcwire.TxOut txOut = *txCopy.TxOut[i] txCopy.TxOut[i] = &txOut } switch hashType & 31 { case SigHashNone: txCopy.TxOut = txCopy.TxOut[0:0] // empty slice for i := range txCopy.TxIn { if i != idx { txCopy.TxIn[i].Sequence = 0 } } case SigHashSingle: if idx >= len(txCopy.TxOut) { // This was created by a buggy implementation. // In this case we do the same as bitcoind and bitcoinj // and return 1 (as a uint256 little endian) as an // error. Unfortunately this was not checked anywhere // and thus is treated as the actual // hash. hash := make([]byte, 32) hash[0] = 0x01 return hash } // Resize output array to up to and including requested index. txCopy.TxOut = txCopy.TxOut[:idx+1] // all but current output get zeroed out for i := 0; i < idx; i++ { txCopy.TxOut[i].Value = -1 txCopy.TxOut[i].PkScript = []byte{} } // Sequence on all other inputs is 0, too. for i := range txCopy.TxIn { if i != idx { txCopy.TxIn[i].Sequence = 0 } } default: // XXX bitcoind treats undefined hashtypes like normal // SigHashAll for purposes of hash generation. fallthrough case SigHashOld: fallthrough case SigHashAll: // nothing special here } if hashType&SigHashAnyOneCanPay != 0 { txCopy.TxIn = txCopy.TxIn[idx : idx+1] idx = 0 } var wbuf bytes.Buffer txCopy.Serialize(&wbuf) // Append LE 4 bytes hash type binary.Write(&wbuf, binary.LittleEndian, uint32(hashType)) return btcwire.DoubleSha256(wbuf.Bytes()) } // scriptUInt8 return the number stored in the first byte of a slice. func scriptUInt8(script []byte) (uint, error) { if len(script) <= 1 { return 0, StackErrShortScript } return uint(script[0]), nil } // scriptUInt16 returns the number stored in the next 2 bytes of a slice. func scriptUInt16(script []byte) (uint, error) { if len(script) <= 2 { return 0, StackErrShortScript } // Yes this is little endian return ((uint(script[1]) << 8) | uint(script[0])), nil } // scriptUInt32 returns the number stored in the first 4 bytes of a slice. func scriptUInt32(script []byte) (uint, error) { if len(script) <= 4 { return 0, StackErrShortScript } // Yes this is little endian return ((uint(script[3]) << 24) | (uint(script[2]) << 16) | (uint(script[1]) << 8) | uint(script[0])), nil } // getStack returns the contents of stack as a byte array bottom up func getStack(stack *Stack) [][]byte { array := make([][]byte, stack.Depth()) for i := range array { // PeekByteArry can't fail due to overflow, already checked array[len(array)-i-1], _ = stack.PeekByteArray(i) } return array } // setStack sets the stack to the contents of the array where the last item in // the array is the top item in the stack. func setStack(stack *Stack, data [][]byte) { // This can not error. Only errors are for invalid arguments. _ = stack.DropN(stack.Depth()) for i := range data { stack.PushByteArray(data[i]) } } // GetStack returns the contents of the primary stack as an array. where the // last item in the array is the top of the stack. func (s *Script) GetStack() [][]byte { return getStack(&s.dstack) } // SetStack sets the contents of the primary stack to the contents of the // provided array where the last item in the array will be the top of the stack. func (s *Script) SetStack(data [][]byte) { setStack(&s.dstack, data) } // GetAltStack returns the contents of the primary stack as an array. where the // last item in the array is the top of the stack. func (s *Script) GetAltStack() [][]byte { return getStack(&s.astack) } // SetAltStack sets the contents of the primary stack to the contents of the // provided array where the last item in the array will be the top of the stack. func (s *Script) SetAltStack(data [][]byte) { setStack(&s.astack, data) } // GetSigOpCount provides a quick count of the number of signature operations // in a script. a CHECKSIG operations counts for 1, and a CHECK_MULTISIG for 20. // If the script fails to parse, then the count up to the point of failure is // returned. func GetSigOpCount(script []byte) int { // We don't check error since parseScript returns the parsed-up-to-error // list of pops. pops, _ := parseScript(script) return getSigOpCount(pops, false) } // GetPreciseSigOpCount returns the number of signature operations in // scriptPubKey. If bip16 is true then scriptSig may be searched for the // Pay-To-Script-Hash script in order to find the precise number of signature // operations in the transaction. If the script fails to parse, then the // count up to the point of failure is returned. func GetPreciseSigOpCount(scriptSig, scriptPubKey []byte, bip16 bool) int { // We don't check error since parseScript returns the parsed-up-to-error // list of pops. pops, _ := parseScript(scriptPubKey) // non P2SH transactions just treated as normal. if !(bip16 && isScriptHash(pops)) { return getSigOpCount(pops, true) } // Ok so this is P2SH, get the contained script and count it.. sigPops, err := parseScript(scriptSig) if err != nil { return 0 } if !isPushOnly(sigPops) || len(sigPops) == 0 { return 0 } shScript := sigPops[len(sigPops)-1].data // Means that sigPops is jus OP_1 - OP_16, no sigops there. if shScript == nil { return 0 } shPops, _ := parseScript(shScript) return getSigOpCount(shPops, true) } // getSigOpCount is the implementation function for counting the number of // signature operations in the script provided by pops. If precise mode is // requested then we attempt to count the number of operations for a multisig // op. Otherwise we use the maximum. func getSigOpCount(pops []parsedOpcode, precise bool) int { nSigs := 0 for i, pop := range pops { switch pop.opcode.value { case OP_CHECKSIG: fallthrough case OP_CHECKSIGVERIFY: nSigs++ case OP_CHECKMULTISIG: fallthrough case OP_CHECKMULTISIGVERIFY: // If we are being precise then look for familiar // patterns for multisig, for now all we recognise is // OP_1 - OP_16 to signify the number of pubkeys. // Otherwise, we use the max of 20. if precise && i > 0 && pops[i-1].opcode.value >= OP_1 && pops[i-1].opcode.value <= OP_16 { nSigs += int(pops[i-1].opcode.value - (OP_1 - 1)) } else { nSigs += MaxPubKeysPerMultiSig } default: // not a sigop. } } return nSigs } // PayToPubKeyHashScript creates a new script to pay a transaction // output to a 20-byte pubkey hash. func PayToPubKeyHashScript(pubKeyHash []byte) (pkScript []byte, err error) { pops := []parsedOpcode{ { opcode: opcodemap[OP_DUP], }, { opcode: opcodemap[OP_HASH160], }, { opcode: opcodemap[OP_DATA_20], data: pubKeyHash, }, { opcode: opcodemap[OP_EQUALVERIFY], }, { opcode: opcodemap[OP_CHECKSIG], }, } return unparseScript(pops) } // PayToScriptHashScript creates a new script to pay a transaction output to a // script hash. func PayToScriptHashScript(scriptHash []byte) (pkScript []byte, err error) { pops := []parsedOpcode{ { opcode: opcodemap[OP_HASH160], }, { opcode: opcodemap[OP_DATA_20], data: scriptHash, }, { opcode: opcodemap[OP_EQUAL], }, } return unparseScript(pops) } // PayToAddrScript creates a new script to pay a transaction output to a the // specified address. Currently the only supported address types are // btcutil.AddressPubKeyHash and btcutil.AddressScriptHash. func PayToAddrScript(addr btcutil.Address) ([]byte, error) { switch addr := addr.(type) { case *btcutil.AddressPubKeyHash: if addr == nil { return nil, ErrUnsupportedAddress } return PayToPubKeyHashScript(addr.ScriptAddress()) case *btcutil.AddressScriptHash: if addr == nil { return nil, ErrUnsupportedAddress } return PayToScriptHashScript(addr.ScriptAddress()) } return nil, ErrUnsupportedAddress } // SignatureScript creates an input signature script for tx to spend // BTC sent from a previous output to the owner of privkey. tx must // include all transaction inputs and outputs, however txin scripts are // allowed to be filled or empty. The returned script is calculated to // be used as the idx'th txin sigscript for tx. subscript is the PkScript // of the previous output being used as the idx'th input. privkey is // serialized in either a compressed or uncompressed format based on // compress. This format must match the same format used to generate // the payment address, or the script validation will fail. func SignatureScript(tx *btcwire.MsgTx, idx int, subscript []byte, hashType byte, privkey *ecdsa.PrivateKey, compress bool) ([]byte, error) { return signatureScriptCustomReader(rand.Reader, tx, idx, subscript, hashType, privkey, compress) } // This function exists so we can test ecdsa.Sign's error for an invalid // reader. func signatureScriptCustomReader(reader io.Reader, tx *btcwire.MsgTx, idx int, subscript []byte, hashType byte, privkey *ecdsa.PrivateKey, compress bool) ([]byte, error) { parsedScript, err := parseScript(subscript) if err != nil { return nil, fmt.Errorf("cannot parse output script: %v", err) } hash := calcScriptHash(parsedScript, hashType, tx, idx) r, s, err := ecdsa.Sign(reader, privkey, hash) if err != nil { return nil, fmt.Errorf("cannot sign tx input: %s", err) } ecSig := btcec.Signature{R: r, S: s} sig := append(ecSig.Serialize(), hashType) pk := (*btcec.PublicKey)(&privkey.PublicKey) var pubkeyOpcode *parsedOpcode if compress { pubkeyOpcode = &parsedOpcode{ opcode: opcodemap[OP_DATA_33], data: pk.SerializeCompressed(), } } else { pubkeyOpcode = &parsedOpcode{ opcode: opcodemap[OP_DATA_65], data: pk.SerializeUncompressed(), } } pops := []parsedOpcode{ { opcode: opcodemap[byte(len(sig))], data: sig, }, *pubkeyOpcode, } return unparseScript(pops) } // expectedInputs returns the number of arguments required by a script. // If the script is of unnown type such that the number can not be determined // then -1 is returned. We are an internal function and thus assume that class // is the real class of pops (and we can thus assume things that were // determined while finding out the type). func expectedInputs(pops []parsedOpcode, class ScriptClass) int { // count needed inputs. switch class { case PubKeyTy: return 1 case PubKeyHashTy: return 2 case ScriptHashTy: // Not including script, handled below. return 1 case MultiSigTy: // Standard multisig has a push a small number for the number // of sigs and number of keys. // Check the first push instruction to see how many arguments // are expected. typeOfScript already checked this so we know // it'll be a small int. return asSmallInt(pops[0].opcode) case NullDataTy: fallthrough default: return -1 } } type ScriptInfo struct { // The class of the sigscript, equivalent to calling GetScriptClass // on the sigScript. PkScriptClass ScriptClass // the number of inputs provided by the pkScript NumInputs int // the number of outputs required by sigScript and any // pay-to-script-hash scripts. The number will be -1 if unknown. ExpectedInputs int // The nubmer of signature operations in the scriptpair. SigOps int } // CalcScriptInfo returns a structure providing data about the scriptpair that // are provided as arguments. It will error if the pair is in someway invalid // such that they can not be analysed, i.e. if they do not parse or the // pkScript is not a push-only script func CalcScriptInfo(sigscript, pkscript []byte, bip16 bool) (*ScriptInfo, error) { si := new(ScriptInfo) // parse both scripts. sigPops, err := parseScript(sigscript) if err != nil { return nil, err } pkPops, err := parseScript(pkscript) if err != nil { return nil, err } // push only sigScript makes little sense. si.PkScriptClass = typeOfScript(pkPops) // Can't have a pkScript that doesn't just push data. if !isPushOnly(sigPops) { return nil, StackErrNonPushOnly } si.ExpectedInputs = expectedInputs(pkPops, si.PkScriptClass) // all entries push to stack (or are OP_RESERVED and exec will fail). si.NumInputs = len(sigPops) if si.PkScriptClass == ScriptHashTy && bip16 { // grab the last push instruction in the script and pull out the // data. script := sigPops[len(sigPops)-1].data // check for existance and error else. shPops, err := parseScript(script) if err != nil { return nil, err } shClass := typeOfScript(shPops) shInputs := expectedInputs(shPops, shClass) if shInputs == -1 { // We have no fucking clue, then. si.ExpectedInputs = -1 } else { si.ExpectedInputs += shInputs } si.SigOps = getSigOpCount(shPops, true) } else { si.SigOps = getSigOpCount(pkPops, true) } return si, nil } // asSmallInt returns the passed opcode, which must be true according to // isSmallInt(), as an integer. func asSmallInt(op *opcode) int { if op.value == OP_0 { return 0 } return int(op.value - (OP_1 - 1)) } // CalcMultiSigStats returns the number of public keys and signatures from // a multi-signature transaction script. The passed script MUST already be // known to be a multi-signature script. func CalcMultiSigStats(script []byte) (int, int, error) { pops, err := parseScript(script) if err != nil { return 0, 0, err } // A multi-signature script is of the pattern: // NUM_SIGS PUBKEY PUBKEY PUBKEY... NUM_PUBKEYS OP_CHECKMULTISIG // Therefore the number of signatures is the oldest item on the stack // and the number of pubkeys is the 2nd to last. Also, the absolute // minimum for a multi-signature script is 1 pubkey, so at least 4 // items must be on the stack per: // OP_1 PUBKEY OP_1 OP_CHECKMULTISIG if len(pops) < 4 { return 0, 0, StackErrUnderflow } numSigs := asSmallInt(pops[0].opcode) numPubKeys := asSmallInt(pops[len(pops)-2].opcode) return numPubKeys, numSigs, nil }