// Copyright (c) 2013-2016 The btcsuite developers // Use of this source code is governed by an ISC // license that can be found in the LICENSE file. package addrmgr import ( "container/list" crand "crypto/rand" // for seeding "encoding/base32" "encoding/binary" "encoding/json" "fmt" "io" "math/rand" "net" "os" "path/filepath" "strconv" "strings" "sync" "sync/atomic" "time" "github.com/btcsuite/btcd/chaincfg/chainhash" "github.com/btcsuite/btcd/wire" ) // AddrManager provides a concurrency safe address manager for caching potential // peers on the bitcoin network. type AddrManager struct { mtx sync.Mutex peersFile string lookupFunc func(string) ([]net.IP, error) rand *rand.Rand key [32]byte addrIndex map[string]*KnownAddress // address key to ka for all addrs. addrNew [newBucketCount]map[string]*KnownAddress addrTried [triedBucketCount]*list.List started int32 shutdown int32 wg sync.WaitGroup quit chan struct{} nTried int nNew int lamtx sync.Mutex localAddresses map[string]*localAddress } type serializedKnownAddress struct { Addr string Src string Attempts int TimeStamp int64 LastAttempt int64 LastSuccess int64 // no refcount or tried, that is available from context. } type serializedAddrManager struct { Version int Key [32]byte Addresses []*serializedKnownAddress NewBuckets [newBucketCount][]string // string is NetAddressKey TriedBuckets [triedBucketCount][]string } type localAddress struct { na *wire.NetAddress score AddressPriority } // AddressPriority type is used to describe the hierarchy of local address // discovery methods. type AddressPriority int const ( // InterfacePrio signifies the address is on a local interface InterfacePrio AddressPriority = iota // BoundPrio signifies the address has been explicitly bounded to. BoundPrio // UpnpPrio signifies the address was obtained from UPnP. UpnpPrio // HTTPPrio signifies the address was obtained from an external HTTP service. HTTPPrio // ManualPrio signifies the address was provided by --externalip. ManualPrio ) const ( // needAddressThreshold is the number of addresses under which the // address manager will claim to need more addresses. needAddressThreshold = 1000 // dumpAddressInterval is the interval used to dump the address // cache to disk for future use. dumpAddressInterval = time.Minute * 10 // triedBucketSize is the maximum number of addresses in each // tried address bucket. triedBucketSize = 256 // triedBucketCount is the number of buckets we split tried // addresses over. triedBucketCount = 64 // newBucketSize is the maximum number of addresses in each new address // bucket. newBucketSize = 64 // newBucketCount is the number of buckets that we spread new addresses // over. newBucketCount = 1024 // triedBucketsPerGroup is the number of tried buckets over which an // address group will be spread. triedBucketsPerGroup = 8 // newBucketsPerGroup is the number of new buckets over which an // source address group will be spread. newBucketsPerGroup = 64 // newBucketsPerAddress is the number of buckets a frequently seen new // address may end up in. newBucketsPerAddress = 8 // numMissingDays is the number of days before which we assume an // address has vanished if we have not seen it announced in that long. numMissingDays = 30 // numRetries is the number of tried without a single success before // we assume an address is bad. numRetries = 3 // maxFailures is the maximum number of failures we will accept without // a success before considering an address bad. maxFailures = 10 // minBadDays is the number of days since the last success before we // will consider evicting an address. minBadDays = 7 // getAddrMax is the most addresses that we will send in response // to a getAddr (in practise the most addresses we will return from a // call to AddressCache()). getAddrMax = 2500 // getAddrPercent is the percentage of total addresses known that we // will share with a call to AddressCache. getAddrPercent = 23 // serialisationVersion is the current version of the on-disk format. serialisationVersion = 1 ) // updateAddress is a helper function to either update an address already known // to the address manager, or to add the address if not already known. func (a *AddrManager) updateAddress(netAddr, srcAddr *wire.NetAddress) { // Filter out non-routable addresses. Note that non-routable // also includes invalid and local addresses. if !IsRoutable(netAddr) { return } addr := NetAddressKey(netAddr) ka := a.find(netAddr) if ka != nil { // TODO(oga) only update addresses periodically. // Update the last seen time and services. // note that to prevent causing excess garbage on getaddr // messages the netaddresses in addrmaanger are *immutable*, // if we need to change them then we replace the pointer with a // new copy so that we don't have to copy every na for getaddr. if netAddr.Timestamp.After(ka.na.Timestamp) || (ka.na.Services&netAddr.Services) != netAddr.Services { naCopy := *ka.na naCopy.Timestamp = netAddr.Timestamp naCopy.AddService(netAddr.Services) ka.na = &naCopy } // If already in tried, we have nothing to do here. if ka.tried { return } // Already at our max? if ka.refs == newBucketsPerAddress { return } // The more entries we have, the less likely we are to add more. // likelihood is 2N. factor := int32(2 * ka.refs) if a.rand.Int31n(factor) != 0 { return } } else { // Make a copy of the net address to avoid races since it is // updated elsewhere in the addrmanager code and would otherwise // change the actual netaddress on the peer. netAddrCopy := *netAddr ka = &KnownAddress{na: &netAddrCopy, srcAddr: srcAddr} a.addrIndex[addr] = ka a.nNew++ // XXX time penalty? } bucket := a.getNewBucket(netAddr, srcAddr) // Already exists? if _, ok := a.addrNew[bucket][addr]; ok { return } // Enforce max addresses. if len(a.addrNew[bucket]) > newBucketSize { log.Tracef("new bucket is full, expiring old") a.expireNew(bucket) } // Add to new bucket. ka.refs++ a.addrNew[bucket][addr] = ka log.Tracef("Added new address %s for a total of %d addresses", addr, a.nTried+a.nNew) } // expireNew makes space in the new buckets by expiring the really bad entries. // If no bad entries are available we look at a few and remove the oldest. func (a *AddrManager) expireNew(bucket int) { // First see if there are any entries that are so bad we can just throw // them away. otherwise we throw away the oldest entry in the cache. // Bitcoind here chooses four random and just throws the oldest of // those away, but we keep track of oldest in the initial traversal and // use that information instead. var oldest *KnownAddress for k, v := range a.addrNew[bucket] { if v.isBad() { log.Tracef("expiring bad address %v", k) delete(a.addrNew[bucket], k) v.refs-- if v.refs == 0 { a.nNew-- delete(a.addrIndex, k) } continue } if oldest == nil { oldest = v } else if !v.na.Timestamp.After(oldest.na.Timestamp) { oldest = v } } if oldest != nil { key := NetAddressKey(oldest.na) log.Tracef("expiring oldest address %v", key) delete(a.addrNew[bucket], key) oldest.refs-- if oldest.refs == 0 { a.nNew-- delete(a.addrIndex, key) } } } // pickTried selects an address from the tried bucket to be evicted. // We just choose the eldest. Bitcoind selects 4 random entries and throws away // the older of them. func (a *AddrManager) pickTried(bucket int) *list.Element { var oldest *KnownAddress var oldestElem *list.Element for e := a.addrTried[bucket].Front(); e != nil; e = e.Next() { ka := e.Value.(*KnownAddress) if oldest == nil || oldest.na.Timestamp.After(ka.na.Timestamp) { oldestElem = e oldest = ka } } return oldestElem } func (a *AddrManager) getNewBucket(netAddr, srcAddr *wire.NetAddress) int { // bitcoind: // doublesha256(key + sourcegroup + int64(doublesha256(key + group + sourcegroup))%bucket_per_source_group) % num_new_buckets data1 := []byte{} data1 = append(data1, a.key[:]...) data1 = append(data1, []byte(GroupKey(netAddr))...) data1 = append(data1, []byte(GroupKey(srcAddr))...) hash1 := chainhash.DoubleHashB(data1) hash64 := binary.LittleEndian.Uint64(hash1) hash64 %= newBucketsPerGroup var hashbuf [8]byte binary.LittleEndian.PutUint64(hashbuf[:], hash64) data2 := []byte{} data2 = append(data2, a.key[:]...) data2 = append(data2, GroupKey(srcAddr)...) data2 = append(data2, hashbuf[:]...) hash2 := chainhash.DoubleHashB(data2) return int(binary.LittleEndian.Uint64(hash2) % newBucketCount) } func (a *AddrManager) getTriedBucket(netAddr *wire.NetAddress) int { // bitcoind hashes this as: // doublesha256(key + group + truncate_to_64bits(doublesha256(key)) % buckets_per_group) % num_buckets data1 := []byte{} data1 = append(data1, a.key[:]...) data1 = append(data1, []byte(NetAddressKey(netAddr))...) hash1 := chainhash.DoubleHashB(data1) hash64 := binary.LittleEndian.Uint64(hash1) hash64 %= triedBucketsPerGroup var hashbuf [8]byte binary.LittleEndian.PutUint64(hashbuf[:], hash64) data2 := []byte{} data2 = append(data2, a.key[:]...) data2 = append(data2, GroupKey(netAddr)...) data2 = append(data2, hashbuf[:]...) hash2 := chainhash.DoubleHashB(data2) return int(binary.LittleEndian.Uint64(hash2) % triedBucketCount) } // addressHandler is the main handler for the address manager. It must be run // as a goroutine. func (a *AddrManager) addressHandler() { dumpAddressTicker := time.NewTicker(dumpAddressInterval) defer dumpAddressTicker.Stop() out: for { select { case <-dumpAddressTicker.C: a.savePeers() case <-a.quit: break out } } a.savePeers() a.wg.Done() log.Trace("Address handler done") } // savePeers saves all the known addresses to a file so they can be read back // in at next run. func (a *AddrManager) savePeers() { a.mtx.Lock() defer a.mtx.Unlock() // First we make a serialisable datastructure so we can encode it to // json. sam := new(serializedAddrManager) sam.Version = serialisationVersion copy(sam.Key[:], a.key[:]) sam.Addresses = make([]*serializedKnownAddress, len(a.addrIndex)) i := 0 for k, v := range a.addrIndex { ska := new(serializedKnownAddress) ska.Addr = k ska.TimeStamp = v.na.Timestamp.Unix() ska.Src = NetAddressKey(v.srcAddr) ska.Attempts = v.attempts ska.LastAttempt = v.lastattempt.Unix() ska.LastSuccess = v.lastsuccess.Unix() // Tried and refs are implicit in the rest of the structure // and will be worked out from context on unserialisation. sam.Addresses[i] = ska i++ } for i := range a.addrNew { sam.NewBuckets[i] = make([]string, len(a.addrNew[i])) j := 0 for k := range a.addrNew[i] { sam.NewBuckets[i][j] = k j++ } } for i := range a.addrTried { sam.TriedBuckets[i] = make([]string, a.addrTried[i].Len()) j := 0 for e := a.addrTried[i].Front(); e != nil; e = e.Next() { ka := e.Value.(*KnownAddress) sam.TriedBuckets[i][j] = NetAddressKey(ka.na) j++ } } w, err := os.Create(a.peersFile) if err != nil { log.Errorf("Error opening file %s: %v", a.peersFile, err) return } enc := json.NewEncoder(w) defer w.Close() if err := enc.Encode(&sam); err != nil { log.Errorf("Failed to encode file %s: %v", a.peersFile, err) return } } // loadPeers loads the known address from the saved file. If empty, missing, or // malformed file, just don't load anything and start fresh func (a *AddrManager) loadPeers() { a.mtx.Lock() defer a.mtx.Unlock() err := a.deserializePeers(a.peersFile) if err != nil { log.Errorf("Failed to parse file %s: %v", a.peersFile, err) // if it is invalid we nuke the old one unconditionally. err = os.Remove(a.peersFile) if err != nil { log.Warnf("Failed to remove corrupt peers file %s: %v", a.peersFile, err) } a.reset() return } log.Infof("Loaded %d addresses from file '%s'", a.numAddresses(), a.peersFile) } func (a *AddrManager) deserializePeers(filePath string) error { _, err := os.Stat(filePath) if os.IsNotExist(err) { return nil } r, err := os.Open(filePath) if err != nil { return fmt.Errorf("%s error opening file: %v", filePath, err) } defer r.Close() var sam serializedAddrManager dec := json.NewDecoder(r) err = dec.Decode(&sam) if err != nil { return fmt.Errorf("error reading %s: %v", filePath, err) } if sam.Version != serialisationVersion { return fmt.Errorf("unknown version %v in serialized "+ "addrmanager", sam.Version) } copy(a.key[:], sam.Key[:]) for _, v := range sam.Addresses { ka := new(KnownAddress) ka.na, err = a.DeserializeNetAddress(v.Addr) if err != nil { return fmt.Errorf("failed to deserialize netaddress "+ "%s: %v", v.Addr, err) } ka.srcAddr, err = a.DeserializeNetAddress(v.Src) if err != nil { return fmt.Errorf("failed to deserialize netaddress "+ "%s: %v", v.Src, err) } ka.attempts = v.Attempts ka.lastattempt = time.Unix(v.LastAttempt, 0) ka.lastsuccess = time.Unix(v.LastSuccess, 0) a.addrIndex[NetAddressKey(ka.na)] = ka } for i := range sam.NewBuckets { for _, val := range sam.NewBuckets[i] { ka, ok := a.addrIndex[val] if !ok { return fmt.Errorf("newbucket contains %s but "+ "none in address list", val) } if ka.refs == 0 { a.nNew++ } ka.refs++ a.addrNew[i][val] = ka } } for i := range sam.TriedBuckets { for _, val := range sam.TriedBuckets[i] { ka, ok := a.addrIndex[val] if !ok { return fmt.Errorf("Newbucket contains %s but "+ "none in address list", val) } ka.tried = true a.nTried++ a.addrTried[i].PushBack(ka) } } // Sanity checking. for k, v := range a.addrIndex { if v.refs == 0 && !v.tried { return fmt.Errorf("address %s after serialisation "+ "with no references", k) } if v.refs > 0 && v.tried { return fmt.Errorf("address %s after serialisation "+ "which is both new and tried!", k) } } return nil } // DeserializeNetAddress converts a given address string to a *wire.NetAddress func (a *AddrManager) DeserializeNetAddress(addr string) (*wire.NetAddress, error) { host, portStr, err := net.SplitHostPort(addr) if err != nil { return nil, err } port, err := strconv.ParseUint(portStr, 10, 16) if err != nil { return nil, err } return a.HostToNetAddress(host, uint16(port), wire.SFNodeNetwork) } // Start begins the core address handler which manages a pool of known // addresses, timeouts, and interval based writes. func (a *AddrManager) Start() { // Already started? if atomic.AddInt32(&a.started, 1) != 1 { return } log.Trace("Starting address manager") // Load peers we already know about from file. a.loadPeers() // Start the address ticker to save addresses periodically. a.wg.Add(1) go a.addressHandler() } // Stop gracefully shuts down the address manager by stopping the main handler. func (a *AddrManager) Stop() error { if atomic.AddInt32(&a.shutdown, 1) != 1 { log.Warnf("Address manager is already in the process of " + "shutting down") return nil } log.Infof("Address manager shutting down") close(a.quit) a.wg.Wait() return nil } // AddAddresses adds new addresses to the address manager. It enforces a max // number of addresses and silently ignores duplicate addresses. It is // safe for concurrent access. func (a *AddrManager) AddAddresses(addrs []*wire.NetAddress, srcAddr *wire.NetAddress) { a.mtx.Lock() defer a.mtx.Unlock() for _, na := range addrs { a.updateAddress(na, srcAddr) } } // AddAddress adds a new address to the address manager. It enforces a max // number of addresses and silently ignores duplicate addresses. It is // safe for concurrent access. func (a *AddrManager) AddAddress(addr, srcAddr *wire.NetAddress) { a.mtx.Lock() defer a.mtx.Unlock() a.updateAddress(addr, srcAddr) } // AddAddressByIP adds an address where we are given an ip:port and not a // wire.NetAddress. func (a *AddrManager) AddAddressByIP(addrIP string) error { // Split IP and port addr, portStr, err := net.SplitHostPort(addrIP) if err != nil { return err } // Put it in wire.Netaddress var na wire.NetAddress na.Timestamp = time.Now() na.IP = net.ParseIP(addr) if na.IP == nil { return fmt.Errorf("invalid ip address %s", addr) } port, err := strconv.ParseUint(portStr, 10, 0) if err != nil { return fmt.Errorf("invalid port %s: %v", portStr, err) } na.Port = uint16(port) a.AddAddress(&na, &na) // XXX use correct src address return nil } // NumAddresses returns the number of addresses known to the address manager. func (a *AddrManager) numAddresses() int { return a.nTried + a.nNew } // NumAddresses returns the number of addresses known to the address manager. func (a *AddrManager) NumAddresses() int { a.mtx.Lock() defer a.mtx.Unlock() return a.numAddresses() } // NeedMoreAddresses returns whether or not the address manager needs more // addresses. func (a *AddrManager) NeedMoreAddresses() bool { a.mtx.Lock() defer a.mtx.Unlock() return a.numAddresses() < needAddressThreshold } // AddressCache returns the current address cache. It must be treated as // read-only (but since it is a copy now, this is not as dangerous). func (a *AddrManager) AddressCache() []*wire.NetAddress { a.mtx.Lock() defer a.mtx.Unlock() addrIndexLen := len(a.addrIndex) if addrIndexLen == 0 { return nil } allAddr := make([]*wire.NetAddress, 0, addrIndexLen) // Iteration order is undefined here, but we randomise it anyway. for _, v := range a.addrIndex { allAddr = append(allAddr, v.na) } numAddresses := addrIndexLen * getAddrPercent / 100 if numAddresses > getAddrMax { numAddresses = getAddrMax } // Fisher-Yates shuffle the array. We only need to do the first // `numAddresses' since we are throwing the rest. for i := 0; i < numAddresses; i++ { // pick a number between current index and the end j := rand.Intn(addrIndexLen-i) + i allAddr[i], allAddr[j] = allAddr[j], allAddr[i] } // slice off the limit we are willing to share. return allAddr[0:numAddresses] } // reset resets the address manager by reinitialising the random source // and allocating fresh empty bucket storage. func (a *AddrManager) reset() { a.addrIndex = make(map[string]*KnownAddress) // fill key with bytes from a good random source. io.ReadFull(crand.Reader, a.key[:]) for i := range a.addrNew { a.addrNew[i] = make(map[string]*KnownAddress) } for i := range a.addrTried { a.addrTried[i] = list.New() } } // HostToNetAddress returns a netaddress given a host address. If the address is // a tor .onion address this will be taken care of. else if the host is not an // IP address it will be resolved (via tor if required). func (a *AddrManager) HostToNetAddress(host string, port uint16, services wire.ServiceFlag) (*wire.NetAddress, error) { // tor address is 16 char base32 + ".onion" var ip net.IP if len(host) == 22 && host[16:] == ".onion" { // go base32 encoding uses capitals (as does the rfc // but tor and bitcoind tend to user lowercase, so we switch // case here. data, err := base32.StdEncoding.DecodeString( strings.ToUpper(host[:16])) if err != nil { return nil, err } prefix := []byte{0xfd, 0x87, 0xd8, 0x7e, 0xeb, 0x43} ip = net.IP(append(prefix, data...)) } else if ip = net.ParseIP(host); ip == nil { ips, err := a.lookupFunc(host) if err != nil { return nil, err } if len(ips) == 0 { return nil, fmt.Errorf("no addresses found for %s", host) } ip = ips[0] } return wire.NewNetAddressIPPort(ip, port, services), nil } // ipString returns a string for the ip from the provided NetAddress. If the // ip is in the range used for tor addresses then it will be transformed into // the relevant .onion address. func ipString(na *wire.NetAddress) string { if IsOnionCatTor(na) { // We know now that na.IP is long enogh. base32 := base32.StdEncoding.EncodeToString(na.IP[6:]) return strings.ToLower(base32) + ".onion" } return na.IP.String() } // NetAddressKey returns a string key in the form of ip:port for IPv4 addresses // or [ip]:port for IPv6 addresses. func NetAddressKey(na *wire.NetAddress) string { port := strconv.FormatUint(uint64(na.Port), 10) return net.JoinHostPort(ipString(na), port) } // GetAddress returns a single address that should be routable. It picks a // random one from the possible addresses with preference given to ones that // have not been used recently and should not pick 'close' addresses // consecutively. func (a *AddrManager) GetAddress(class string) *KnownAddress { // Protect concurrent access. a.mtx.Lock() defer a.mtx.Unlock() if a.numAddresses() == 0 { return nil } // Use a 50% chance for choosing between tried and new table entries. if a.nTried > 0 && (a.nNew == 0 || a.rand.Intn(2) == 0) { // Tried entry. large := 1 << 30 factor := 1.0 for { // pick a random bucket. bucket := a.rand.Intn(len(a.addrTried)) if a.addrTried[bucket].Len() == 0 { continue } // Pick a random entry in the list e := a.addrTried[bucket].Front() for i := a.rand.Int63n(int64(a.addrTried[bucket].Len())); i > 0; i-- { e = e.Next() } ka := e.Value.(*KnownAddress) randval := a.rand.Intn(large) if float64(randval) < (factor * ka.chance() * float64(large)) { log.Tracef("Selected %v from tried bucket", NetAddressKey(ka.na)) return ka } factor *= 1.2 } } else { // new node. // XXX use a closure/function to avoid repeating this. large := 1 << 30 factor := 1.0 for { // Pick a random bucket. bucket := a.rand.Intn(len(a.addrNew)) if len(a.addrNew[bucket]) == 0 { continue } // Then, a random entry in it. var ka *KnownAddress nth := a.rand.Intn(len(a.addrNew[bucket])) for _, value := range a.addrNew[bucket] { if nth == 0 { ka = value } nth-- } randval := a.rand.Intn(large) if float64(randval) < (factor * ka.chance() * float64(large)) { log.Tracef("Selected %v from new bucket", NetAddressKey(ka.na)) return ka } factor *= 1.2 } } } func (a *AddrManager) find(addr *wire.NetAddress) *KnownAddress { return a.addrIndex[NetAddressKey(addr)] } // Attempt increases the given address' attempt counter and updates // the last attempt time. func (a *AddrManager) Attempt(addr *wire.NetAddress) { a.mtx.Lock() defer a.mtx.Unlock() // find address. // Surely address will be in tried by now? ka := a.find(addr) if ka == nil { return } // set last tried time to now ka.attempts++ ka.lastattempt = time.Now() } // Connected Marks the given address as currently connected and working at the // current time. The address must already be known to AddrManager else it will // be ignored. func (a *AddrManager) Connected(addr *wire.NetAddress) { a.mtx.Lock() defer a.mtx.Unlock() ka := a.find(addr) if ka == nil { return } // Update the time as long as it has been 20 minutes since last we did // so. now := time.Now() if now.After(ka.na.Timestamp.Add(time.Minute * 20)) { // ka.na is immutable, so replace it. naCopy := *ka.na naCopy.Timestamp = time.Now() ka.na = &naCopy } } // Good marks the given address as good. To be called after a successful // connection and version exchange. If the address is unknown to the address // manager it will be ignored. func (a *AddrManager) Good(addr *wire.NetAddress) { a.mtx.Lock() defer a.mtx.Unlock() ka := a.find(addr) if ka == nil { return } // ka.Timestamp is not updated here to avoid leaking information // about currently connected peers. now := time.Now() ka.lastsuccess = now ka.lastattempt = now ka.attempts = 0 // move to tried set, optionally evicting other addresses if neeed. if ka.tried { return } // ok, need to move it to tried. // remove from all new buckets. // record one of the buckets in question and call it the `first' addrKey := NetAddressKey(addr) oldBucket := -1 for i := range a.addrNew { // we check for existence so we can record the first one if _, ok := a.addrNew[i][addrKey]; ok { delete(a.addrNew[i], addrKey) ka.refs-- if oldBucket == -1 { oldBucket = i } } } a.nNew-- if oldBucket == -1 { // What? wasn't in a bucket after all.... Panic? return } bucket := a.getTriedBucket(ka.na) // Room in this tried bucket? if a.addrTried[bucket].Len() < triedBucketSize { ka.tried = true a.addrTried[bucket].PushBack(ka) a.nTried++ return } // No room, we have to evict something else. entry := a.pickTried(bucket) rmka := entry.Value.(*KnownAddress) // First bucket it would have been put in. newBucket := a.getNewBucket(rmka.na, rmka.srcAddr) // If no room in the original bucket, we put it in a bucket we just // freed up a space in. if len(a.addrNew[newBucket]) >= newBucketSize { newBucket = oldBucket } // replace with ka in list. ka.tried = true entry.Value = ka rmka.tried = false rmka.refs++ // We don't touch a.nTried here since the number of tried stays the same // but we decemented new above, raise it again since we're putting // something back. a.nNew++ rmkey := NetAddressKey(rmka.na) log.Tracef("Replacing %s with %s in tried", rmkey, addrKey) // We made sure there is space here just above. a.addrNew[newBucket][rmkey] = rmka } // AddLocalAddress adds na to the list of known local addresses to advertise // with the given priority. func (a *AddrManager) AddLocalAddress(na *wire.NetAddress, priority AddressPriority) error { if !IsRoutable(na) { return fmt.Errorf("address %s is not routable", na.IP) } a.lamtx.Lock() defer a.lamtx.Unlock() key := NetAddressKey(na) la, ok := a.localAddresses[key] if !ok || la.score < priority { if ok { la.score = priority + 1 } else { a.localAddresses[key] = &localAddress{ na: na, score: priority, } } } return nil } // getReachabilityFrom returns the relative reachability of the provided local // address to the provided remote address. func getReachabilityFrom(localAddr, remoteAddr *wire.NetAddress) int { const ( Unreachable = 0 Default = iota Teredo Ipv6Weak Ipv4 Ipv6Strong Private ) if !IsRoutable(remoteAddr) { return Unreachable } if IsOnionCatTor(remoteAddr) { if IsOnionCatTor(localAddr) { return Private } if IsRoutable(localAddr) && IsIPv4(localAddr) { return Ipv4 } return Default } if IsRFC4380(remoteAddr) { if !IsRoutable(localAddr) { return Default } if IsRFC4380(localAddr) { return Teredo } if IsIPv4(localAddr) { return Ipv4 } return Ipv6Weak } if IsIPv4(remoteAddr) { if IsRoutable(localAddr) && IsIPv4(localAddr) { return Ipv4 } return Unreachable } /* ipv6 */ var tunnelled bool // Is our v6 is tunnelled? if IsRFC3964(localAddr) || IsRFC6052(localAddr) || IsRFC6145(localAddr) { tunnelled = true } if !IsRoutable(localAddr) { return Default } if IsRFC4380(localAddr) { return Teredo } if IsIPv4(localAddr) { return Ipv4 } if tunnelled { // only prioritise ipv6 if we aren't tunnelling it. return Ipv6Weak } return Ipv6Strong } // GetBestLocalAddress returns the most appropriate local address to use // for the given remote address. func (a *AddrManager) GetBestLocalAddress(remoteAddr *wire.NetAddress) *wire.NetAddress { a.lamtx.Lock() defer a.lamtx.Unlock() bestreach := 0 var bestscore AddressPriority var bestAddress *wire.NetAddress for _, la := range a.localAddresses { reach := getReachabilityFrom(la.na, remoteAddr) if reach > bestreach || (reach == bestreach && la.score > bestscore) { bestreach = reach bestscore = la.score bestAddress = la.na } } if bestAddress != nil { log.Debugf("Suggesting address %s:%d for %s:%d", bestAddress.IP, bestAddress.Port, remoteAddr.IP, remoteAddr.Port) } else { log.Debugf("No worthy address for %s:%d", remoteAddr.IP, remoteAddr.Port) // Send something unroutable if nothing suitable. bestAddress = &wire.NetAddress{ Timestamp: time.Now(), Services: wire.SFNodeNetwork, Port: 0, } if !IsIPv4(remoteAddr) && !IsOnionCatTor(remoteAddr) { bestAddress.IP = net.IPv6zero } else { bestAddress.IP = net.IPv4zero } } return bestAddress } // New returns a new bitcoin address manager. // Use Start to begin processing asynchronous address updates. func New(dataDir string, lookupFunc func(string) ([]net.IP, error)) *AddrManager { am := AddrManager{ peersFile: filepath.Join(dataDir, "peers.json"), lookupFunc: lookupFunc, rand: rand.New(rand.NewSource(time.Now().UnixNano())), quit: make(chan struct{}), localAddresses: make(map[string]*localAddress), } am.reset() return &am }