lbcd/blockchain/fullblocktests/generate.go
Olaoluwa Osuntokun d0768abcc4 BIP0141+blockchain: implement segwit block validation rules
This commit implements the new block validation rules as defined by
BIP0141. The new rules include the constraints that if a block has
transactions with witness data, then there MUST be a commitment within
the conies transaction to the root of a new merkle tree which commits
to the wtxid of all transactions. Additionally, rather than limiting
the size of a block by size in bytes, blocks are now limited by their
total weight unit. Similarly, a newly define “sig op cost” is now used
to limit the signature validation cost of transactions found within
blocks.
2017-08-13 23:17:40 -05:00

2135 lines
74 KiB
Go

// Copyright (c) 2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
// The vast majority of the rules tested in this package were ported from the
// the original Java-based 'official' block acceptance tests at
// https://github.com/TheBlueMatt/test-scripts as well as some additional tests
// available in the Core python port of the same.
package fullblocktests
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"math"
"runtime"
"time"
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
)
const (
// Intentionally defined here rather than using constants from codebase
// to ensure consensus changes are detected.
maxBlockSigOps = 20000
maxBlockSize = 1000000
minCoinbaseScriptLen = 2
maxCoinbaseScriptLen = 100
medianTimeBlocks = 11
maxScriptElementSize = 520
// numLargeReorgBlocks is the number of blocks to use in the large block
// reorg test (when enabled). This is the equivalent of 1 week's worth
// of blocks.
numLargeReorgBlocks = 1088
)
var (
// opTrueScript is simply a public key script that contains the OP_TRUE
// opcode. It is defined here to reduce garbage creation.
opTrueScript = []byte{txscript.OP_TRUE}
// lowFee is a single satoshi and exists to make the test code more
// readable.
lowFee = btcutil.Amount(1)
)
// TestInstance is an interface that describes a specific test instance returned
// by the tests generated in this package. It should be type asserted to one
// of the concrete test instance types in order to test accordingly.
type TestInstance interface {
FullBlockTestInstance()
}
// AcceptedBlock defines a test instance that expects a block to be accepted to
// the blockchain either by extending the main chain, on a side chain, or as an
// orphan.
type AcceptedBlock struct {
Name string
Block *wire.MsgBlock
Height int32
IsMainChain bool
IsOrphan bool
}
// Ensure AcceptedBlock implements the TestInstance interface.
var _ TestInstance = AcceptedBlock{}
// FullBlockTestInstance only exists to allow AcceptedBlock to be treated as a
// TestInstance.
//
// This implements the TestInstance interface.
func (b AcceptedBlock) FullBlockTestInstance() {}
// RejectedBlock defines a test instance that expects a block to be rejected by
// the blockchain consensus rules.
type RejectedBlock struct {
Name string
Block *wire.MsgBlock
Height int32
RejectCode blockchain.ErrorCode
}
// Ensure RejectedBlock implements the TestInstance interface.
var _ TestInstance = RejectedBlock{}
// FullBlockTestInstance only exists to allow RejectedBlock to be treated as a
// TestInstance.
//
// This implements the TestInstance interface.
func (b RejectedBlock) FullBlockTestInstance() {}
// OrphanOrRejectedBlock defines a test instance that expects a block to either
// be accepted as an orphan or rejected. This is useful since some
// implementations might optimize the immediate rejection of orphan blocks when
// their parent was previously rejected, while others might accept it as an
// orphan that eventually gets flushed (since the parent can never be accepted
// to ultimately link it).
type OrphanOrRejectedBlock struct {
Name string
Block *wire.MsgBlock
Height int32
}
// Ensure ExpectedTip implements the TestInstance interface.
var _ TestInstance = OrphanOrRejectedBlock{}
// FullBlockTestInstance only exists to allow OrphanOrRejectedBlock to be
// treated as a TestInstance.
//
// This implements the TestInstance interface.
func (b OrphanOrRejectedBlock) FullBlockTestInstance() {}
// ExpectedTip defines a test instance that expects a block to be the current
// tip of the main chain.
type ExpectedTip struct {
Name string
Block *wire.MsgBlock
Height int32
}
// Ensure ExpectedTip implements the TestInstance interface.
var _ TestInstance = ExpectedTip{}
// FullBlockTestInstance only exists to allow ExpectedTip to be treated as a
// TestInstance.
//
// This implements the TestInstance interface.
func (b ExpectedTip) FullBlockTestInstance() {}
// RejectedNonCanonicalBlock defines a test instance that expects a serialized
// block that is not canonical and therefore should be rejected.
type RejectedNonCanonicalBlock struct {
Name string
RawBlock []byte
Height int32
}
// FullBlockTestInstance only exists to allow RejectedNonCanonicalBlock to be treated as
// a TestInstance.
//
// This implements the TestInstance interface.
func (b RejectedNonCanonicalBlock) FullBlockTestInstance() {}
// spendableOut represents a transaction output that is spendable along with
// additional metadata such as the block its in and how much it pays.
type spendableOut struct {
prevOut wire.OutPoint
amount btcutil.Amount
}
// makeSpendableOutForTx returns a spendable output for the given transaction
// and transaction output index within the transaction.
func makeSpendableOutForTx(tx *wire.MsgTx, txOutIndex uint32) spendableOut {
return spendableOut{
prevOut: wire.OutPoint{
Hash: tx.TxHash(),
Index: txOutIndex,
},
amount: btcutil.Amount(tx.TxOut[txOutIndex].Value),
}
}
// makeSpendableOut returns a spendable output for the given block, transaction
// index within the block, and transaction output index within the transaction.
func makeSpendableOut(block *wire.MsgBlock, txIndex, txOutIndex uint32) spendableOut {
return makeSpendableOutForTx(block.Transactions[txIndex], txOutIndex)
}
// testGenerator houses state used to easy the process of generating test blocks
// that build from one another along with housing other useful things such as
// available spendable outputs used throughout the tests.
type testGenerator struct {
params *chaincfg.Params
tip *wire.MsgBlock
tipName string
tipHeight int32
blocks map[chainhash.Hash]*wire.MsgBlock
blocksByName map[string]*wire.MsgBlock
blockHeights map[string]int32
// Used for tracking spendable coinbase outputs.
spendableOuts []spendableOut
prevCollectedHash chainhash.Hash
// Common key for any tests which require signed transactions.
privKey *btcec.PrivateKey
}
// makeTestGenerator returns a test generator instance initialized with the
// genesis block as the tip.
func makeTestGenerator(params *chaincfg.Params) (testGenerator, error) {
privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), []byte{0x01})
genesis := params.GenesisBlock
genesisHash := genesis.BlockHash()
return testGenerator{
params: params,
blocks: map[chainhash.Hash]*wire.MsgBlock{genesisHash: genesis},
blocksByName: map[string]*wire.MsgBlock{"genesis": genesis},
blockHeights: map[string]int32{"genesis": 0},
tip: genesis,
tipName: "genesis",
tipHeight: 0,
privKey: privKey,
}, nil
}
// payToScriptHashScript returns a standard pay-to-script-hash for the provided
// redeem script.
func payToScriptHashScript(redeemScript []byte) []byte {
redeemScriptHash := btcutil.Hash160(redeemScript)
script, err := txscript.NewScriptBuilder().
AddOp(txscript.OP_HASH160).AddData(redeemScriptHash).
AddOp(txscript.OP_EQUAL).Script()
if err != nil {
panic(err)
}
return script
}
// pushDataScript returns a script with the provided items individually pushed
// to the stack.
func pushDataScript(items ...[]byte) []byte {
builder := txscript.NewScriptBuilder()
for _, item := range items {
builder.AddData(item)
}
script, err := builder.Script()
if err != nil {
panic(err)
}
return script
}
// standardCoinbaseScript returns a standard script suitable for use as the
// signature script of the coinbase transaction of a new block. In particular,
// it starts with the block height that is required by version 2 blocks.
func standardCoinbaseScript(blockHeight int32, extraNonce uint64) ([]byte, error) {
return txscript.NewScriptBuilder().AddInt64(int64(blockHeight)).
AddInt64(int64(extraNonce)).Script()
}
// opReturnScript returns a provably-pruneable OP_RETURN script with the
// provided data.
func opReturnScript(data []byte) []byte {
builder := txscript.NewScriptBuilder()
script, err := builder.AddOp(txscript.OP_RETURN).AddData(data).Script()
if err != nil {
panic(err)
}
return script
}
// uniqueOpReturnScript returns a standard provably-pruneable OP_RETURN script
// with a random uint64 encoded as the data.
func uniqueOpReturnScript() []byte {
rand, err := wire.RandomUint64()
if err != nil {
panic(err)
}
data := make([]byte, 8)
binary.LittleEndian.PutUint64(data[0:8], rand)
return opReturnScript(data)
}
// createCoinbaseTx returns a coinbase transaction paying an appropriate
// subsidy based on the passed block height. The coinbase signature script
// conforms to the requirements of version 2 blocks.
func (g *testGenerator) createCoinbaseTx(blockHeight int32) *wire.MsgTx {
extraNonce := uint64(0)
coinbaseScript, err := standardCoinbaseScript(blockHeight, extraNonce)
if err != nil {
panic(err)
}
tx := wire.NewMsgTx(1)
tx.AddTxIn(&wire.TxIn{
// Coinbase transactions have no inputs, so previous outpoint is
// zero hash and max index.
PreviousOutPoint: *wire.NewOutPoint(&chainhash.Hash{},
wire.MaxPrevOutIndex),
Sequence: wire.MaxTxInSequenceNum,
SignatureScript: coinbaseScript,
})
tx.AddTxOut(&wire.TxOut{
Value: blockchain.CalcBlockSubsidy(blockHeight, g.params),
PkScript: opTrueScript,
})
return tx
}
// calcMerkleRoot creates a merkle tree from the slice of transactions and
// returns the root of the tree.
func calcMerkleRoot(txns []*wire.MsgTx) chainhash.Hash {
if len(txns) == 0 {
return chainhash.Hash{}
}
utilTxns := make([]*btcutil.Tx, 0, len(txns))
for _, tx := range txns {
utilTxns = append(utilTxns, btcutil.NewTx(tx))
}
merkles := blockchain.BuildMerkleTreeStore(utilTxns, false)
return *merkles[len(merkles)-1]
}
// solveBlock attempts to find a nonce which makes the passed block header hash
// to a value less than the target difficulty. When a successful solution is
// found true is returned and the nonce field of the passed header is updated
// with the solution. False is returned if no solution exists.
//
// NOTE: This function will never solve blocks with a nonce of 0. This is done
// so the 'nextBlock' function can properly detect when a nonce was modified by
// a munge function.
func solveBlock(header *wire.BlockHeader) bool {
// sbResult is used by the solver goroutines to send results.
type sbResult struct {
found bool
nonce uint32
}
// solver accepts a block header and a nonce range to test. It is
// intended to be run as a goroutine.
targetDifficulty := blockchain.CompactToBig(header.Bits)
quit := make(chan bool)
results := make(chan sbResult)
solver := func(hdr wire.BlockHeader, startNonce, stopNonce uint32) {
// We need to modify the nonce field of the header, so make sure
// we work with a copy of the original header.
for i := startNonce; i >= startNonce && i <= stopNonce; i++ {
select {
case <-quit:
return
default:
hdr.Nonce = i
hash := hdr.BlockHash()
if blockchain.HashToBig(&hash).Cmp(
targetDifficulty) <= 0 {
results <- sbResult{true, i}
return
}
}
}
results <- sbResult{false, 0}
}
startNonce := uint32(1)
stopNonce := uint32(math.MaxUint32)
numCores := uint32(runtime.NumCPU())
noncesPerCore := (stopNonce - startNonce) / numCores
for i := uint32(0); i < numCores; i++ {
rangeStart := startNonce + (noncesPerCore * i)
rangeStop := startNonce + (noncesPerCore * (i + 1)) - 1
if i == numCores-1 {
rangeStop = stopNonce
}
go solver(*header, rangeStart, rangeStop)
}
for i := uint32(0); i < numCores; i++ {
result := <-results
if result.found {
close(quit)
header.Nonce = result.nonce
return true
}
}
return false
}
// additionalCoinbase returns a function that itself takes a block and
// modifies it by adding the provided amount to coinbase subsidy.
func additionalCoinbase(amount btcutil.Amount) func(*wire.MsgBlock) {
return func(b *wire.MsgBlock) {
// Increase the first proof-of-work coinbase subsidy by the
// provided amount.
b.Transactions[0].TxOut[0].Value += int64(amount)
}
}
// additionalSpendFee returns a function that itself takes a block and modifies
// it by adding the provided fee to the spending transaction.
//
// NOTE: The coinbase value is NOT updated to reflect the additional fee. Use
// 'additionalCoinbase' for that purpose.
func additionalSpendFee(fee btcutil.Amount) func(*wire.MsgBlock) {
return func(b *wire.MsgBlock) {
// Increase the fee of the spending transaction by reducing the
// amount paid.
if int64(fee) > b.Transactions[1].TxOut[0].Value {
panic(fmt.Sprintf("additionalSpendFee: fee of %d "+
"exceeds available spend transaction value",
fee))
}
b.Transactions[1].TxOut[0].Value -= int64(fee)
}
}
// replaceSpendScript returns a function that itself takes a block and modifies
// it by replacing the public key script of the spending transaction.
func replaceSpendScript(pkScript []byte) func(*wire.MsgBlock) {
return func(b *wire.MsgBlock) {
b.Transactions[1].TxOut[0].PkScript = pkScript
}
}
// replaceCoinbaseSigScript returns a function that itself takes a block and
// modifies it by replacing the signature key script of the coinbase.
func replaceCoinbaseSigScript(script []byte) func(*wire.MsgBlock) {
return func(b *wire.MsgBlock) {
b.Transactions[0].TxIn[0].SignatureScript = script
}
}
// additionalTx returns a function that itself takes a block and modifies it by
// adding the the provided transaction.
func additionalTx(tx *wire.MsgTx) func(*wire.MsgBlock) {
return func(b *wire.MsgBlock) {
b.AddTransaction(tx)
}
}
// createSpendTx creates a transaction that spends from the provided spendable
// output and includes an additional unique OP_RETURN output to ensure the
// transaction ends up with a unique hash. The script is a simple OP_TRUE
// script which avoids the need to track addresses and signature scripts in the
// tests.
func createSpendTx(spend *spendableOut, fee btcutil.Amount) *wire.MsgTx {
spendTx := wire.NewMsgTx(1)
spendTx.AddTxIn(&wire.TxIn{
PreviousOutPoint: spend.prevOut,
Sequence: wire.MaxTxInSequenceNum,
SignatureScript: nil,
})
spendTx.AddTxOut(wire.NewTxOut(int64(spend.amount-fee),
opTrueScript))
spendTx.AddTxOut(wire.NewTxOut(0, uniqueOpReturnScript()))
return spendTx
}
// createSpendTxForTx creates a transaction that spends from the first output of
// the provided transaction and includes an additional unique OP_RETURN output
// to ensure the transaction ends up with a unique hash. The public key script
// is a simple OP_TRUE script which avoids the need to track addresses and
// signature scripts in the tests. The signature script is nil.
func createSpendTxForTx(tx *wire.MsgTx, fee btcutil.Amount) *wire.MsgTx {
spend := makeSpendableOutForTx(tx, 0)
return createSpendTx(&spend, fee)
}
// nextBlock builds a new block that extends the current tip associated with the
// generator and updates the generator's tip to the newly generated block.
//
// The block will include the following:
// - A coinbase that pays the required subsidy to an OP_TRUE script
// - When a spendable output is provided:
// - A transaction that spends from the provided output the following outputs:
// - One that pays the inputs amount minus 1 atom to an OP_TRUE script
// - One that contains an OP_RETURN output with a random uint64 in order to
// ensure the transaction has a unique hash
//
// Additionally, if one or more munge functions are specified, they will be
// invoked with the block prior to solving it. This provides callers with the
// opportunity to modify the block which is especially useful for testing.
//
// In order to simply the logic in the munge functions, the following rules are
// applied after all munge functions have been invoked:
// - The merkle root will be recalculated unless it was manually changed
// - The block will be solved unless the nonce was changed
func (g *testGenerator) nextBlock(blockName string, spend *spendableOut, mungers ...func(*wire.MsgBlock)) *wire.MsgBlock {
// Create coinbase transaction for the block using any additional
// subsidy if specified.
nextHeight := g.tipHeight + 1
coinbaseTx := g.createCoinbaseTx(nextHeight)
txns := []*wire.MsgTx{coinbaseTx}
if spend != nil {
// Create the transaction with a fee of 1 atom for the
// miner and increase the coinbase subsidy accordingly.
fee := btcutil.Amount(1)
coinbaseTx.TxOut[0].Value += int64(fee)
// Create a transaction that spends from the provided spendable
// output and includes an additional unique OP_RETURN output to
// ensure the transaction ends up with a unique hash, then add
// add it to the list of transactions to include in the block.
// The script is a simple OP_TRUE script in order to avoid the
// need to track addresses and signature scripts in the tests.
txns = append(txns, createSpendTx(spend, fee))
}
// Use a timestamp that is one second after the previous block unless
// this is the first block in which case the current time is used.
var ts time.Time
if nextHeight == 1 {
ts = time.Unix(time.Now().Unix(), 0)
} else {
ts = g.tip.Header.Timestamp.Add(time.Second)
}
block := wire.MsgBlock{
Header: wire.BlockHeader{
Version: 1,
PrevBlock: g.tip.BlockHash(),
MerkleRoot: calcMerkleRoot(txns),
Bits: g.params.PowLimitBits,
Timestamp: ts,
Nonce: 0, // To be solved.
},
Transactions: txns,
}
// Perform any block munging just before solving. Only recalculate the
// merkle root if it wasn't manually changed by a munge function.
curMerkleRoot := block.Header.MerkleRoot
curNonce := block.Header.Nonce
for _, f := range mungers {
f(&block)
}
if block.Header.MerkleRoot == curMerkleRoot {
block.Header.MerkleRoot = calcMerkleRoot(block.Transactions)
}
// Only solve the block if the nonce wasn't manually changed by a munge
// function.
if block.Header.Nonce == curNonce && !solveBlock(&block.Header) {
panic(fmt.Sprintf("Unable to solve block at height %d",
nextHeight))
}
// Update generator state and return the block.
blockHash := block.BlockHash()
g.blocks[blockHash] = &block
g.blocksByName[blockName] = &block
g.blockHeights[blockName] = nextHeight
g.tip = &block
g.tipName = blockName
g.tipHeight = nextHeight
return &block
}
// updateBlockState manually updates the generator state to remove all internal
// map references to a block via its old hash and insert new ones for the new
// block hash. This is useful if the test code has to manually change a block
// after 'nextBlock' has returned.
func (g *testGenerator) updateBlockState(oldBlockName string, oldBlockHash chainhash.Hash, newBlockName string, newBlock *wire.MsgBlock) {
// Look up the height from the existing entries.
blockHeight := g.blockHeights[oldBlockName]
// Remove existing entries.
delete(g.blocks, oldBlockHash)
delete(g.blocksByName, oldBlockName)
delete(g.blockHeights, oldBlockName)
// Add new entries.
newBlockHash := newBlock.BlockHash()
g.blocks[newBlockHash] = newBlock
g.blocksByName[newBlockName] = newBlock
g.blockHeights[newBlockName] = blockHeight
}
// setTip changes the tip of the instance to the block with the provided name.
// This is useful since the tip is used for things such as generating subsequent
// blocks.
func (g *testGenerator) setTip(blockName string) {
g.tip = g.blocksByName[blockName]
g.tipName = blockName
g.tipHeight = g.blockHeights[blockName]
}
// oldestCoinbaseOuts removes the oldest coinbase output that was previously
// saved to the generator and returns the set as a slice.
func (g *testGenerator) oldestCoinbaseOut() spendableOut {
op := g.spendableOuts[0]
g.spendableOuts = g.spendableOuts[1:]
return op
}
// saveTipCoinbaseOut adds the coinbase tx output in the current tip block to
// the list of spendable outputs.
func (g *testGenerator) saveTipCoinbaseOut() {
g.spendableOuts = append(g.spendableOuts, makeSpendableOut(g.tip, 0, 0))
g.prevCollectedHash = g.tip.BlockHash()
}
// saveSpendableCoinbaseOuts adds all coinbase outputs from the last block that
// had its coinbase tx output colleted to the current tip. This is useful to
// batch the collection of coinbase outputs once the tests reach a stable point
// so they don't have to manually add them for the right tests which will
// ultimately end up being the best chain.
func (g *testGenerator) saveSpendableCoinbaseOuts() {
// Ensure tip is reset to the current one when done.
curTipName := g.tipName
defer g.setTip(curTipName)
// Loop through the ancestors of the current tip until the
// reaching the block that has already had the coinbase outputs
// collected.
var collectBlocks []*wire.MsgBlock
for b := g.tip; b != nil; b = g.blocks[b.Header.PrevBlock] {
if b.BlockHash() == g.prevCollectedHash {
break
}
collectBlocks = append(collectBlocks, b)
}
for i := range collectBlocks {
g.tip = collectBlocks[len(collectBlocks)-1-i]
g.saveTipCoinbaseOut()
}
}
// nonCanonicalVarInt return a variable-length encoded integer that is encoded
// with 9 bytes even though it could be encoded with a minimal canonical
// encoding.
func nonCanonicalVarInt(val uint32) []byte {
var rv [9]byte
rv[0] = 0xff
binary.LittleEndian.PutUint64(rv[1:], uint64(val))
return rv[:]
}
// encodeNonCanonicalBlock serializes the block in a non-canonical way by
// encoding the number of transactions using a variable-length encoded integer
// with 9 bytes even though it should be encoded with a minimal canonical
// encoding.
func encodeNonCanonicalBlock(b *wire.MsgBlock) []byte {
var buf bytes.Buffer
b.Header.BtcEncode(&buf, 0, wire.BaseEncoding)
buf.Write(nonCanonicalVarInt(uint32(len(b.Transactions))))
for _, tx := range b.Transactions {
tx.BtcEncode(&buf, 0, wire.BaseEncoding)
}
return buf.Bytes()
}
// cloneBlock returns a deep copy of the provided block.
func cloneBlock(b *wire.MsgBlock) wire.MsgBlock {
var blockCopy wire.MsgBlock
blockCopy.Header = b.Header
for _, tx := range b.Transactions {
blockCopy.AddTransaction(tx.Copy())
}
return blockCopy
}
// repeatOpcode returns a byte slice with the provided opcode repeated the
// specified number of times.
func repeatOpcode(opcode uint8, numRepeats int) []byte {
return bytes.Repeat([]byte{opcode}, numRepeats)
}
// assertScriptSigOpsCount panics if the provided script does not have the
// specified number of signature operations.
func assertScriptSigOpsCount(script []byte, expected int) {
numSigOps := txscript.GetSigOpCount(script)
if numSigOps != expected {
_, file, line, _ := runtime.Caller(1)
panic(fmt.Sprintf("assertion failed at %s:%d: generated number "+
"of sigops for script is %d instead of expected %d",
file, line, numSigOps, expected))
}
}
// countBlockSigOps returns the number of legacy signature operations in the
// scripts in the passed block.
func countBlockSigOps(block *wire.MsgBlock) int {
totalSigOps := 0
for _, tx := range block.Transactions {
for _, txIn := range tx.TxIn {
numSigOps := txscript.GetSigOpCount(txIn.SignatureScript)
totalSigOps += numSigOps
}
for _, txOut := range tx.TxOut {
numSigOps := txscript.GetSigOpCount(txOut.PkScript)
totalSigOps += numSigOps
}
}
return totalSigOps
}
// assertTipBlockSigOpsCount panics if the current tip block associated with the
// generator does not have the specified number of signature operations.
func (g *testGenerator) assertTipBlockSigOpsCount(expected int) {
numSigOps := countBlockSigOps(g.tip)
if numSigOps != expected {
panic(fmt.Sprintf("generated number of sigops for block %q "+
"(height %d) is %d instead of expected %d", g.tipName,
g.tipHeight, numSigOps, expected))
}
}
// assertTipBlockSize panics if the if the current tip block associated with the
// generator does not have the specified size when serialized.
func (g *testGenerator) assertTipBlockSize(expected int) {
serializeSize := g.tip.SerializeSize()
if serializeSize != expected {
panic(fmt.Sprintf("block size of block %q (height %d) is %d "+
"instead of expected %d", g.tipName, g.tipHeight,
serializeSize, expected))
}
}
// assertTipNonCanonicalBlockSize panics if the if the current tip block
// associated with the generator does not have the specified non-canonical size
// when serialized.
func (g *testGenerator) assertTipNonCanonicalBlockSize(expected int) {
serializeSize := len(encodeNonCanonicalBlock(g.tip))
if serializeSize != expected {
panic(fmt.Sprintf("block size of block %q (height %d) is %d "+
"instead of expected %d", g.tipName, g.tipHeight,
serializeSize, expected))
}
}
// assertTipBlockNumTxns panics if the number of transactions in the current tip
// block associated with the generator does not match the specified value.
func (g *testGenerator) assertTipBlockNumTxns(expected int) {
numTxns := len(g.tip.Transactions)
if numTxns != expected {
panic(fmt.Sprintf("number of txns in block %q (height %d) is "+
"%d instead of expected %d", g.tipName, g.tipHeight,
numTxns, expected))
}
}
// assertTipBlockHash panics if the current tip block associated with the
// generator does not match the specified hash.
func (g *testGenerator) assertTipBlockHash(expected chainhash.Hash) {
hash := g.tip.BlockHash()
if hash != expected {
panic(fmt.Sprintf("block hash of block %q (height %d) is %v "+
"instead of expected %v", g.tipName, g.tipHeight, hash,
expected))
}
}
// assertTipBlockMerkleRoot panics if the merkle root in header of the current
// tip block associated with the generator does not match the specified hash.
func (g *testGenerator) assertTipBlockMerkleRoot(expected chainhash.Hash) {
hash := g.tip.Header.MerkleRoot
if hash != expected {
panic(fmt.Sprintf("merkle root of block %q (height %d) is %v "+
"instead of expected %v", g.tipName, g.tipHeight, hash,
expected))
}
}
// assertTipBlockTxOutOpReturn panics if the current tip block associated with
// the generator does not have an OP_RETURN script for the transaction output at
// the provided tx index and output index.
func (g *testGenerator) assertTipBlockTxOutOpReturn(txIndex, txOutIndex uint32) {
if txIndex >= uint32(len(g.tip.Transactions)) {
panic(fmt.Sprintf("Transaction index %d in block %q "+
"(height %d) does not exist", txIndex, g.tipName,
g.tipHeight))
}
tx := g.tip.Transactions[txIndex]
if txOutIndex >= uint32(len(tx.TxOut)) {
panic(fmt.Sprintf("transaction index %d output %d in block %q "+
"(height %d) does not exist", txIndex, txOutIndex,
g.tipName, g.tipHeight))
}
txOut := tx.TxOut[txOutIndex]
if txOut.PkScript[0] != txscript.OP_RETURN {
panic(fmt.Sprintf("transaction index %d output %d in block %q "+
"(height %d) is not an OP_RETURN", txIndex, txOutIndex,
g.tipName, g.tipHeight))
}
}
// Generate returns a slice of tests that can be used to exercise the consensus
// validation rules. The tests are intended to be flexible enough to allow both
// unit-style tests directly against the blockchain code as well as integration
// style tests over the peer-to-peer network. To achieve that goal, each test
// contains additional information about the expected result, however that
// information can be ignored when doing comparison tests between two
// independent versions over the peer-to-peer network.
func Generate(includeLargeReorg bool) (tests [][]TestInstance, err error) {
// In order to simplify the generation code which really should never
// fail unless the test code itself is broken, panics are used
// internally. This deferred func ensures any panics don't escape the
// generator by replacing the named error return with the underlying
// panic error.
defer func() {
if r := recover(); r != nil {
tests = nil
switch rt := r.(type) {
case string:
err = errors.New(rt)
case error:
err = rt
default:
err = errors.New("Unknown panic")
}
}
}()
// Create a test generator instance initialized with the genesis block
// as the tip.
g, err := makeTestGenerator(regressionNetParams)
if err != nil {
return nil, err
}
// Define some convenience helper functions to return an individual test
// instance that has the described characteristics.
//
// acceptBlock creates a test instance that expects the provided block
// to be accepted by the consensus rules.
//
// rejectBlock creates a test instance that expects the provided block
// to be rejected by the consensus rules.
//
// rejectNonCanonicalBlock creates a test instance that encodes the
// provided block using a non-canonical encoded as described by the
// encodeNonCanonicalBlock function and expected it to be rejected.
//
// orphanOrRejectBlock creates a test instance that expected the
// provided block to either by accepted as an orphan or rejected by the
// consensus rules.
//
// expectTipBlock creates a test instance that expects the provided
// block to be the current tip of the block chain.
acceptBlock := func(blockName string, block *wire.MsgBlock, isMainChain, isOrphan bool) TestInstance {
blockHeight := g.blockHeights[blockName]
return AcceptedBlock{blockName, block, blockHeight, isMainChain,
isOrphan}
}
rejectBlock := func(blockName string, block *wire.MsgBlock, code blockchain.ErrorCode) TestInstance {
blockHeight := g.blockHeights[blockName]
return RejectedBlock{blockName, block, blockHeight, code}
}
rejectNonCanonicalBlock := func(blockName string, block *wire.MsgBlock) TestInstance {
blockHeight := g.blockHeights[blockName]
encoded := encodeNonCanonicalBlock(block)
return RejectedNonCanonicalBlock{blockName, encoded, blockHeight}
}
orphanOrRejectBlock := func(blockName string, block *wire.MsgBlock) TestInstance {
blockHeight := g.blockHeights[blockName]
return OrphanOrRejectedBlock{blockName, block, blockHeight}
}
expectTipBlock := func(blockName string, block *wire.MsgBlock) TestInstance {
blockHeight := g.blockHeights[blockName]
return ExpectedTip{blockName, block, blockHeight}
}
// Define some convenience helper functions to populate the tests slice
// with test instances that have the described characteristics.
//
// accepted creates and appends a single acceptBlock test instance for
// the current tip which expects the block to be accepted to the main
// chain.
//
// acceptedToSideChainWithExpectedTip creates an appends a two-instance
// test. The first instance is an acceptBlock test instance for the
// current tip which expects the block to be accepted to a side chain.
// The second instance is an expectBlockTip test instance for provided
// values.
//
// rejected creates and appends a single rejectBlock test instance for
// the current tip.
//
// rejectedNonCanonical creates and appends a single
// rejectNonCanonicalBlock test instance for the current tip.
//
// orphanedOrRejected creates and appends a single orphanOrRejectBlock
// test instance for the current tip.
accepted := func() {
tests = append(tests, []TestInstance{
acceptBlock(g.tipName, g.tip, true, false),
})
}
acceptedToSideChainWithExpectedTip := func(tipName string) {
tests = append(tests, []TestInstance{
acceptBlock(g.tipName, g.tip, false, false),
expectTipBlock(tipName, g.blocksByName[tipName]),
})
}
rejected := func(code blockchain.ErrorCode) {
tests = append(tests, []TestInstance{
rejectBlock(g.tipName, g.tip, code),
})
}
rejectedNonCanonical := func() {
tests = append(tests, []TestInstance{
rejectNonCanonicalBlock(g.tipName, g.tip),
})
}
orphanedOrRejected := func() {
tests = append(tests, []TestInstance{
orphanOrRejectBlock(g.tipName, g.tip),
})
}
// ---------------------------------------------------------------------
// Generate enough blocks to have mature coinbase outputs to work with.
//
// genesis -> bm0 -> bm1 -> ... -> bm99
// ---------------------------------------------------------------------
coinbaseMaturity := g.params.CoinbaseMaturity
var testInstances []TestInstance
for i := uint16(0); i < coinbaseMaturity; i++ {
blockName := fmt.Sprintf("bm%d", i)
g.nextBlock(blockName, nil)
g.saveTipCoinbaseOut()
testInstances = append(testInstances, acceptBlock(g.tipName,
g.tip, true, false))
}
tests = append(tests, testInstances)
// Collect spendable outputs. This simplifies the code below.
var outs []*spendableOut
for i := uint16(0); i < coinbaseMaturity; i++ {
op := g.oldestCoinbaseOut()
outs = append(outs, &op)
}
// ---------------------------------------------------------------------
// Basic forking and reorg tests.
// ---------------------------------------------------------------------
// ---------------------------------------------------------------------
// The comments below identify the structure of the chain being built.
//
// The values in parenthesis repesent which outputs are being spent.
//
// For example, b1(0) indicates the first collected spendable output
// which, due to the code above to create the correct number of blocks,
// is the first output that can be spent at the current block height due
// to the coinbase maturity requirement.
// ---------------------------------------------------------------------
// Start by building a couple of blocks at current tip (value in parens
// is which output is spent):
//
// ... -> b1(0) -> b2(1)
g.nextBlock("b1", outs[0])
accepted()
g.nextBlock("b2", outs[1])
accepted()
// Create a fork from b1. There should not be a reorg since b2 was seen
// first.
//
// ... -> b1(0) -> b2(1)
// \-> b3(1)
g.setTip("b1")
g.nextBlock("b3", outs[1])
b3Tx1Out := makeSpendableOut(g.tip, 1, 0)
acceptedToSideChainWithExpectedTip("b2")
// Extend b3 fork to make the alternative chain longer and force reorg.
//
// ... -> b1(0) -> b2(1)
// \-> b3(1) -> b4(2)
g.nextBlock("b4", outs[2])
accepted()
// Extend b2 fork twice to make first chain longer and force reorg.
//
// ... -> b1(0) -> b2(1) -> b5(2) -> b6(3)
// \-> b3(1) -> b4(2)
g.setTip("b2")
g.nextBlock("b5", outs[2])
acceptedToSideChainWithExpectedTip("b4")
g.nextBlock("b6", outs[3])
accepted()
// ---------------------------------------------------------------------
// Double spend tests.
// ---------------------------------------------------------------------
// Create a fork that double spends.
//
// ... -> b1(0) -> b2(1) -> b5(2) -> b6(3)
// \-> b7(2) -> b8(4)
// \-> b3(1) -> b4(2)
g.setTip("b5")
g.nextBlock("b7", outs[2])
acceptedToSideChainWithExpectedTip("b6")
g.nextBlock("b8", outs[4])
rejected(blockchain.ErrMissingTx)
// ---------------------------------------------------------------------
// Too much proof-of-work coinbase tests.
// ---------------------------------------------------------------------
// Create a block that generates too coinbase.
//
// ... -> b1(0) -> b2(1) -> b5(2) -> b6(3)
// \-> b9(4)
// \-> b3(1) -> b4(2)
g.setTip("b6")
g.nextBlock("b9", outs[4], additionalCoinbase(1))
rejected(blockchain.ErrBadCoinbaseValue)
// Create a fork that ends with block that generates too much coinbase.
//
// ... -> b1(0) -> b2(1) -> b5(2) -> b6(3)
// \-> b10(3) -> b11(4)
// \-> b3(1) -> b4(2)
g.setTip("b5")
g.nextBlock("b10", outs[3])
acceptedToSideChainWithExpectedTip("b6")
g.nextBlock("b11", outs[4], additionalCoinbase(1))
rejected(blockchain.ErrBadCoinbaseValue)
// Create a fork that ends with block that generates too much coinbase
// as before, but with a valid fork first.
//
// ... -> b1(0) -> b2(1) -> b5(2) -> b6(3)
// | \-> b12(3) -> b13(4) -> b14(5)
// | (b12 added last)
// \-> b3(1) -> b4(2)
g.setTip("b5")
b12 := g.nextBlock("b12", outs[3])
b13 := g.nextBlock("b13", outs[4])
b14 := g.nextBlock("b14", outs[5], additionalCoinbase(1))
tests = append(tests, []TestInstance{
acceptBlock("b13", b13, false, true),
acceptBlock("b14", b14, false, true),
rejectBlock("b12", b12, blockchain.ErrBadCoinbaseValue),
expectTipBlock("b13", b13),
})
// ---------------------------------------------------------------------
// Checksig signature operation count tests.
// ---------------------------------------------------------------------
// Add a block with max allowed signature operations using OP_CHECKSIG.
//
// ... -> b5(2) -> b12(3) -> b13(4) -> b15(5)
// \-> b3(1) -> b4(2)
g.setTip("b13")
manySigOps := repeatOpcode(txscript.OP_CHECKSIG, maxBlockSigOps)
g.nextBlock("b15", outs[5], replaceSpendScript(manySigOps))
g.assertTipBlockSigOpsCount(maxBlockSigOps)
accepted()
// Attempt to add block with more than max allowed signature operations
// using OP_CHECKSIG.
//
// ... -> b5(2) -> b12(3) -> b13(4) -> b15(5)
// \ \-> b16(7)
// \-> b3(1) -> b4(2)
tooManySigOps := repeatOpcode(txscript.OP_CHECKSIG, maxBlockSigOps+1)
g.nextBlock("b16", outs[6], replaceSpendScript(tooManySigOps))
g.assertTipBlockSigOpsCount(maxBlockSigOps + 1)
rejected(blockchain.ErrTooManySigOps)
// ---------------------------------------------------------------------
// Cross-fork spend tests.
// ---------------------------------------------------------------------
// Create block that spends a tx created on a different fork.
//
// ... -> b5(2) -> b12(3) -> b13(4) -> b15(5)
// \ \-> b17(b3.tx[1])
// \-> b3(1) -> b4(2)
g.setTip("b15")
g.nextBlock("b17", &b3Tx1Out)
rejected(blockchain.ErrMissingTx)
// Create block that forks and spends a tx created on a third fork.
//
// ... -> b5(2) -> b12(3) -> b13(4) -> b15(5)
// | \-> b18(b3.tx[1]) -> b19(6)
// \-> b3(1) -> b4(2)
g.setTip("b13")
g.nextBlock("b18", &b3Tx1Out)
acceptedToSideChainWithExpectedTip("b15")
g.nextBlock("b19", outs[6])
rejected(blockchain.ErrMissingTx)
// ---------------------------------------------------------------------
// Immature coinbase tests.
// ---------------------------------------------------------------------
// Create block that spends immature coinbase.
//
// ... -> b13(4) -> b15(5)
// \-> b20(7)
g.setTip("b15")
g.nextBlock("b20", outs[7])
rejected(blockchain.ErrImmatureSpend)
// Create block that spends immature coinbase on a fork.
//
// ... -> b13(4) -> b15(5)
// \-> b21(5) -> b22(7)
g.setTip("b13")
g.nextBlock("b21", outs[5])
acceptedToSideChainWithExpectedTip("b15")
g.nextBlock("b22", outs[7])
rejected(blockchain.ErrImmatureSpend)
// ---------------------------------------------------------------------
// Max block size tests.
// ---------------------------------------------------------------------
// Create block that is the max allowed size.
//
// ... -> b15(5) -> b23(6)
g.setTip("b15")
g.nextBlock("b23", outs[6], func(b *wire.MsgBlock) {
bytesToMaxSize := maxBlockSize - b.SerializeSize() - 3
sizePadScript := repeatOpcode(0x00, bytesToMaxSize)
replaceSpendScript(sizePadScript)(b)
})
g.assertTipBlockSize(maxBlockSize)
accepted()
// Create block that is the one byte larger than max allowed size. This
// is done on a fork and should be rejected regardless.
//
// ... -> b15(5) -> b23(6)
// \-> b24(6) -> b25(7)
g.setTip("b15")
g.nextBlock("b24", outs[6], func(b *wire.MsgBlock) {
bytesToMaxSize := maxBlockSize - b.SerializeSize() - 3
sizePadScript := repeatOpcode(0x00, bytesToMaxSize+1)
replaceSpendScript(sizePadScript)(b)
})
g.assertTipBlockSize(maxBlockSize + 1)
rejected(blockchain.ErrBlockTooBig)
// Parent was rejected, so this block must either be an orphan or
// outright rejected due to an invalid parent.
g.nextBlock("b25", outs[7])
orphanedOrRejected()
// ---------------------------------------------------------------------
// Coinbase script length limits tests.
// ---------------------------------------------------------------------
// Create block that has a coinbase script that is smaller than the
// required length. This is done on a fork and should be rejected
// regardless. Also, create a block that builds on the rejected block.
//
// ... -> b15(5) -> b23(6)
// \-> b26(6) -> b27(7)
g.setTip("b15")
tooSmallCbScript := repeatOpcode(0x00, minCoinbaseScriptLen-1)
g.nextBlock("b26", outs[6], replaceCoinbaseSigScript(tooSmallCbScript))
rejected(blockchain.ErrBadCoinbaseScriptLen)
// Parent was rejected, so this block must either be an orphan or
// outright rejected due to an invalid parent.
g.nextBlock("b27", outs[7])
orphanedOrRejected()
// Create block that has a coinbase script that is larger than the
// allowed length. This is done on a fork and should be rejected
// regardless. Also, create a block that builds on the rejected block.
//
// ... -> b15(5) -> b23(6)
// \-> b28(6) -> b29(7)
g.setTip("b15")
tooLargeCbScript := repeatOpcode(0x00, maxCoinbaseScriptLen+1)
g.nextBlock("b28", outs[6], replaceCoinbaseSigScript(tooLargeCbScript))
rejected(blockchain.ErrBadCoinbaseScriptLen)
// Parent was rejected, so this block must either be an orphan or
// outright rejected due to an invalid parent.
g.nextBlock("b29", outs[7])
orphanedOrRejected()
// Create block that has a max length coinbase script.
//
// ... -> b23(6) -> b30(7)
g.setTip("b23")
maxSizeCbScript := repeatOpcode(0x00, maxCoinbaseScriptLen)
g.nextBlock("b30", outs[7], replaceCoinbaseSigScript(maxSizeCbScript))
accepted()
// ---------------------------------------------------------------------
// Multisig[Verify]/ChecksigVerifiy signature operation count tests.
// ---------------------------------------------------------------------
// Create block with max signature operations as OP_CHECKMULTISIG.
//
// ... -> b30(7) -> b31(8)
//
// OP_CHECKMULTISIG counts for 20 sigops.
manySigOps = repeatOpcode(txscript.OP_CHECKMULTISIG, maxBlockSigOps/20)
g.nextBlock("b31", outs[8], replaceSpendScript(manySigOps))
g.assertTipBlockSigOpsCount(maxBlockSigOps)
accepted()
// Create block with more than max allowed signature operations using
// OP_CHECKMULTISIG.
//
// ... -> b31(8)
// \-> b32(9)
//
// OP_CHECKMULTISIG counts for 20 sigops.
tooManySigOps = repeatOpcode(txscript.OP_CHECKMULTISIG, maxBlockSigOps/20)
tooManySigOps = append(manySigOps, txscript.OP_CHECKSIG)
g.nextBlock("b32", outs[9], replaceSpendScript(tooManySigOps))
g.assertTipBlockSigOpsCount(maxBlockSigOps + 1)
rejected(blockchain.ErrTooManySigOps)
// Create block with max signature operations as OP_CHECKMULTISIGVERIFY.
//
// ... -> b31(8) -> b33(9)
g.setTip("b31")
manySigOps = repeatOpcode(txscript.OP_CHECKMULTISIGVERIFY, maxBlockSigOps/20)
g.nextBlock("b33", outs[9], replaceSpendScript(manySigOps))
g.assertTipBlockSigOpsCount(maxBlockSigOps)
accepted()
// Create block with more than max allowed signature operations using
// OP_CHECKMULTISIGVERIFY.
//
// ... -> b33(9)
// \-> b34(10)
//
tooManySigOps = repeatOpcode(txscript.OP_CHECKMULTISIGVERIFY, maxBlockSigOps/20)
tooManySigOps = append(manySigOps, txscript.OP_CHECKSIG)
g.nextBlock("b34", outs[10], replaceSpendScript(tooManySigOps))
g.assertTipBlockSigOpsCount(maxBlockSigOps + 1)
rejected(blockchain.ErrTooManySigOps)
// Create block with max signature operations as OP_CHECKSIGVERIFY.
//
// ... -> b33(9) -> b35(10)
//
g.setTip("b33")
manySigOps = repeatOpcode(txscript.OP_CHECKSIGVERIFY, maxBlockSigOps)
g.nextBlock("b35", outs[10], replaceSpendScript(manySigOps))
g.assertTipBlockSigOpsCount(maxBlockSigOps)
accepted()
// Create block with more than max allowed signature operations using
// OP_CHECKSIGVERIFY.
//
// ... -> b35(10)
// \-> b36(11)
//
tooManySigOps = repeatOpcode(txscript.OP_CHECKSIGVERIFY, maxBlockSigOps+1)
g.nextBlock("b36", outs[11], replaceSpendScript(tooManySigOps))
g.assertTipBlockSigOpsCount(maxBlockSigOps + 1)
rejected(blockchain.ErrTooManySigOps)
// ---------------------------------------------------------------------
// Spending of tx outputs in block that failed to connect tests.
// ---------------------------------------------------------------------
// Create block that spends a transaction from a block that failed to
// connect (due to containing a double spend).
//
// ... -> b35(10)
// \-> b37(11)
// \-> b38(b37.tx[1])
//
g.setTip("b35")
doubleSpendTx := createSpendTx(outs[11], lowFee)
g.nextBlock("b37", outs[11], additionalTx(doubleSpendTx))
b37Tx1Out := makeSpendableOut(g.tip, 1, 0)
rejected(blockchain.ErrDoubleSpend)
g.setTip("b35")
g.nextBlock("b38", &b37Tx1Out)
rejected(blockchain.ErrMissingTx)
// ---------------------------------------------------------------------
// Pay-to-script-hash signature operation count tests.
// ---------------------------------------------------------------------
// Create a pay-to-script-hash redeem script that consists of 9
// signature operations to be used in the next three blocks.
const redeemScriptSigOps = 9
redeemScript := pushDataScript(g.privKey.PubKey().SerializeCompressed())
redeemScript = append(redeemScript, bytes.Repeat([]byte{txscript.OP_2DUP,
txscript.OP_CHECKSIGVERIFY}, redeemScriptSigOps-1)...)
redeemScript = append(redeemScript, txscript.OP_CHECKSIG)
assertScriptSigOpsCount(redeemScript, redeemScriptSigOps)
// Create a block that has enough pay-to-script-hash outputs such that
// another block can be created that consumes them all and exceeds the
// max allowed signature operations per block.
//
// ... -> b35(10) -> b39(11)
g.setTip("b35")
b39 := g.nextBlock("b39", outs[11], func(b *wire.MsgBlock) {
// Create a chain of transactions each spending from the
// previous one such that each contains an output that pays to
// the redeem script and the total number of signature
// operations in those redeem scripts will be more than the
// max allowed per block.
p2shScript := payToScriptHashScript(redeemScript)
txnsNeeded := (maxBlockSigOps / redeemScriptSigOps) + 1
prevTx := b.Transactions[1]
for i := 0; i < txnsNeeded; i++ {
prevTx = createSpendTxForTx(prevTx, lowFee)
prevTx.TxOut[0].Value -= 2
prevTx.AddTxOut(wire.NewTxOut(2, p2shScript))
b.AddTransaction(prevTx)
}
})
g.assertTipBlockNumTxns((maxBlockSigOps / redeemScriptSigOps) + 3)
accepted()
// Create a block with more than max allowed signature operations where
// the majority of them are in pay-to-script-hash scripts.
//
// ... -> b35(10) -> b39(11)
// \-> b40(12)
g.setTip("b39")
g.nextBlock("b40", outs[12], func(b *wire.MsgBlock) {
txnsNeeded := (maxBlockSigOps / redeemScriptSigOps)
for i := 0; i < txnsNeeded; i++ {
// Create a signed transaction that spends from the
// associated p2sh output in b39.
spend := makeSpendableOutForTx(b39.Transactions[i+2], 2)
tx := createSpendTx(&spend, lowFee)
sig, err := txscript.RawTxInSignature(tx, 0,
redeemScript, txscript.SigHashAll, g.privKey)
if err != nil {
panic(err)
}
tx.TxIn[0].SignatureScript = pushDataScript(sig,
redeemScript)
b.AddTransaction(tx)
}
// Create a final tx that includes a non-pay-to-script-hash
// output with the number of signature operations needed to push
// the block one over the max allowed.
fill := maxBlockSigOps - (txnsNeeded * redeemScriptSigOps) + 1
finalTx := b.Transactions[len(b.Transactions)-1]
tx := createSpendTxForTx(finalTx, lowFee)
tx.TxOut[0].PkScript = repeatOpcode(txscript.OP_CHECKSIG, fill)
b.AddTransaction(tx)
})
rejected(blockchain.ErrTooManySigOps)
// Create a block with the max allowed signature operations where the
// majority of them are in pay-to-script-hash scripts.
//
// ... -> b35(10) -> b39(11) -> b41(12)
g.setTip("b39")
g.nextBlock("b41", outs[12], func(b *wire.MsgBlock) {
txnsNeeded := (maxBlockSigOps / redeemScriptSigOps)
for i := 0; i < txnsNeeded; i++ {
spend := makeSpendableOutForTx(b39.Transactions[i+2], 2)
tx := createSpendTx(&spend, lowFee)
sig, err := txscript.RawTxInSignature(tx, 0,
redeemScript, txscript.SigHashAll, g.privKey)
if err != nil {
panic(err)
}
tx.TxIn[0].SignatureScript = pushDataScript(sig,
redeemScript)
b.AddTransaction(tx)
}
// Create a final tx that includes a non-pay-to-script-hash
// output with the number of signature operations needed to push
// the block to exactly the max allowed.
fill := maxBlockSigOps - (txnsNeeded * redeemScriptSigOps)
if fill == 0 {
return
}
finalTx := b.Transactions[len(b.Transactions)-1]
tx := createSpendTxForTx(finalTx, lowFee)
tx.TxOut[0].PkScript = repeatOpcode(txscript.OP_CHECKSIG, fill)
b.AddTransaction(tx)
})
accepted()
// ---------------------------------------------------------------------
// Reset the chain to a stable base.
//
// ... -> b35(10) -> b39(11) -> b42(12) -> b43(13)
// \-> b41(12)
// ---------------------------------------------------------------------
g.setTip("b39")
g.nextBlock("b42", outs[12])
acceptedToSideChainWithExpectedTip("b41")
g.nextBlock("b43", outs[13])
accepted()
// ---------------------------------------------------------------------
// Various malformed block tests.
// ---------------------------------------------------------------------
// Create block with an otherwise valid transaction in place of where
// the coinbase must be.
//
// ... -> b43(13)
// \-> b44(14)
g.nextBlock("b44", nil, func(b *wire.MsgBlock) {
nonCoinbaseTx := createSpendTx(outs[14], lowFee)
b.Transactions[0] = nonCoinbaseTx
})
rejected(blockchain.ErrFirstTxNotCoinbase)
// Create block with no transactions.
//
// ... -> b43(13)
// \-> b45(_)
g.setTip("b43")
g.nextBlock("b45", nil, func(b *wire.MsgBlock) {
b.Transactions = nil
})
rejected(blockchain.ErrNoTransactions)
// Create block with invalid proof of work.
//
// ... -> b43(13)
// \-> b46(14)
g.setTip("b43")
b46 := g.nextBlock("b46", outs[14])
// This can't be done inside a munge function passed to nextBlock
// because the block is solved after the function returns and this test
// requires an unsolved block.
{
origHash := b46.BlockHash()
for {
// Keep incrementing the nonce until the hash treated as
// a uint256 is higher than the limit.
b46.Header.Nonce++
blockHash := b46.BlockHash()
hashNum := blockchain.HashToBig(&blockHash)
if hashNum.Cmp(g.params.PowLimit) >= 0 {
break
}
}
g.updateBlockState("b46", origHash, "b46", b46)
}
rejected(blockchain.ErrHighHash)
// Create block with a timestamp too far in the future.
//
// ... -> b43(13)
// \-> b47(14)
g.setTip("b43")
g.nextBlock("b47", outs[14], func(b *wire.MsgBlock) {
// 3 hours in the future clamped to 1 second precision.
nowPlus3Hours := time.Now().Add(time.Hour * 3)
b.Header.Timestamp = time.Unix(nowPlus3Hours.Unix(), 0)
})
rejected(blockchain.ErrTimeTooNew)
// Create block with an invalid merkle root.
//
// ... -> b43(13)
// \-> b48(14)
g.setTip("b43")
g.nextBlock("b48", outs[14], func(b *wire.MsgBlock) {
b.Header.MerkleRoot = chainhash.Hash{}
})
rejected(blockchain.ErrBadMerkleRoot)
// Create block with an invalid proof-of-work limit.
//
// ... -> b43(13)
// \-> b49(14)
g.setTip("b43")
g.nextBlock("b49", outs[14], func(b *wire.MsgBlock) {
b.Header.Bits--
})
rejected(blockchain.ErrUnexpectedDifficulty)
// Create block with an invalid negative proof-of-work limit.
//
// ... -> b43(13)
// \-> b49a(14)
g.setTip("b43")
b49a := g.nextBlock("b49a", outs[14])
// This can't be done inside a munge function passed to nextBlock
// because the block is solved after the function returns and this test
// involves an unsolvable block.
{
origHash := b49a.BlockHash()
b49a.Header.Bits = 0x01810000 // -1 in compact form.
g.updateBlockState("b49a", origHash, "b49a", b49a)
}
rejected(blockchain.ErrUnexpectedDifficulty)
// Create block with two coinbase transactions.
//
// ... -> b43(13)
// \-> b50(14)
g.setTip("b43")
coinbaseTx := g.createCoinbaseTx(g.tipHeight + 1)
g.nextBlock("b50", outs[14], additionalTx(coinbaseTx))
rejected(blockchain.ErrMultipleCoinbases)
// Create block with duplicate transactions.
//
// This test relies on the shape of the shape of the merkle tree to test
// the intended condition and thus is asserted below.
//
// ... -> b43(13)
// \-> b51(14)
g.setTip("b43")
g.nextBlock("b51", outs[14], func(b *wire.MsgBlock) {
b.AddTransaction(b.Transactions[1])
})
g.assertTipBlockNumTxns(3)
rejected(blockchain.ErrDuplicateTx)
// Create a block that spends a transaction that does not exist.
//
// ... -> b43(13)
// \-> b52(14)
g.setTip("b43")
g.nextBlock("b52", outs[14], func(b *wire.MsgBlock) {
hash := newHashFromStr("00000000000000000000000000000000" +
"00000000000000000123456789abcdef")
b.Transactions[1].TxIn[0].PreviousOutPoint.Hash = *hash
b.Transactions[1].TxIn[0].PreviousOutPoint.Index = 0
})
rejected(blockchain.ErrMissingTx)
// ---------------------------------------------------------------------
// Block header median time tests.
// ---------------------------------------------------------------------
// Reset the chain to a stable base.
//
// ... -> b33(9) -> b35(10) -> b39(11) -> b42(12) -> b43(13) -> b53(14)
g.setTip("b43")
g.nextBlock("b53", outs[14])
accepted()
// Create a block with a timestamp that is exactly the median time. The
// block must be rejected.
//
// ... -> b33(9) -> b35(10) -> b39(11) -> b42(12) -> b43(13) -> b53(14)
// \-> b54(15)
g.nextBlock("b54", outs[15], func(b *wire.MsgBlock) {
medianBlock := g.blocks[b.Header.PrevBlock]
for i := 0; i < medianTimeBlocks/2; i++ {
medianBlock = g.blocks[medianBlock.Header.PrevBlock]
}
b.Header.Timestamp = medianBlock.Header.Timestamp
})
rejected(blockchain.ErrTimeTooOld)
// Create a block with a timestamp that is one second after the median
// time. The block must be accepted.
//
// ... -> b33(9) -> b35(10) -> b39(11) -> b42(12) -> b43(13) -> b53(14) -> b55(15)
g.setTip("b53")
g.nextBlock("b55", outs[15], func(b *wire.MsgBlock) {
medianBlock := g.blocks[b.Header.PrevBlock]
for i := 0; i < medianTimeBlocks/2; i++ {
medianBlock = g.blocks[medianBlock.Header.PrevBlock]
}
medianBlockTime := medianBlock.Header.Timestamp
b.Header.Timestamp = medianBlockTime.Add(time.Second)
})
accepted()
// ---------------------------------------------------------------------
// CVE-2012-2459 (block hash collision due to merkle tree algo) tests.
// ---------------------------------------------------------------------
// Create two blocks that have the same hash via merkle tree tricks to
// ensure that the valid block is accepted even though it has the same
// hash as the invalid block that was rejected first.
//
// This is accomplished by building the blocks as follows:
//
// b57 (valid block):
//
// root = h1234 = h(h12 || h34)
// // \\
// h12 = h(h(cb) || h(tx2)) h34 = h(h(tx3) || h(tx3))
// // \\ // \\
// coinbase tx2 tx3 nil
//
// transactions: coinbase, tx2, tx3
// merkle tree level 1: h12 = h(h(cb) || h(tx2))
// h34 = h(h(tx3) || h(tx3)) // Algo reuses tx3
// merkle tree root: h(h12 || h34)
//
// b56 (invalid block with the same hash):
//
// root = h1234 = h(h12 || h34)
// // \\
// h12 = h(h(cb) || h(tx2)) h34 = h(h(tx3) || h(tx3))
// // \\ // \\
// coinbase tx2 tx3 tx3
//
// transactions: coinbase, tx2, tx3, tx3
// merkle tree level 1: h12 = h(h(cb) || h(tx2))
// h34 = h(h(tx3) || h(tx3)) // real tx3 dup
// merkle tree root: h(h12 || h34)
//
// ... -> b55(15) -> b57(16)
// \-> b56(16)
g.setTip("b55")
b57 := g.nextBlock("b57", outs[16], func(b *wire.MsgBlock) {
tx2 := b.Transactions[1]
tx3 := createSpendTxForTx(tx2, lowFee)
b.AddTransaction(tx3)
})
g.assertTipBlockNumTxns(3)
g.setTip("b55")
b56 := g.nextBlock("b56", nil, func(b *wire.MsgBlock) {
*b = cloneBlock(b57)
b.AddTransaction(b.Transactions[2])
})
g.assertTipBlockNumTxns(4)
g.assertTipBlockHash(b57.BlockHash())
g.assertTipBlockMerkleRoot(b57.Header.MerkleRoot)
rejected(blockchain.ErrDuplicateTx)
// Since the two blocks have the same hash and the generator state now
// has b56 associated with the hash, manually remove b56, replace it
// with b57, and then reset the tip to it.
g.updateBlockState("b56", b56.BlockHash(), "b57", b57)
g.setTip("b57")
accepted()
// Create a block that contains two duplicate txns that are not in a
// consecutive position within the merkle tree.
//
// This is accomplished by building the block as follows:
//
// transactions: coinbase, tx2, tx3, tx4, tx5, tx6, tx3, tx4
// merkle tree level 2: h12 = h(h(cb) || h(tx2))
// h34 = h(h(tx3) || h(tx4))
// h56 = h(h(tx5) || h(tx6))
// h78 = h(h(tx3) || h(tx4)) // Same as h34
// merkle tree level 1: h1234 = h(h12 || h34)
// h5678 = h(h56 || h78)
// merkle tree root: h(h1234 || h5678)
//
//
// ... -> b55(15) -> b57(16)
// \-> b56p2(16)
g.setTip("b55")
g.nextBlock("b56p2", outs[16], func(b *wire.MsgBlock) {
// Create 4 transactions that each spend from the previous tx
// in the block.
spendTx := b.Transactions[1]
for i := 0; i < 4; i++ {
spendTx = createSpendTxForTx(spendTx, lowFee)
b.AddTransaction(spendTx)
}
// Add the duplicate transactions (3rd and 4th).
b.AddTransaction(b.Transactions[2])
b.AddTransaction(b.Transactions[3])
})
g.assertTipBlockNumTxns(8)
rejected(blockchain.ErrDuplicateTx)
// ---------------------------------------------------------------------
// Invalid transaction type tests.
// ---------------------------------------------------------------------
// Create block with a transaction that tries to spend from an index
// that is out of range from an otherwise valid and existing tx.
//
// ... -> b57(16)
// \-> b58(17)
g.setTip("b57")
g.nextBlock("b58", outs[17], func(b *wire.MsgBlock) {
b.Transactions[1].TxIn[0].PreviousOutPoint.Index = 42
})
rejected(blockchain.ErrMissingTx)
// Create block with transaction that pays more than its inputs.
//
// ... -> b57(16)
// \-> b59(17)
g.setTip("b57")
g.nextBlock("b59", outs[17], func(b *wire.MsgBlock) {
b.Transactions[1].TxOut[0].Value = int64(outs[17].amount) + 1
})
rejected(blockchain.ErrSpendTooHigh)
// ---------------------------------------------------------------------
// BIP0030 tests.
// ---------------------------------------------------------------------
// Create a good block to reset the chain to a stable base.
//
// ... -> b57(16) -> b60(17)
g.setTip("b57")
g.nextBlock("b60", outs[17])
accepted()
// Create block that has a tx with the same hash as an existing tx that
// has not been fully spent.
//
// ... -> b60(17)
// \-> b61(18)
g.nextBlock("b61", outs[18], func(b *wire.MsgBlock) {
// Duplicate the coinbase of the parent block to force the
// condition.
parent := g.blocks[b.Header.PrevBlock]
b.Transactions[0] = parent.Transactions[0]
})
rejected(blockchain.ErrOverwriteTx)
// ---------------------------------------------------------------------
// Blocks with non-final transaction tests.
// ---------------------------------------------------------------------
// Create block that contains a non-final non-coinbase transaction.
//
// ... -> b60(17)
// \-> b62(18)
g.setTip("b60")
g.nextBlock("b62", outs[18], func(b *wire.MsgBlock) {
// A non-final transaction must have at least one input with a
// non-final sequence number in addition to a non-final lock
// time.
b.Transactions[1].LockTime = 0xffffffff
b.Transactions[1].TxIn[0].Sequence = 0
})
rejected(blockchain.ErrUnfinalizedTx)
// Create block that contains a non-final coinbase transaction.
//
// ... -> b60(17)
// \-> b63(18)
g.setTip("b60")
g.nextBlock("b63", outs[18], func(b *wire.MsgBlock) {
// A non-final transaction must have at least one input with a
// non-final sequence number in addition to a non-final lock
// time.
b.Transactions[0].LockTime = 0xffffffff
b.Transactions[0].TxIn[0].Sequence = 0
})
rejected(blockchain.ErrUnfinalizedTx)
// ---------------------------------------------------------------------
// Non-canonical variable-length integer tests.
// ---------------------------------------------------------------------
// Create a max size block with the variable-length integer for the
// number of transactions replaced with a larger non-canonical version
// that causes the block size to exceed the max allowed size. Then,
// create another block that is identical except with the canonical
// encoding and ensure it is accepted. The intent is to verify the
// implementation does not reject the second block, which will have the
// same hash, due to the first one already being rejected.
//
// ... -> b60(17) -> b64(18)
// \-> b64a(18)
g.setTip("b60")
b64a := g.nextBlock("b64a", outs[18], func(b *wire.MsgBlock) {
bytesToMaxSize := maxBlockSize - b.SerializeSize() - 3
sizePadScript := repeatOpcode(0x00, bytesToMaxSize)
replaceSpendScript(sizePadScript)(b)
})
g.assertTipNonCanonicalBlockSize(maxBlockSize + 8)
rejectedNonCanonical()
g.setTip("b60")
b64 := g.nextBlock("b64", outs[18], func(b *wire.MsgBlock) {
*b = cloneBlock(b64a)
})
// Since the two blocks have the same hash and the generator state now
// has b64a associated with the hash, manually remove b64a, replace it
// with b64, and then reset the tip to it.
g.updateBlockState("b64a", b64a.BlockHash(), "b64", b64)
g.setTip("b64")
g.assertTipBlockHash(b64a.BlockHash())
g.assertTipBlockSize(maxBlockSize)
accepted()
// ---------------------------------------------------------------------
// Same block transaction spend tests.
// ---------------------------------------------------------------------
// Create block that spends an output created earlier in the same block.
//
// ... b64(18) -> b65(19)
g.setTip("b64")
g.nextBlock("b65", outs[19], func(b *wire.MsgBlock) {
tx3 := createSpendTxForTx(b.Transactions[1], lowFee)
b.AddTransaction(tx3)
})
accepted()
// Create block that spends an output created later in the same block.
//
// ... -> b65(19)
// \-> b66(20)
g.nextBlock("b66", nil, func(b *wire.MsgBlock) {
tx2 := createSpendTx(outs[20], lowFee)
tx3 := createSpendTxForTx(tx2, lowFee)
b.AddTransaction(tx3)
b.AddTransaction(tx2)
})
rejected(blockchain.ErrMissingTx)
// Create block that double spends a transaction created in the same
// block.
//
// ... -> b65(19)
// \-> b67(20)
g.setTip("b65")
g.nextBlock("b67", outs[20], func(b *wire.MsgBlock) {
tx2 := b.Transactions[1]
tx3 := createSpendTxForTx(tx2, lowFee)
tx4 := createSpendTxForTx(tx2, lowFee)
b.AddTransaction(tx3)
b.AddTransaction(tx4)
})
rejected(blockchain.ErrDoubleSpend)
// ---------------------------------------------------------------------
// Extra subsidy tests.
// ---------------------------------------------------------------------
// Create block that pays 10 extra to the coinbase and a tx that only
// pays 9 fee.
//
// ... -> b65(19)
// \-> b68(20)
g.setTip("b65")
g.nextBlock("b68", outs[20], additionalCoinbase(10), additionalSpendFee(9))
rejected(blockchain.ErrBadCoinbaseValue)
// Create block that pays 10 extra to the coinbase and a tx that pays
// the extra 10 fee.
//
// ... -> b65(19) -> b69(20)
g.setTip("b65")
g.nextBlock("b69", outs[20], additionalCoinbase(10), additionalSpendFee(10))
accepted()
// ---------------------------------------------------------------------
// More signature operations counting tests.
//
// The next several tests ensure signature operations are counted before
// script elements that cause parse failure while those after are
// ignored and that signature operations after script elements that
// successfully parse even if that element will fail at run-time are
// counted.
// ---------------------------------------------------------------------
// Create block with more than max allowed signature operations such
// that the signature operation that pushes it over the limit is after
// a push data with a script element size that is larger than the max
// allowed size when executed. The block must be rejected because the
// signature operation after the script element must be counted since
// the script parses validly.
//
// The script generated consists of the following form:
//
// Comment assumptions:
// maxBlockSigOps = 20000
// maxScriptElementSize = 520
//
// [0-19999] : OP_CHECKSIG
// [20000] : OP_PUSHDATA4
// [20001-20004]: 521 (little-endian encoded maxScriptElementSize+1)
// [20005-20525]: too large script element
// [20526] : OP_CHECKSIG (goes over the limit)
//
// ... -> b69(20)
// \-> b70(21)
scriptSize := maxBlockSigOps + 5 + (maxScriptElementSize + 1) + 1
tooManySigOps = repeatOpcode(txscript.OP_CHECKSIG, scriptSize)
tooManySigOps[maxBlockSigOps] = txscript.OP_PUSHDATA4
binary.LittleEndian.PutUint32(tooManySigOps[maxBlockSigOps+1:],
maxScriptElementSize+1)
g.nextBlock("b70", outs[21], replaceSpendScript(tooManySigOps))
g.assertTipBlockSigOpsCount(maxBlockSigOps + 1)
rejected(blockchain.ErrTooManySigOps)
// Create block with more than max allowed signature operations such
// that the signature operation that pushes it over the limit is before
// an invalid push data that claims a large amount of data even though
// that much data is not provided.
//
// ... -> b69(20)
// \-> b71(21)
g.setTip("b69")
scriptSize = maxBlockSigOps + 5 + maxScriptElementSize + 1
tooManySigOps = repeatOpcode(txscript.OP_CHECKSIG, scriptSize)
tooManySigOps[maxBlockSigOps+1] = txscript.OP_PUSHDATA4
binary.LittleEndian.PutUint32(tooManySigOps[maxBlockSigOps+2:], 0xffffffff)
g.nextBlock("b71", outs[21], replaceSpendScript(tooManySigOps))
g.assertTipBlockSigOpsCount(maxBlockSigOps + 1)
rejected(blockchain.ErrTooManySigOps)
// Create block with the max allowed signature operations such that all
// counted signature operations are before an invalid push data that
// claims a large amount of data even though that much data is not
// provided. The pushed data itself consists of OP_CHECKSIG so the
// block would be rejected if any of them were counted.
//
// ... -> b69(20) -> b72(21)
g.setTip("b69")
scriptSize = maxBlockSigOps + 5 + maxScriptElementSize
manySigOps = repeatOpcode(txscript.OP_CHECKSIG, scriptSize)
manySigOps[maxBlockSigOps] = txscript.OP_PUSHDATA4
binary.LittleEndian.PutUint32(manySigOps[maxBlockSigOps+1:], 0xffffffff)
g.nextBlock("b72", outs[21], replaceSpendScript(manySigOps))
g.assertTipBlockSigOpsCount(maxBlockSigOps)
accepted()
// Create block with the max allowed signature operations such that all
// counted signature operations are before an invalid push data that
// contains OP_CHECKSIG in the number of bytes to push. The block would
// be rejected if any of them were counted.
//
// ... -> b72(21) -> b73(22)
scriptSize = maxBlockSigOps + 5 + (maxScriptElementSize + 1)
manySigOps = repeatOpcode(txscript.OP_CHECKSIG, scriptSize)
manySigOps[maxBlockSigOps] = txscript.OP_PUSHDATA4
g.nextBlock("b73", outs[22], replaceSpendScript(manySigOps))
g.assertTipBlockSigOpsCount(maxBlockSigOps)
accepted()
// ---------------------------------------------------------------------
// Dead execution path tests.
// ---------------------------------------------------------------------
// Create block with an invalid opcode in a dead execution path.
//
// ... -> b73(22) -> b74(23)
script := []byte{txscript.OP_IF, txscript.OP_INVALIDOPCODE,
txscript.OP_ELSE, txscript.OP_TRUE, txscript.OP_ENDIF}
g.nextBlock("b74", outs[23], replaceSpendScript(script), func(b *wire.MsgBlock) {
tx2 := b.Transactions[1]
tx3 := createSpendTxForTx(tx2, lowFee)
tx3.TxIn[0].SignatureScript = []byte{txscript.OP_FALSE}
b.AddTransaction(tx3)
})
accepted()
// ---------------------------------------------------------------------
// Various OP_RETURN tests.
// ---------------------------------------------------------------------
// Create a block that has multiple transactions each with a single
// OP_RETURN output.
//
// ... -> b74(23) -> b75(24)
g.nextBlock("b75", outs[24], func(b *wire.MsgBlock) {
// Add 4 outputs to the spending transaction that are spent
// below.
const numAdditionalOutputs = 4
const zeroCoin = int64(0)
spendTx := b.Transactions[1]
for i := 0; i < numAdditionalOutputs; i++ {
spendTx.AddTxOut(wire.NewTxOut(zeroCoin, opTrueScript))
}
// Add transactions spending from the outputs added above that
// each contain an OP_RETURN output.
//
// NOTE: The createSpendTx func adds the OP_RETURN output.
zeroFee := btcutil.Amount(0)
for i := uint32(0); i < numAdditionalOutputs; i++ {
spend := makeSpendableOut(b, 1, i+2)
tx := createSpendTx(&spend, zeroFee)
b.AddTransaction(tx)
}
})
g.assertTipBlockNumTxns(6)
g.assertTipBlockTxOutOpReturn(5, 1)
b75OpReturnOut := makeSpendableOut(g.tip, 5, 1)
accepted()
// Reorg to a side chain that does not contain the OP_RETURNs.
//
// ... -> b74(23) -> b75(24)
// \-> b76(24) -> b77(25)
g.setTip("b74")
g.nextBlock("b76", outs[24])
acceptedToSideChainWithExpectedTip("b75")
g.nextBlock("b77", outs[25])
accepted()
// Reorg back to the original chain that contains the OP_RETURNs.
//
// ... -> b74(23) -> b75(24) -> b78(25) -> b79(26)
// \-> b76(24) -> b77(25)
g.setTip("b75")
g.nextBlock("b78", outs[25])
acceptedToSideChainWithExpectedTip("b77")
g.nextBlock("b79", outs[26])
accepted()
// Create a block that spends an OP_RETURN.
//
// ... -> b74(23) -> b75(24) -> b78(25) -> b79(26)
// \-> b76(24) -> b77(25) \-> b80(b75.tx[5].out[1])
//
// An OP_RETURN output doesn't have any value and the default behavior
// of nextBlock is to assign a fee of one, so increment the amount here
// to effective negate that behavior.
b75OpReturnOut.amount++
g.nextBlock("b80", &b75OpReturnOut)
rejected(blockchain.ErrMissingTx)
// Create a block that has a transaction with multiple OP_RETURNs. Even
// though it's not considered a standard transaction, it is still valid
// by the consensus rules.
//
// ... -> b79(26) -> b81(27)
//
g.setTip("b79")
g.nextBlock("b81", outs[27], func(b *wire.MsgBlock) {
const numAdditionalOutputs = 4
const zeroCoin = int64(0)
spendTx := b.Transactions[1]
for i := 0; i < numAdditionalOutputs; i++ {
opRetScript := uniqueOpReturnScript()
spendTx.AddTxOut(wire.NewTxOut(zeroCoin, opRetScript))
}
})
for i := uint32(2); i < 6; i++ {
g.assertTipBlockTxOutOpReturn(1, i)
}
accepted()
// ---------------------------------------------------------------------
// Large block re-org test.
// ---------------------------------------------------------------------
if !includeLargeReorg {
return tests, nil
}
// Ensure the tip the re-org test builds on is the best chain tip.
//
// ... -> b81(27) -> ...
g.setTip("b81")
// Collect all of the spendable coinbase outputs from the previous
// collection point up to the current tip.
g.saveSpendableCoinbaseOuts()
spendableOutOffset := g.tipHeight - int32(coinbaseMaturity)
// Extend the main chain by a large number of max size blocks.
//
// ... -> br0 -> br1 -> ... -> br#
testInstances = nil
reorgSpend := *outs[spendableOutOffset]
reorgStartBlockName := g.tipName
chain1TipName := g.tipName
for i := int32(0); i < numLargeReorgBlocks; i++ {
chain1TipName = fmt.Sprintf("br%d", i)
g.nextBlock(chain1TipName, &reorgSpend, func(b *wire.MsgBlock) {
bytesToMaxSize := maxBlockSize - b.SerializeSize() - 3
sizePadScript := repeatOpcode(0x00, bytesToMaxSize)
replaceSpendScript(sizePadScript)(b)
})
g.assertTipBlockSize(maxBlockSize)
g.saveTipCoinbaseOut()
testInstances = append(testInstances, acceptBlock(g.tipName,
g.tip, true, false))
// Use the next available spendable output. First use up any
// remaining spendable outputs that were already popped into the
// outs slice, then just pop them from the stack.
if spendableOutOffset+1+i < int32(len(outs)) {
reorgSpend = *outs[spendableOutOffset+1+i]
} else {
reorgSpend = g.oldestCoinbaseOut()
}
}
tests = append(tests, testInstances)
// Create a side chain that has the same length.
//
// ... -> br0 -> ... -> br#
// \-> bralt0 -> ... -> bralt#
g.setTip(reorgStartBlockName)
testInstances = nil
chain2TipName := g.tipName
for i := uint16(0); i < numLargeReorgBlocks; i++ {
chain2TipName = fmt.Sprintf("bralt%d", i)
g.nextBlock(chain2TipName, nil)
testInstances = append(testInstances, acceptBlock(g.tipName,
g.tip, false, false))
}
testInstances = append(testInstances, expectTipBlock(chain1TipName,
g.blocksByName[chain1TipName]))
tests = append(tests, testInstances)
// Extend the side chain by one to force the large reorg.
//
// ... -> bralt0 -> ... -> bralt# -> bralt#+1
// \-> br0 -> ... -> br#
g.nextBlock(fmt.Sprintf("bralt%d", g.tipHeight+1), nil)
chain2TipName = g.tipName
accepted()
// Extend the first chain by two to force a large reorg back to it.
//
// ... -> br0 -> ... -> br# -> br#+1 -> br#+2
// \-> bralt0 -> ... -> bralt# -> bralt#+1
g.setTip(chain1TipName)
g.nextBlock(fmt.Sprintf("br%d", g.tipHeight+1), nil)
chain1TipName = g.tipName
acceptedToSideChainWithExpectedTip(chain2TipName)
g.nextBlock(fmt.Sprintf("br%d", g.tipHeight+2), nil)
chain1TipName = g.tipName
accepted()
return tests, nil
}