// Copyright (c) 2013-2015 The btcsuite developers // Use of this source code is governed by an ISC // license that can be found in the LICENSE file. package base58 import ( "math/big" ) //go:generate go run genalphabet.go var bigRadix = [...]*big.Int{ big.NewInt(0), big.NewInt(58), big.NewInt(58 * 58), big.NewInt(58 * 58 * 58), big.NewInt(58 * 58 * 58 * 58), big.NewInt(58 * 58 * 58 * 58 * 58), big.NewInt(58 * 58 * 58 * 58 * 58 * 58), big.NewInt(58 * 58 * 58 * 58 * 58 * 58 * 58), big.NewInt(58 * 58 * 58 * 58 * 58 * 58 * 58 * 58), big.NewInt(58 * 58 * 58 * 58 * 58 * 58 * 58 * 58 * 58), bigRadix10, } var bigRadix10 = big.NewInt(58 * 58 * 58 * 58 * 58 * 58 * 58 * 58 * 58 * 58) // 58^10 var bigZero = big.NewInt(0) // Decode decodes a modified base58 string to a byte slice. func Decode(b string) []byte { answer := big.NewInt(0) scratch := new(big.Int) // Calculating with big.Int is slow for each iteration. // x += b58[b[i]] * j // j *= 58 // // Instead we can try to do as much calculations on int64. // We can represent a 10 digit base58 number using an int64. // // Hence we'll try to convert 10, base58 digits at a time. // The rough idea is to calculate `t`, such that: // // t := b58[b[i+9]] * 58^9 ... + b58[b[i+1]] * 58^1 + b58[b[i]] * 58^0 // x *= 58^10 // x += t // // Of course, in addition, we'll need to handle boundary condition when `b` is not multiple of 58^10. // In that case we'll use the bigRadix[n] lookup for the appropriate power. for t := b; len(t) > 0; { n := len(t) if n > 10 { n = 10 } total := uint64(0) for _, v := range t[:n] { tmp := b58[v] if tmp == 255 { return []byte("") } total = total*58 + uint64(tmp) } answer.Mul(answer, bigRadix[n]) scratch.SetUint64(total) answer.Add(answer, scratch) t = t[n:] } tmpval := answer.Bytes() var numZeros int for numZeros = 0; numZeros < len(b); numZeros++ { if b[numZeros] != alphabetIdx0 { break } } flen := numZeros + len(tmpval) val := make([]byte, flen) copy(val[numZeros:], tmpval) return val } // Encode encodes a byte slice to a modified base58 string. func Encode(b []byte) string { x := new(big.Int) x.SetBytes(b) answer := make([]byte, 0, len(b)*136/100) mod := new(big.Int) for x.Cmp(bigZero) > 0 { // Calculating with big.Int is slow for each iteration. // x, mod = x / 58, x % 58 // // Instead we can try to do as much calculations on int64. // x, mod = x / 58^10, x % 58^10 // // Which will give us mod, which is 10 digit base58 number. // We'll loop that 10 times to convert to the answer. x.DivMod(x, bigRadix10, mod) if x.Cmp(bigZero) == 0 { // When x = 0, we need to ensure we don't add any extra zeros. m := mod.Int64() for m > 0 { answer = append(answer, alphabet[m%58]) m /= 58 } } else { m := mod.Int64() for i := 0; i < 10; i++ { answer = append(answer, alphabet[m%58]) m /= 58 } } } // leading zero bytes for _, i := range b { if i != 0 { break } answer = append(answer, alphabetIdx0) } // reverse alen := len(answer) for i := 0; i < alen/2; i++ { answer[i], answer[alen-1-i] = answer[alen-1-i], answer[i] } return string(answer) }