// Copyright (c) 2016-2017 The btcsuite developers // Copyright (c) 2016-2017 The Lightning Network Developers // Use of this source code is governed by an ISC // license that can be found in the LICENSE file. package gcs_test import ( "bytes" "encoding/binary" "math/rand" "testing" "github.com/btcsuite/btcutil/gcs" ) var ( // No need to allocate an err variable in every test err error // Collision probability for the tests (1/2**20) P = uint8(20) // Filters are conserved between tests but we must define with an // interface which functions we're testing because the gcsFilter type // isn't exported filter, filter2, filter3, filter4, filter5 *gcs.Filter // We need to use the same key for building and querying the filters key [gcs.KeySize]byte // List of values for building a filter contents = [][]byte{ []byte("Alex"), []byte("Bob"), []byte("Charlie"), []byte("Dick"), []byte("Ed"), []byte("Frank"), []byte("George"), []byte("Harry"), []byte("Ilya"), []byte("John"), []byte("Kevin"), []byte("Larry"), []byte("Michael"), []byte("Nate"), []byte("Owen"), []byte("Paul"), []byte("Quentin"), } // List of values for querying a filter using MatchAny() contents2 = [][]byte{ []byte("Alice"), []byte("Betty"), []byte("Charmaine"), []byte("Donna"), []byte("Edith"), []byte("Faina"), []byte("Georgia"), []byte("Hannah"), []byte("Ilsbeth"), []byte("Jennifer"), []byte("Kayla"), []byte("Lena"), []byte("Michelle"), []byte("Natalie"), []byte("Ophelia"), []byte("Peggy"), []byte("Queenie"), } ) // TestGCSFilterBuild builds a test filter with a randomized key. For Bitcoin // use, deterministic filter generation is desired. Therefore, a key that's // derived deterministically would be required. func TestGCSFilterBuild(t *testing.T) { for i := 0; i < gcs.KeySize; i += 4 { binary.BigEndian.PutUint32(key[i:], rand.Uint32()) } filter, err = gcs.BuildGCSFilter(P, key, contents) if err != nil { t.Fatalf("Filter build failed: %s", err.Error()) } } // TestGCSFilterCopy deserializes and serializes a filter to create a copy. func TestGCSFilterCopy(t *testing.T) { serialized2, err := filter.Bytes() if err != nil { t.Fatalf("Filter Bytes() failed: %v", err) } filter2, err = gcs.FromBytes(filter.N(), P, serialized2) if err != nil { t.Fatalf("Filter copy failed: %s", err.Error()) } serialized3, err := filter.NBytes() if err != nil { t.Fatalf("Filter NBytes() failed: %v", err) } filter3, err = gcs.FromNBytes(filter.P(), serialized3) if err != nil { t.Fatalf("Filter copy failed: %s", err.Error()) } serialized4, err := filter.PBytes() if err != nil { t.Fatalf("Filter PBytes() failed: %v", err) } filter4, err = gcs.FromPBytes(filter.N(), serialized4) if err != nil { t.Fatalf("Filter copy failed: %s", err.Error()) } serialized5, err := filter.NPBytes() if err != nil { t.Fatalf("Filter NPBytes() failed: %v", err) } filter5, err = gcs.FromNPBytes(serialized5) if err != nil { t.Fatalf("Filter copy failed: %s", err.Error()) } } // TestGCSFilterMetadata checks that the filter metadata is built and copied // correctly. func TestGCSFilterMetadata(t *testing.T) { if filter.P() != P { t.Fatal("P not correctly stored in filter metadata") } if filter.N() != uint32(len(contents)) { t.Fatal("N not correctly stored in filter metadata") } if filter.P() != filter2.P() { t.Fatal("P doesn't match between copied filters") } if filter.P() != filter3.P() { t.Fatal("P doesn't match between copied filters") } if filter.P() != filter4.P() { t.Fatal("P doesn't match between copied filters") } if filter.P() != filter5.P() { t.Fatal("P doesn't match between copied filters") } if filter.N() != filter2.N() { t.Fatal("N doesn't match between copied filters") } if filter.N() != filter3.N() { t.Fatal("N doesn't match between copied filters") } if filter.N() != filter4.N() { t.Fatal("N doesn't match between copied filters") } if filter.N() != filter5.N() { t.Fatal("N doesn't match between copied filters") } serialized, err := filter.Bytes() if err != nil { t.Fatalf("Filter Bytes() failed: %v", err) } serialized2, err := filter2.Bytes() if err != nil { t.Fatalf("Filter Bytes() failed: %v", err) } if !bytes.Equal(serialized, serialized2) { t.Fatal("Bytes don't match between copied filters") } serialized3, err := filter3.Bytes() if err != nil { t.Fatalf("Filter Bytes() failed: %v", err) } if !bytes.Equal(serialized, serialized3) { t.Fatal("Bytes don't match between copied filters") } serialized4, err := filter3.Bytes() if err != nil { t.Fatalf("Filter Bytes() failed: %v", err) } if !bytes.Equal(serialized, serialized4) { t.Fatal("Bytes don't match between copied filters") } serialized5, err := filter5.Bytes() if err != nil { t.Fatalf("Filter Bytes() failed: %v", err) } if !bytes.Equal(serialized, serialized5) { t.Fatal("Bytes don't match between copied filters") } } // TestGCSFilterMatch checks that both the built and copied filters match // correctly, logging any false positives without failing on them. func TestGCSFilterMatch(t *testing.T) { match, err := filter.Match(key, []byte("Nate")) if err != nil { t.Fatalf("Filter match failed: %s", err.Error()) } if !match { t.Fatal("Filter didn't match when it should have!") } match, err = filter2.Match(key, []byte("Nate")) if err != nil { t.Fatalf("Filter match failed: %s", err.Error()) } if !match { t.Fatal("Filter didn't match when it should have!") } match, err = filter.Match(key, []byte("Quentin")) if err != nil { t.Fatalf("Filter match failed: %s", err.Error()) } if !match { t.Fatal("Filter didn't match when it should have!") } match, err = filter2.Match(key, []byte("Quentin")) if err != nil { t.Fatalf("Filter match failed: %s", err.Error()) } if !match { t.Fatal("Filter didn't match when it should have!") } match, err = filter.Match(key, []byte("Nates")) if err != nil { t.Fatalf("Filter match failed: %s", err.Error()) } if match { t.Logf("False positive match, should be 1 in 2**%d!", P) } match, err = filter2.Match(key, []byte("Nates")) if err != nil { t.Fatalf("Filter match failed: %s", err.Error()) } if match { t.Logf("False positive match, should be 1 in 2**%d!", P) } match, err = filter.Match(key, []byte("Quentins")) if err != nil { t.Fatalf("Filter match failed: %s", err.Error()) } if match { t.Logf("False positive match, should be 1 in 2**%d!", P) } match, err = filter2.Match(key, []byte("Quentins")) if err != nil { t.Fatalf("Filter match failed: %s", err.Error()) } if match { t.Logf("False positive match, should be 1 in 2**%d!", P) } } // TestGCSFilterMatchAny checks that both the built and copied filters match a // list correctly, logging any false positives without failing on them. func TestGCSFilterMatchAny(t *testing.T) { match, err := filter.MatchAny(key, contents2) if err != nil { t.Fatalf("Filter match any failed: %s", err.Error()) } if match { t.Logf("False positive match, should be 1 in 2**%d!", P) } match, err = filter2.MatchAny(key, contents2) if err != nil { t.Fatalf("Filter match any failed: %s", err.Error()) } if match { t.Logf("False positive match, should be 1 in 2**%d!", P) } contents2 = append(contents2, []byte("Nate")) match, err = filter.MatchAny(key, contents2) if err != nil { t.Fatalf("Filter match any failed: %s", err.Error()) } if !match { t.Fatal("Filter didn't match any when it should have!") } match, err = filter2.MatchAny(key, contents2) if err != nil { t.Fatalf("Filter match any failed: %s", err.Error()) } if !match { t.Fatal("Filter didn't match any when it should have!") } }