package spvchain import ( "errors" "fmt" "net" "strconv" "sync" "sync/atomic" "time" "github.com/btcsuite/btcd/addrmgr" "github.com/btcsuite/btcd/blockchain" "github.com/btcsuite/btcd/chaincfg" "github.com/btcsuite/btcd/chaincfg/chainhash" "github.com/btcsuite/btcd/connmgr" "github.com/btcsuite/btcd/peer" "github.com/btcsuite/btcd/wire" "github.com/btcsuite/btcutil" "github.com/btcsuite/btcwallet/waddrmgr" "github.com/btcsuite/btcwallet/wallet" "github.com/btcsuite/btcwallet/walletdb" ) // These are exported variables so they can be changed by users. var ( // ConnectionRetryInterval is the base amount of time to wait in between // retries when connecting to persistent peers. It is adjusted by the // number of retries such that there is a retry backoff. ConnectionRetryInterval = time.Second * 5 // UserAgentName is the user agent name and is used to help identify // ourselves to other bitcoin peers. UserAgentName = "spvchain" // UserAgentVersion is the user agent version and is used to help // identify ourselves to other bitcoin peers. UserAgentVersion = "0.0.1-alpha" // Services describes the services that are supported by the server. Services = wire.SFNodeCF // RequiredServices describes the services that are required to be // supported by outbound peers. RequiredServices = wire.SFNodeNetwork | wire.SFNodeCF // BanThreshold is the maximum ban score before a peer is banned. BanThreshold = uint32(100) // BanDuration is the duration of a ban. BanDuration = time.Hour * 24 // TargetOutbound is the number of outbound peers to target. TargetOutbound = 8 // MaxPeers is the maximum number of connections the client maintains. MaxPeers = 125 // DisableDNSSeed disables getting initial addresses for Bitcoin nodes // from DNS. DisableDNSSeed = false ) // updatePeerHeightsMsg is a message sent from the blockmanager to the server // after a new block has been accepted. The purpose of the message is to update // the heights of peers that were known to announce the block before we // connected it to the main chain or recognized it as an orphan. With these // updates, peer heights will be kept up to date, allowing for fresh data when // selecting sync peer candidacy. type updatePeerHeightsMsg struct { newHash *chainhash.Hash newHeight int32 originPeer *serverPeer } // peerState maintains state of inbound, persistent, outbound peers as well // as banned peers and outbound groups. type peerState struct { outboundPeers map[int32]*serverPeer persistentPeers map[int32]*serverPeer banned map[string]time.Time outboundGroups map[string]int } // Count returns the count of all known peers. func (ps *peerState) Count() int { return len(ps.outboundPeers) + len(ps.persistentPeers) } // forAllOutboundPeers is a helper function that runs closure on all outbound // peers known to peerState. func (ps *peerState) forAllOutboundPeers(closure func(sp *serverPeer)) { for _, e := range ps.outboundPeers { closure(e) } for _, e := range ps.persistentPeers { closure(e) } } // forAllPeers is a helper function that runs closure on all peers known to // peerState. func (ps *peerState) forAllPeers(closure func(sp *serverPeer)) { ps.forAllOutboundPeers(closure) } // serverPeer extends the peer to maintain state shared by the server and // the blockmanager. type serverPeer struct { // The following variables must only be used atomically feeFilter int64 *peer.Peer connReq *connmgr.ConnReq server *ChainService persistent bool continueHash *chainhash.Hash relayMtx sync.Mutex requestQueue []*wire.InvVect requestedFilters map[chainhash.Hash]bool requestedBlocks map[chainhash.Hash]struct{} knownAddresses map[string]struct{} banScore connmgr.DynamicBanScore quit chan struct{} // The following chans are used to sync blockmanager and server. blockProcessed chan struct{} } // newServerPeer returns a new serverPeer instance. The peer needs to be set by // the caller. func newServerPeer(s *ChainService, isPersistent bool) *serverPeer { return &serverPeer{ server: s, persistent: isPersistent, requestedFilters: make(map[chainhash.Hash]bool), requestedBlocks: make(map[chainhash.Hash]struct{}), knownAddresses: make(map[string]struct{}), quit: make(chan struct{}), blockProcessed: make(chan struct{}, 1), } } // newestBlock returns the current best block hash and height using the format // required by the configuration for the peer package. func (sp *serverPeer) newestBlock() (*chainhash.Hash, int32, error) { best, err := sp.server.BestSnapshot() if err != nil { return nil, 0, err } return &best.Hash, best.Height, nil } // addKnownAddresses adds the given addresses to the set of known addresses to // the peer to prevent sending duplicate addresses. func (sp *serverPeer) addKnownAddresses(addresses []*wire.NetAddress) { for _, na := range addresses { sp.knownAddresses[addrmgr.NetAddressKey(na)] = struct{}{} } } // addressKnown true if the given address is already known to the peer. func (sp *serverPeer) addressKnown(na *wire.NetAddress) bool { _, exists := sp.knownAddresses[addrmgr.NetAddressKey(na)] return exists } // addBanScore increases the persistent and decaying ban score fields by the // values passed as parameters. If the resulting score exceeds half of the ban // threshold, a warning is logged including the reason provided. Further, if // the score is above the ban threshold, the peer will be banned and // disconnected. func (sp *serverPeer) addBanScore(persistent, transient uint32, reason string) { // No warning is logged and no score is calculated if banning is disabled. warnThreshold := BanThreshold >> 1 if transient == 0 && persistent == 0 { // The score is not being increased, but a warning message is still // logged if the score is above the warn threshold. score := sp.banScore.Int() if score > warnThreshold { log.Warnf("Misbehaving peer %s: %s -- ban score is %d, "+ "it was not increased this time", sp, reason, score) } return } score := sp.banScore.Increase(persistent, transient) if score > warnThreshold { log.Warnf("Misbehaving peer %s: %s -- ban score increased to %d", sp, reason, score) if score > BanThreshold { log.Warnf("Misbehaving peer %s -- banning and disconnecting", sp) sp.server.BanPeer(sp) sp.Disconnect() } } } // pushGetCFHeadersMsg sends a getcfheaders message for the provided block // locator and stop hash to the connected peer. func (sp *serverPeer) pushGetCFHeadersMsg(locator blockchain.BlockLocator, stopHash *chainhash.Hash) error { msg := wire.NewMsgGetCFHeaders() msg.HashStop = *stopHash for _, hash := range locator { err := msg.AddBlockLocatorHash(hash) if err != nil { return err } } sp.QueueMessage(msg, nil) return nil } // OnVersion is invoked when a peer receives a version bitcoin message // and is used to negotiate the protocol version details as well as kick start // the communications. func (sp *serverPeer) OnVersion(_ *peer.Peer, msg *wire.MsgVersion) { // Add the remote peer time as a sample for creating an offset against // the local clock to keep the network time in sync. sp.server.timeSource.AddTimeSample(sp.Addr(), msg.Timestamp) // Signal the block manager this peer is a new sync candidate. sp.server.blockManager.NewPeer(sp) // Update the address manager and request known addresses from the // remote peer for outbound connections. This is skipped when running // on the simulation test network since it is only intended to connect // to specified peers and actively avoids advertising and connecting to // discovered peers. if sp.server.chainParams.Net != chaincfg.SimNetParams.Net { addrManager := sp.server.addrManager // Request known addresses if the server address manager needs // more and the peer has a protocol version new enough to // include a timestamp with addresses. hasTimestamp := sp.ProtocolVersion() >= wire.NetAddressTimeVersion if addrManager.NeedMoreAddresses() && hasTimestamp { sp.QueueMessage(wire.NewMsgGetAddr(), nil) } // Mark the address as a known good address. addrManager.Good(sp.NA()) } // Add valid peer to the server. sp.server.AddPeer(sp) } // OnBlock is invoked when a peer receives a block bitcoin message. It // blocks until the bitcoin block has been fully processed. func (sp *serverPeer) OnBlock(_ *peer.Peer, msg *wire.MsgBlock, buf []byte) { log.Tracef("got block %s", msg.BlockHash()) // Convert the raw MsgBlock to a btcutil.Block which provides some // convenience methods and things such as hash caching. block := btcutil.NewBlockFromBlockAndBytes(msg, buf) // Add the block to the known inventory for the peer. iv := wire.NewInvVect(wire.InvTypeBlock, block.Hash()) sp.AddKnownInventory(iv) // Queue the block up to be handled by the block // manager and intentionally block further receives // until the bitcoin block is fully processed and known // good or bad. This helps prevent a malicious peer // from queuing up a bunch of bad blocks before // disconnecting (or being disconnected) and wasting // memory. Additionally, this behavior is depended on // by at least the block acceptance test tool as the // reference implementation processes blocks in the same // thread and therefore blocks further messages until // the bitcoin block has been fully processed. //sp.server.blockManager.QueueBlock(block, sp) <-sp.blockProcessed } // OnInv is invoked when a peer receives an inv bitcoin message and is // used to examine the inventory being advertised by the remote peer and react // accordingly. We pass the message down to blockmanager which will call // QueueMessage with any appropriate responses. func (sp *serverPeer) OnInv(p *peer.Peer, msg *wire.MsgInv) { log.Tracef("Got inv with %d items from %s", len(msg.InvList), p.Addr()) newInv := wire.NewMsgInvSizeHint(uint(len(msg.InvList))) for _, invVect := range msg.InvList { if invVect.Type == wire.InvTypeTx { log.Tracef("Ignoring tx %s in inv from %v -- "+ "SPV mode", invVect.Hash, sp) if sp.ProtocolVersion() >= wire.BIP0037Version { log.Infof("Peer %v is announcing "+ "transactions -- disconnecting", sp) sp.Disconnect() return } continue } err := newInv.AddInvVect(invVect) if err != nil { log.Errorf("Failed to add inventory vector: %s", err) break } } if len(newInv.InvList) > 0 { sp.server.blockManager.QueueInv(newInv, sp) } } // OnHeaders is invoked when a peer receives a headers bitcoin // message. The message is passed down to the block manager. func (sp *serverPeer) OnHeaders(p *peer.Peer, msg *wire.MsgHeaders) { log.Tracef("Got headers with %d items from %s", len(msg.Headers), p.Addr()) sp.server.blockManager.QueueHeaders(msg, sp) } // handleGetData is invoked when a peer receives a getdata bitcoin message and // is used to deliver block and transaction information. func (sp *serverPeer) OnGetData(_ *peer.Peer, msg *wire.MsgGetData) { numAdded := 0 notFound := wire.NewMsgNotFound() length := len(msg.InvList) // A decaying ban score increase is applied to prevent exhausting resources // with unusually large inventory queries. // Requesting more than the maximum inventory vector length within a short // period of time yields a score above the default ban threshold. Sustained // bursts of small requests are not penalized as that would potentially ban // peers performing IBD. // This incremental score decays each minute to half of its value. sp.addBanScore(0, uint32(length)*99/wire.MaxInvPerMsg, "getdata") // We wait on this wait channel periodically to prevent queuing // far more data than we can send in a reasonable time, wasting memory. // The waiting occurs after the database fetch for the next one to // provide a little pipelining. var waitChan chan struct{} doneChan := make(chan struct{}, 1) for i, iv := range msg.InvList { var c chan struct{} // If this will be the last message we send. if i == length-1 && len(notFound.InvList) == 0 { c = doneChan } else if (i+1)%3 == 0 { // Buffered so as to not make the send goroutine block. c = make(chan struct{}, 1) } var err error switch iv.Type { case wire.InvTypeTx: err = sp.server.pushTxMsg(sp, &iv.Hash, c, waitChan) default: log.Warnf("Unsupported type in inventory request %d", iv.Type) continue } if err != nil { notFound.AddInvVect(iv) // When there is a failure fetching the final entry // and the done channel was sent in due to there // being no outstanding not found inventory, consume // it here because there is now not found inventory // that will use the channel momentarily. if i == len(msg.InvList)-1 && c != nil { <-c } } numAdded++ waitChan = c } if len(notFound.InvList) != 0 { sp.QueueMessage(notFound, doneChan) } // Wait for messages to be sent. We can send quite a lot of data at this // point and this will keep the peer busy for a decent amount of time. // We don't process anything else by them in this time so that we // have an idea of when we should hear back from them - else the idle // timeout could fire when we were only half done sending the blocks. if numAdded > 0 { <-doneChan } } // OnFeeFilter is invoked when a peer receives a feefilter bitcoin message and // is used by remote peers to request that no transactions which have a fee rate // lower than provided value are inventoried to them. The peer will be // disconnected if an invalid fee filter value is provided. func (sp *serverPeer) OnFeeFilter(_ *peer.Peer, msg *wire.MsgFeeFilter) { // Check that the passed minimum fee is a valid amount. if msg.MinFee < 0 || msg.MinFee > btcutil.MaxSatoshi { log.Debugf("Peer %v sent an invalid feefilter '%v' -- "+ "disconnecting", sp, btcutil.Amount(msg.MinFee)) sp.Disconnect() return } atomic.StoreInt64(&sp.feeFilter, msg.MinFee) } // OnReject is invoked when a peer receives a reject bitcoin message and is // used to notify the server about a rejected transaction. func (sp *serverPeer) OnReject(_ *peer.Peer, msg *wire.MsgReject) { } // OnCFHeaders is invoked when a peer receives a cfheaders bitcoin message and // is used to notify the server about a list of committed filter headers. func (sp *serverPeer) OnCFHeaders(_ *peer.Peer, msg *wire.MsgCFHeaders) { log.Trace("Got cfheaders message!") } // OnCFilter is invoked when a peer receives a cfilter bitcoin message and is // used to notify the server about a committed filter. func (sp *serverPeer) OnCFilter(_ *peer.Peer, msg *wire.MsgCFilter) { } // OnAddr is invoked when a peer receives an addr bitcoin message and is // used to notify the server about advertised addresses. func (sp *serverPeer) OnAddr(_ *peer.Peer, msg *wire.MsgAddr) { // Ignore addresses when running on the simulation test network. This // helps prevent the network from becoming another public test network // since it will not be able to learn about other peers that have not // specifically been provided. if sp.server.chainParams.Net == chaincfg.SimNetParams.Net { return } // Ignore old style addresses which don't include a timestamp. if sp.ProtocolVersion() < wire.NetAddressTimeVersion { return } // A message that has no addresses is invalid. if len(msg.AddrList) == 0 { log.Errorf("Command [%s] from %s does not contain any addresses", msg.Command(), sp) sp.Disconnect() return } for _, na := range msg.AddrList { // Don't add more address if we're disconnecting. if !sp.Connected() { return } // Set the timestamp to 5 days ago if it's more than 24 hours // in the future so this address is one of the first to be // removed when space is needed. now := time.Now() if na.Timestamp.After(now.Add(time.Minute * 10)) { na.Timestamp = now.Add(-1 * time.Hour * 24 * 5) } // Add address to known addresses for this peer. sp.addKnownAddresses([]*wire.NetAddress{na}) } // Add addresses to server address manager. The address manager handles // the details of things such as preventing duplicate addresses, max // addresses, and last seen updates. // XXX bitcoind gives a 2 hour time penalty here, do we want to do the // same? sp.server.addrManager.AddAddresses(msg.AddrList, sp.NA()) } // OnRead is invoked when a peer receives a message and it is used to update // the bytes received by the server. func (sp *serverPeer) OnRead(_ *peer.Peer, bytesRead int, msg wire.Message, err error) { sp.server.AddBytesReceived(uint64(bytesRead)) } // OnWrite is invoked when a peer sends a message and it is used to update // the bytes sent by the server. func (sp *serverPeer) OnWrite(_ *peer.Peer, bytesWritten int, msg wire.Message, err error) { sp.server.AddBytesSent(uint64(bytesWritten)) } // ChainService is instantiated with functional options type ChainService struct { // The following variables must only be used atomically. // Putting the uint64s first makes them 64-bit aligned for 32-bit systems. bytesReceived uint64 // Total bytes received from all peers since start. bytesSent uint64 // Total bytes sent by all peers since start. started int32 shutdown int32 namespace walletdb.Namespace chainParams chaincfg.Params addrManager *addrmgr.AddrManager connManager *connmgr.ConnManager blockManager *blockManager newPeers chan *serverPeer donePeers chan *serverPeer banPeers chan *serverPeer query chan interface{} peerHeightsUpdate chan updatePeerHeightsMsg wg sync.WaitGroup quit chan struct{} timeSource blockchain.MedianTimeSource services wire.ServiceFlag userAgentName string userAgentVersion string } // BanPeer bans a peer that has already been connected to the server by ip. func (s *ChainService) BanPeer(sp *serverPeer) { s.banPeers <- sp } // BestSnapshot returns the best block hash and height known to the database. func (s *ChainService) BestSnapshot() (*waddrmgr.BlockStamp, error) { var best *waddrmgr.BlockStamp var err error err = s.namespace.View(func(tx walletdb.Tx) error { best, err = SyncedTo(tx) return err }) if err != nil { return nil, err } return best, nil } // LatestBlockLocator returns the block locator for the latest known block // stored in the database. func (s *ChainService) LatestBlockLocator() (blockchain.BlockLocator, error) { var locator blockchain.BlockLocator var err error err = s.namespace.View(func(tx walletdb.Tx) error { best, err := SyncedTo(tx) if err != nil { return err } locator = BlockLocatorFromHash(tx, best.Hash) return nil }) if err != nil { return nil, err } return locator, nil } // AddPeer adds a new peer that has already been connected to the server. func (s *ChainService) AddPeer(sp *serverPeer) { s.newPeers <- sp } // AddBytesSent adds the passed number of bytes to the total bytes sent counter // for the server. It is safe for concurrent access. func (s *ChainService) AddBytesSent(bytesSent uint64) { atomic.AddUint64(&s.bytesSent, bytesSent) } // AddBytesReceived adds the passed number of bytes to the total bytes received // counter for the server. It is safe for concurrent access. func (s *ChainService) AddBytesReceived(bytesReceived uint64) { atomic.AddUint64(&s.bytesReceived, bytesReceived) } // NetTotals returns the sum of all bytes received and sent across the network // for all peers. It is safe for concurrent access. func (s *ChainService) NetTotals() (uint64, uint64) { return atomic.LoadUint64(&s.bytesReceived), atomic.LoadUint64(&s.bytesSent) } // pushTxMsg sends a tx message for the provided transaction hash to the // connected peer. An error is returned if the transaction hash is not known. func (s *ChainService) pushTxMsg(sp *serverPeer, hash *chainhash.Hash, doneChan chan<- struct{}, waitChan <-chan struct{}) error { // Attempt to fetch the requested transaction from the pool. A // call could be made to check for existence first, but simply trying // to fetch a missing transaction results in the same behavior. /* tx, err := s.txMemPool.FetchTransaction(hash) if err != nil { log.Tracef("Unable to fetch tx %v from transaction "+ "pool: %v", hash, err) if doneChan != nil { doneChan <- struct{}{} } return err } // Once we have fetched data wait for any previous operation to finish. if waitChan != nil { <-waitChan } sp.QueueMessage(tx.MsgTx(), doneChan) */ return nil } // peerHandler is used to handle peer operations such as adding and removing // peers to and from the server, banning peers, and broadcasting messages to // peers. It must be run in a goroutine. func (s *ChainService) peerHandler() { // Start the address manager and block manager, both of which are needed // by peers. This is done here since their lifecycle is closely tied // to this handler and rather than adding more channels to sychronize // things, it's easier and slightly faster to simply start and stop them // in this handler. s.addrManager.Start() s.blockManager.Start() state := &peerState{ persistentPeers: make(map[int32]*serverPeer), outboundPeers: make(map[int32]*serverPeer), banned: make(map[string]time.Time), outboundGroups: make(map[string]int), } if !DisableDNSSeed { // Add peers discovered through DNS to the address manager. connmgr.SeedFromDNS(&s.chainParams, RequiredServices, net.LookupIP, func(addrs []*wire.NetAddress) { // Bitcoind uses a lookup of the dns seeder here. This // is rather strange since the values looked up by the // DNS seed lookups will vary quite a lot. // to replicate this behaviour we put all addresses as // having come from the first one. s.addrManager.AddAddresses(addrs, addrs[0]) }) } go s.connManager.Start() out: for { select { // New peers connected to the server. case p := <-s.newPeers: s.handleAddPeerMsg(state, p) // Disconnected peers. case p := <-s.donePeers: s.handleDonePeerMsg(state, p) // Block accepted in mainchain or orphan, update peer height. case umsg := <-s.peerHeightsUpdate: s.handleUpdatePeerHeights(state, umsg) // Peer to ban. case p := <-s.banPeers: s.handleBanPeerMsg(state, p) case qmsg := <-s.query: s.handleQuery(state, qmsg) case <-s.quit: // Disconnect all peers on server shutdown. state.forAllPeers(func(sp *serverPeer) { log.Tracef("Shutdown peer %s", sp) sp.Disconnect() }) break out } } s.connManager.Stop() s.blockManager.Stop() s.addrManager.Stop() // Drain channels before exiting so nothing is left waiting around // to send. cleanup: for { select { case <-s.newPeers: case <-s.donePeers: case <-s.peerHeightsUpdate: case <-s.query: default: break cleanup } } s.wg.Done() log.Tracef("Peer handler done") } // Config is a struct detailing the configuration of the chain service. type Config struct { DataDir string Namespace walletdb.Namespace ChainParams chaincfg.Params ConnectPeers []string AddPeers []string } // NewChainService returns a new chain service configured to connect to the // bitcoin network type specified by chainParams. Use start to begin syncing // with peers. func NewChainService(cfg Config) (*ChainService, error) { amgr := addrmgr.New(cfg.DataDir, net.LookupIP) s := ChainService{ chainParams: cfg.ChainParams, addrManager: amgr, newPeers: make(chan *serverPeer, MaxPeers), donePeers: make(chan *serverPeer, MaxPeers), banPeers: make(chan *serverPeer, MaxPeers), query: make(chan interface{}), quit: make(chan struct{}), peerHeightsUpdate: make(chan updatePeerHeightsMsg), namespace: cfg.Namespace, timeSource: blockchain.NewMedianTime(), services: Services, userAgentName: UserAgentName, userAgentVersion: UserAgentVersion, } err := createSPVNS(s.namespace, &s.chainParams) if err != nil { return nil, err } bm, err := newBlockManager(&s) if err != nil { return nil, err } s.blockManager = bm // Only setup a function to return new addresses to connect to when // not running in connect-only mode. The simulation network is always // in connect-only mode since it is only intended to connect to // specified peers and actively avoid advertising and connecting to // discovered peers in order to prevent it from becoming a public test // network. var newAddressFunc func() (net.Addr, error) if s.chainParams.Net != chaincfg.SimNetParams.Net { newAddressFunc = func() (net.Addr, error) { for tries := 0; tries < 100; tries++ { addr := s.addrManager.GetAddress() if addr == nil { break } // Address will not be invalid, local or unroutable // because addrmanager rejects those on addition. // Just check that we don't already have an address // in the same group so that we are not connecting // to the same network segment at the expense of // others. key := addrmgr.GroupKey(addr.NetAddress()) if s.OutboundGroupCount(key) != 0 { continue } // only allow recent nodes (10mins) after we failed 30 // times if tries < 30 && time.Since(addr.LastAttempt()) < 10*time.Minute { continue } // allow nondefault ports after 50 failed tries. if tries < 50 && fmt.Sprintf("%d", addr.NetAddress().Port) != s.chainParams.DefaultPort { continue } addrString := addrmgr.NetAddressKey(addr.NetAddress()) return addrStringToNetAddr(addrString) } return nil, errors.New("no valid connect address") } } // Create a connection manager. if MaxPeers < TargetOutbound { TargetOutbound = MaxPeers } cmgr, err := connmgr.New(&connmgr.Config{ RetryDuration: ConnectionRetryInterval, TargetOutbound: uint32(TargetOutbound), Dial: func(addr net.Addr) (net.Conn, error) { return net.Dial(addr.Network(), addr.String()) }, OnConnection: s.outboundPeerConnected, GetNewAddress: newAddressFunc, }) if err != nil { return nil, err } s.connManager = cmgr // Start up persistent peers. permanentPeers := cfg.ConnectPeers if len(permanentPeers) == 0 { permanentPeers = cfg.AddPeers } for _, addr := range permanentPeers { tcpAddr, err := addrStringToNetAddr(addr) if err != nil { return nil, err } go s.connManager.Connect(&connmgr.ConnReq{ Addr: tcpAddr, Permanent: true, }) } return &s, nil } // addrStringToNetAddr takes an address in the form of 'host:port' and returns // a net.Addr which maps to the original address with any host names resolved // to IP addresses. func addrStringToNetAddr(addr string) (net.Addr, error) { host, strPort, err := net.SplitHostPort(addr) if err != nil { return nil, err } // Attempt to look up an IP address associated with the parsed host. ips, err := net.LookupIP(host) if err != nil { return nil, err } if len(ips) == 0 { return nil, fmt.Errorf("no addresses found for %s", host) } port, err := strconv.Atoi(strPort) if err != nil { return nil, err } return &net.TCPAddr{ IP: ips[0], Port: port, }, nil } // handleUpdatePeerHeight updates the heights of all peers who were known to // announce a block we recently accepted. func (s *ChainService) handleUpdatePeerHeights(state *peerState, umsg updatePeerHeightsMsg) { state.forAllPeers(func(sp *serverPeer) { // The origin peer should already have the updated height. if sp == umsg.originPeer { return } // This is a pointer to the underlying memory which doesn't // change. latestBlkHash := sp.LastAnnouncedBlock() // Skip this peer if it hasn't recently announced any new blocks. if latestBlkHash == nil { return } // If the peer has recently announced a block, and this block // matches our newly accepted block, then update their block // height. if *latestBlkHash == *umsg.newHash { sp.UpdateLastBlockHeight(umsg.newHeight) sp.UpdateLastAnnouncedBlock(nil) } }) } // handleAddPeerMsg deals with adding new peers. It is invoked from the // peerHandler goroutine. func (s *ChainService) handleAddPeerMsg(state *peerState, sp *serverPeer) bool { if sp == nil { return false } // Ignore new peers if we're shutting down. if atomic.LoadInt32(&s.shutdown) != 0 { log.Infof("New peer %s ignored - server is shutting down", sp) sp.Disconnect() return false } // Disconnect banned peers. host, _, err := net.SplitHostPort(sp.Addr()) if err != nil { log.Debugf("can't split host/port: %s", err) sp.Disconnect() return false } if banEnd, ok := state.banned[host]; ok { if time.Now().Before(banEnd) { log.Debugf("Peer %s is banned for another %v - disconnecting", host, banEnd.Sub(time.Now())) sp.Disconnect() return false } log.Infof("Peer %s is no longer banned", host) delete(state.banned, host) } // TODO: Check for max peers from a single IP. // Limit max number of total peers. if state.Count() >= MaxPeers { log.Infof("Max peers reached [%d] - disconnecting peer %s", MaxPeers, sp) sp.Disconnect() // TODO: how to handle permanent peers here? // they should be rescheduled. return false } // Add the new peer and start it. log.Debugf("New peer %s", sp) state.outboundGroups[addrmgr.GroupKey(sp.NA())]++ if sp.persistent { state.persistentPeers[sp.ID()] = sp } else { state.outboundPeers[sp.ID()] = sp } return true } // handleDonePeerMsg deals with peers that have signalled they are done. It is // invoked from the peerHandler goroutine. func (s *ChainService) handleDonePeerMsg(state *peerState, sp *serverPeer) { var list map[int32]*serverPeer if sp.persistent { list = state.persistentPeers } else { list = state.outboundPeers } if _, ok := list[sp.ID()]; ok { if !sp.Inbound() && sp.VersionKnown() { state.outboundGroups[addrmgr.GroupKey(sp.NA())]-- } if !sp.Inbound() && sp.connReq != nil { s.connManager.Disconnect(sp.connReq.ID()) } delete(list, sp.ID()) log.Debugf("Removed peer %s", sp) return } if sp.connReq != nil { s.connManager.Disconnect(sp.connReq.ID()) } // Update the address' last seen time if the peer has acknowledged // our version and has sent us its version as well. if sp.VerAckReceived() && sp.VersionKnown() && sp.NA() != nil { s.addrManager.Connected(sp.NA()) } // If we get here it means that either we didn't know about the peer // or we purposefully deleted it. } // handleBanPeerMsg deals with banning peers. It is invoked from the // peerHandler goroutine. func (s *ChainService) handleBanPeerMsg(state *peerState, sp *serverPeer) { host, _, err := net.SplitHostPort(sp.Addr()) if err != nil { log.Debugf("can't split ban peer %s: %s", sp.Addr(), err) return } log.Infof("Banned peer %s for %v", host, BanDuration) state.banned[host] = time.Now().Add(BanDuration) } // disconnectPeer attempts to drop the connection of a tageted peer in the // passed peer list. Targets are identified via usage of the passed // `compareFunc`, which should return `true` if the passed peer is the target // peer. This function returns true on success and false if the peer is unable // to be located. If the peer is found, and the passed callback: `whenFound' // isn't nil, we call it with the peer as the argument before it is removed // from the peerList, and is disconnected from the server. func disconnectPeer(peerList map[int32]*serverPeer, compareFunc func(*serverPeer) bool, whenFound func(*serverPeer)) bool { for addr, peer := range peerList { if compareFunc(peer) { if whenFound != nil { whenFound(peer) } // This is ok because we are not continuing // to iterate so won't corrupt the loop. delete(peerList, addr) peer.Disconnect() return true } } return false } // sendUnminedTxs iterates through all transactions that spend from wallet // credits that are not known to have been mined into a block, and attempts to // send each to the chain server for relay. // // TODO: This should return an error if any of these lookups or sends fail, but // since send errors due to double spends need to be handled gracefully and this // isn't done yet, all sending errors are simply logged. func (s *ChainService) sendUnminedTxs(w *wallet.Wallet) error { /*txs, err := w.TxStore.UnminedTxs() if err != nil { return err } rpcClient := s.rpcClient for _, tx := range txs { resp, err := rpcClient.SendRawTransaction(tx, false) if err != nil { // TODO(jrick): Check error for if this tx is a double spend, // remove it if so. log.Debugf("Could not resend transaction %v: %v", tx.TxHash(), err) continue } log.Debugf("Resent unmined transaction %v", resp) }*/ return nil } // PublishTransaction sends the transaction to the consensus RPC server so it // can be propigated to other nodes and eventually mined. func (s *ChainService) PublishTransaction(tx *wire.MsgTx) error { /*_, err := s.rpcClient.SendRawTransaction(tx, false) return err*/ return nil } // AnnounceNewTransactions generates and relays inventory vectors and notifies // both websocket and getblocktemplate long poll clients of the passed // transactions. This function should be called whenever new transactions // are added to the mempool. func (s *ChainService) AnnounceNewTransactions( /*newTxs []*mempool.TxDesc*/ ) { // Generate and relay inventory vectors for all newly accepted // transactions into the memory pool due to the original being // accepted. /*for _, txD := range newTxs { // Generate the inventory vector and relay it. iv := wire.NewInvVect(wire.InvTypeTx, txD.Tx.Hash()) s.RelayInventory(iv, txD) if s.rpcServer != nil { // Notify websocket clients about mempool transactions. s.rpcServer.ntfnMgr.NotifyMempoolTx(txD.Tx, true) // Potentially notify any getblocktemplate long poll clients // about stale block templates due to the new transaction. s.rpcServer.gbtWorkState.NotifyMempoolTx( s.txMemPool.LastUpdated()) } }*/ } // newPeerConfig returns the configuration for the given serverPeer. func newPeerConfig(sp *serverPeer) *peer.Config { return &peer.Config{ Listeners: peer.MessageListeners{ OnVersion: sp.OnVersion, OnBlock: sp.OnBlock, OnInv: sp.OnInv, OnHeaders: sp.OnHeaders, OnCFHeaders: sp.OnCFHeaders, OnCFilter: sp.OnCFilter, OnGetData: sp.OnGetData, OnReject: sp.OnReject, OnFeeFilter: sp.OnFeeFilter, OnAddr: sp.OnAddr, OnRead: sp.OnRead, OnWrite: sp.OnWrite, // Note: The reference client currently bans peers that send alerts // not signed with its key. We could verify against their key, but // since the reference client is currently unwilling to support // other implementations' alert messages, we will not relay theirs. OnAlert: nil, }, NewestBlock: sp.newestBlock, HostToNetAddress: sp.server.addrManager.HostToNetAddress, UserAgentName: sp.server.userAgentName, UserAgentVersion: sp.server.userAgentVersion, ChainParams: &sp.server.chainParams, Services: sp.server.services, ProtocolVersion: wire.FeeFilterVersion, DisableRelayTx: true, } } // outboundPeerConnected is invoked by the connection manager when a new // outbound connection is established. It initializes a new outbound server // peer instance, associates it with the relevant state such as the connection // request instance and the connection itself, and finally notifies the address // manager of the attempt. func (s *ChainService) outboundPeerConnected(c *connmgr.ConnReq, conn net.Conn) { sp := newServerPeer(s, c.Permanent) p, err := peer.NewOutboundPeer(newPeerConfig(sp), c.Addr.String()) if err != nil { log.Debugf("Cannot create outbound peer %s: %s", c.Addr, err) s.connManager.Disconnect(c.ID()) } sp.Peer = p sp.connReq = c sp.AssociateConnection(conn) go s.peerDoneHandler(sp) s.addrManager.Attempt(sp.NA()) } // peerDoneHandler handles peer disconnects by notifiying the server that it's // done along with other performing other desirable cleanup. func (s *ChainService) peerDoneHandler(sp *serverPeer) { sp.WaitForDisconnect() s.donePeers <- sp // Only tell block manager we are gone if we ever told it we existed. if sp.VersionKnown() { s.blockManager.DonePeer(sp) } close(sp.quit) } // ConnectedCount returns the number of currently connected peers. func (s *ChainService) ConnectedCount() int32 { replyChan := make(chan int32) s.query <- getConnCountMsg{reply: replyChan} return <-replyChan } // OutboundGroupCount returns the number of peers connected to the given // outbound group key. func (s *ChainService) OutboundGroupCount(key string) int { replyChan := make(chan int) s.query <- getOutboundGroup{key: key, reply: replyChan} return <-replyChan } // AddedNodeInfo returns an array of btcjson.GetAddedNodeInfoResult structures // describing the persistent (added) nodes. func (s *ChainService) AddedNodeInfo() []*serverPeer { replyChan := make(chan []*serverPeer) s.query <- getAddedNodesMsg{reply: replyChan} return <-replyChan } // Peers returns an array of all connected peers. func (s *ChainService) Peers() []*serverPeer { replyChan := make(chan []*serverPeer) s.query <- getPeersMsg{reply: replyChan} return <-replyChan } // DisconnectNodeByAddr disconnects a peer by target address. Both outbound and // inbound nodes will be searched for the target node. An error message will // be returned if the peer was not found. func (s *ChainService) DisconnectNodeByAddr(addr string) error { replyChan := make(chan error) s.query <- disconnectNodeMsg{ cmp: func(sp *serverPeer) bool { return sp.Addr() == addr }, reply: replyChan, } return <-replyChan } // DisconnectNodeByID disconnects a peer by target node id. Both outbound and // inbound nodes will be searched for the target node. An error message will be // returned if the peer was not found. func (s *ChainService) DisconnectNodeByID(id int32) error { replyChan := make(chan error) s.query <- disconnectNodeMsg{ cmp: func(sp *serverPeer) bool { return sp.ID() == id }, reply: replyChan, } return <-replyChan } // RemoveNodeByAddr removes a peer from the list of persistent peers if // present. An error will be returned if the peer was not found. func (s *ChainService) RemoveNodeByAddr(addr string) error { replyChan := make(chan error) s.query <- removeNodeMsg{ cmp: func(sp *serverPeer) bool { return sp.Addr() == addr }, reply: replyChan, } return <-replyChan } // RemoveNodeByID removes a peer by node ID from the list of persistent peers // if present. An error will be returned if the peer was not found. func (s *ChainService) RemoveNodeByID(id int32) error { replyChan := make(chan error) s.query <- removeNodeMsg{ cmp: func(sp *serverPeer) bool { return sp.ID() == id }, reply: replyChan, } return <-replyChan } // ConnectNode adds `addr' as a new outbound peer. If permanent is true then the // peer will be persistent and reconnect if the connection is lost. // It is an error to call this with an already existing peer. func (s *ChainService) ConnectNode(addr string, permanent bool) error { replyChan := make(chan error) s.query <- connectNodeMsg{addr: addr, permanent: permanent, reply: replyChan} return <-replyChan } // UpdatePeerHeights updates the heights of all peers who have have announced // the latest connected main chain block, or a recognized orphan. These height // updates allow us to dynamically refresh peer heights, ensuring sync peer // selection has access to the latest block heights for each peer. func (s *ChainService) UpdatePeerHeights(latestBlkHash *chainhash.Hash, latestHeight int32, updateSource *serverPeer) { s.peerHeightsUpdate <- updatePeerHeightsMsg{ newHash: latestBlkHash, newHeight: latestHeight, originPeer: updateSource, } } // rebroadcastHandler keeps track of user submitted inventories that we have // sent out but have not yet made it into a block. We periodically rebroadcast // them in case our peers restarted or otherwise lost track of them. func (s *ChainService) rebroadcastHandler() { // Wait 5 min before first tx rebroadcast. timer := time.NewTimer(5 * time.Minute) //pendingInvs := make(map[wire.InvVect]interface{}) out: for { select { /*case riv := <-s.modifyRebroadcastInv: switch msg := riv.(type) { // Incoming InvVects are added to our map of RPC txs. case broadcastInventoryAdd: pendingInvs[*msg.invVect] = msg.data // When an InvVect has been added to a block, we can // now remove it, if it was present. case broadcastInventoryDel: if _, ok := pendingInvs[*msg]; ok { delete(pendingInvs, *msg) } }*/ case <-timer.C: /* // Any inventory we have has not made it into a block // yet. We periodically resubmit them until they have. for iv, data := range pendingInvs { ivCopy := iv s.RelayInventory(&ivCopy, data) } // Process at a random time up to 30mins (in seconds) // in the future. timer.Reset(time.Second * time.Duration(randomUint16Number(1800))) */ case <-s.quit: break out } } timer.Stop() // Drain channels before exiting so nothing is left waiting around // to send. cleanup: for { select { //case <-s.modifyRebroadcastInv: default: break cleanup } } s.wg.Done() } // Start begins connecting to peers and syncing the blockchain. func (s *ChainService) Start() { // Already started? if atomic.AddInt32(&s.started, 1) != 1 { return } // Start the peer handler which in turn starts the address and block // managers. s.wg.Add(2) go s.peerHandler() go s.rebroadcastHandler() } // Stop gracefully shuts down the server by stopping and disconnecting all // peers and the main listener. func (s *ChainService) Stop() error { // Make sure this only happens once. if atomic.AddInt32(&s.shutdown, 1) != 1 { return nil } // Signal the remaining goroutines to quit. close(s.quit) s.wg.Wait() return nil } // GetBlockByHeight gets block information from the ChainService database by // its height. func (s *ChainService) GetBlockByHeight(height uint32) (wire.BlockHeader, uint32, error) { var bh wire.BlockHeader var h uint32 var err error err = s.namespace.View(func(dbTx walletdb.Tx) error { bh, h, err = GetBlockByHeight(dbTx, height) return err }) return bh, h, err } // GetBlockByHash gets block information from the ChainService database by its // hash. func (s *ChainService) GetBlockByHash(hash chainhash.Hash) (wire.BlockHeader, uint32, error) { var bh wire.BlockHeader var h uint32 var err error err = s.namespace.View(func(dbTx walletdb.Tx) error { bh, h, err = GetBlockByHash(dbTx, hash) return err }) return bh, h, err } // LatestBlock gets the latest block's information from the ChainService // database. func (s *ChainService) LatestBlock() (wire.BlockHeader, uint32, error) { var bh wire.BlockHeader var h uint32 var err error err = s.namespace.View(func(dbTx walletdb.Tx) error { bh, h, err = LatestBlock(dbTx) return err }) return bh, h, err } // putBlock puts a verified block header and height in the ChainService // database. func (s *ChainService) putBlock(header wire.BlockHeader, height uint32) error { return s.namespace.Update(func(dbTx walletdb.Tx) error { return putBlock(dbTx, header, height) }) } // putMaxBlockHeight puts the max block height to the ChainService database. func (s *ChainService) putMaxBlockHeight(maxBlockHeight uint32) error { return s.namespace.Update(func(dbTx walletdb.Tx) error { return putMaxBlockHeight(dbTx, maxBlockHeight) }) } func (s *ChainService) rollbackLastBlock() (*waddrmgr.BlockStamp, error) { var bs *waddrmgr.BlockStamp var err error err = s.namespace.Update(func(dbTx walletdb.Tx) error { bs, err = rollbackLastBlock(dbTx) return err }) return bs, err } func (s *ChainService) rollbackToHeight(height uint32) (*waddrmgr.BlockStamp, error) { var bs *waddrmgr.BlockStamp var err error err = s.namespace.Update(func(dbTx walletdb.Tx) error { bs, err = SyncedTo(dbTx) if err != nil { return err } for uint32(bs.Height) > height { bs, err = rollbackLastBlock(dbTx) if err != nil { return err } } return nil }) return bs, err } // IsCurrent lets the caller know whether the chain service's block manager // thinks its view of the network is current. func (s *ChainService) IsCurrent() bool { return s.blockManager.IsCurrent() }