package spvchain import ( "container/list" "fmt" "math/big" "sync" "sync/atomic" "time" "github.com/btcsuite/btcd/blockchain" "github.com/btcsuite/btcd/chaincfg" "github.com/btcsuite/btcd/chaincfg/chainhash" "github.com/btcsuite/btcd/wire" "github.com/btcsuite/btcutil" ) const ( // minInFlightBlocks is the minimum number of blocks that should be // in the request queue for headers-first mode before requesting // more. minInFlightBlocks = 10 // blockDbNamePrefix is the prefix for the block database name. The // database type is appended to this value to form the full block // database name. blockDbNamePrefix = "blocks" // maxRequestedBlocks is the maximum number of requested block // hashes to store in memory. maxRequestedBlocks = wire.MaxInvPerMsg // maxTimeOffset is the maximum duration a block time is allowed to be // ahead of the curent time. This is currently 2 hours. maxTimeOffset = 2 * time.Hour ) // zeroHash is the zero value hash (all zeros). It is defined as a convenience. var zeroHash chainhash.Hash // newPeerMsg signifies a newly connected peer to the block handler. type newPeerMsg struct { peer *serverPeer } // blockMsg packages a bitcoin block message and the peer it came from together // so the block handler has access to that information. type blockMsg struct { block *btcutil.Block peer *serverPeer } // invMsg packages a bitcoin inv message and the peer it came from together // so the block handler has access to that information. type invMsg struct { inv *wire.MsgInv peer *serverPeer } // headersMsg packages a bitcoin headers message and the peer it came from // together so the block handler has access to that information. type headersMsg struct { headers *wire.MsgHeaders peer *serverPeer } // cfheadersMsg packages a bitcoin cfheaders message and the peer it came from // together so the block handler has access to that information. type cfheadersMsg struct { cfheaders *wire.MsgCFHeaders peer *serverPeer } // cfheadersProcessedMsg tells the block manager to try to see if there are // enough samples of cfheaders messages to process the committed filter header // chain. This is kind of a hack until these get soft-forked in, but we do // verification to avoid getting bamboozled by malicious nodes. type processCFHeadersMsg struct { earliestNode *headerNode stopHash chainhash.Hash extended bool } // cfilterMsg packages a bitcoin cfilter message and the peer it came from // together so the block handler has access to that information. type cfilterMsg struct { cfilter *wire.MsgCFilter peer *serverPeer } // donePeerMsg signifies a newly disconnected peer to the block handler. type donePeerMsg struct { peer *serverPeer } // txMsg packages a bitcoin tx message and the peer it came from together // so the block handler has access to that information. type txMsg struct { tx *btcutil.Tx peer *serverPeer } // getSyncPeerMsg is a message type to be sent across the message channel for // retrieving the current sync peer. type getSyncPeerMsg struct { reply chan *serverPeer } // processBlockResponse is a response sent to the reply channel of a // processBlockMsg. type processBlockResponse struct { isOrphan bool err error } // processBlockMsg is a message type to be sent across the message channel // for requested a block is processed. Note this call differs from blockMsg // above in that blockMsg is intended for blocks that came from peers and have // extra handling whereas this message essentially is just a concurrent safe // way to call ProcessBlock on the internal block chain instance. type processBlockMsg struct { block *btcutil.Block flags blockchain.BehaviorFlags reply chan processBlockResponse } // isCurrentMsg is a message type to be sent across the message channel for // requesting whether or not the block manager believes it is synced with // the currently connected peers. type isCurrentMsg struct { reply chan bool } // headerNode is used as a node in a list of headers that are linked together // between checkpoints. type headerNode struct { height int32 header *wire.BlockHeader } // blockManager provides a concurrency safe block manager for handling all // incoming blocks. type blockManager struct { server *ChainService started int32 shutdown int32 requestedBlocks map[chainhash.Hash]struct{} progressLogger *blockProgressLogger syncPeer *serverPeer // Channel for messages that come from peers peerChan chan interface{} // Channel for messages that come from internal commands intChan chan interface{} wg sync.WaitGroup quit chan struct{} headerList *list.List reorgList *list.List startHeader *list.Element nextCheckpoint *chaincfg.Checkpoint lastRequested chainhash.Hash basicHeaders map[chainhash.Hash]map[chainhash.Hash][]*serverPeer lastBasicCFHeaderHeight int32 extendedHeaders map[chainhash.Hash]map[chainhash.Hash][]*serverPeer lastExtCFHeaderHeight int32 mapMutex sync.Mutex minRetargetTimespan int64 // target timespan / adjustment factor maxRetargetTimespan int64 // target timespan * adjustment factor blocksPerRetarget int32 // target timespan / target time per block } // newBlockManager returns a new bitcoin block manager. // Use Start to begin processing asynchronous block and inv updates. func newBlockManager(s *ChainService) (*blockManager, error) { targetTimespan := int64(s.chainParams.TargetTimespan / time.Second) targetTimePerBlock := int64(s.chainParams.TargetTimePerBlock / time.Second) adjustmentFactor := s.chainParams.RetargetAdjustmentFactor bm := blockManager{ server: s, requestedBlocks: make(map[chainhash.Hash]struct{}), progressLogger: newBlockProgressLogger("Processed", log), peerChan: make(chan interface{}, MaxPeers*3), intChan: make(chan interface{}, 1), headerList: list.New(), reorgList: list.New(), quit: make(chan struct{}), blocksPerRetarget: int32(targetTimespan / targetTimePerBlock), minRetargetTimespan: targetTimespan / adjustmentFactor, maxRetargetTimespan: targetTimespan * adjustmentFactor, basicHeaders: make( map[chainhash.Hash]map[chainhash.Hash][]*serverPeer, ), extendedHeaders: make( map[chainhash.Hash]map[chainhash.Hash][]*serverPeer, ), } // Initialize the next checkpoint based on the current height. header, height, err := s.LatestBlock() if err != nil { return nil, err } bm.nextCheckpoint = bm.findNextHeaderCheckpoint(int32(height)) bm.resetHeaderState(&header, int32(height)) return &bm, nil } // Start begins the core block handler which processes block and inv messages. func (b *blockManager) Start() { // Already started? if atomic.AddInt32(&b.started, 1) != 1 { return } log.Trace("Starting block manager") b.wg.Add(1) go b.blockHandler() } // Stop gracefully shuts down the block manager by stopping all asynchronous // handlers and waiting for them to finish. func (b *blockManager) Stop() error { if atomic.AddInt32(&b.shutdown, 1) != 1 { log.Warnf("Block manager is already in the process of " + "shutting down") return nil } log.Infof("Block manager shutting down") close(b.quit) b.wg.Wait() return nil } // NewPeer informs the block manager of a newly active peer. func (b *blockManager) NewPeer(sp *serverPeer) { // Ignore if we are shutting down. if atomic.LoadInt32(&b.shutdown) != 0 { return } b.peerChan <- &newPeerMsg{peer: sp} } // handleNewPeerMsg deals with new peers that have signalled they may // be considered as a sync peer (they have already successfully negotiated). It // also starts syncing if needed. It is invoked from the syncHandler goroutine. func (b *blockManager) handleNewPeerMsg(peers *list.List, sp *serverPeer) { // Ignore if in the process of shutting down. if atomic.LoadInt32(&b.shutdown) != 0 { return } log.Infof("New valid peer %s (%s)", sp, sp.UserAgent()) // Ignore the peer if it's not a sync candidate. if !b.isSyncCandidate(sp) { return } // Add the peer as a candidate to sync from. peers.PushBack(sp) // Start syncing by choosing the best candidate if needed. b.startSync(peers) } // DonePeer informs the blockmanager that a peer has disconnected. func (b *blockManager) DonePeer(sp *serverPeer) { // Ignore if we are shutting down. if atomic.LoadInt32(&b.shutdown) != 0 { return } b.peerChan <- &donePeerMsg{peer: sp} } // handleDonePeerMsg deals with peers that have signalled they are done. It // removes the peer as a candidate for syncing and in the case where it was // the current sync peer, attempts to select a new best peer to sync from. It // is invoked from the syncHandler goroutine. func (b *blockManager) handleDonePeerMsg(peers *list.List, sp *serverPeer) { // Remove the peer from the list of candidate peers. for e := peers.Front(); e != nil; e = e.Next() { if e.Value == sp { peers.Remove(e) break } } log.Infof("Lost peer %s", sp) // Remove requested blocks from the global map so that they will be // fetched from elsewhere next time we get an inv. // TODO: we could possibly here check which peers have these blocks // and request them now to speed things up a little. for k := range sp.requestedBlocks { delete(b.requestedBlocks, k) } // Attempt to find a new peer to sync from if the quitting peer is the // sync peer. Also, reset the header state. if b.syncPeer != nil && b.syncPeer == sp { b.syncPeer = nil header, height, err := b.server.LatestBlock() if err != nil { return } b.resetHeaderState(&header, int32(height)) b.startSync(peers) } } // blockHandler is the main handler for the block manager. It must be run // as a goroutine. It processes block and inv messages in a separate goroutine // from the peer handlers so the block (MsgBlock) messages are handled by a // single thread without needing to lock memory data structures. This is // important because the block manager controls which blocks are needed and how // the fetching should proceed. func (b *blockManager) blockHandler() { candidatePeers := list.New() out: for { // Check internal messages channel first and continue if there's // nothing to process. select { case m := <-b.intChan: switch msg := m.(type) { case *processCFHeadersMsg: b.handleProcessCFHeadersMsg(msg) default: log.Warnf("Invalid message type in block "+ "handler: %T", msg) } default: } // Now check peer messages and quit channels. select { case m := <-b.peerChan: switch msg := m.(type) { case *newPeerMsg: b.handleNewPeerMsg(candidatePeers, msg.peer) /*case *blockMsg: b.handleBlockMsg(msg) msg.peer.blockProcessed <- struct{}{}*/ case *invMsg: b.handleInvMsg(msg) case *headersMsg: b.handleHeadersMsg(msg) case *cfheadersMsg: b.handleCFHeadersMsg(msg) case *cfilterMsg: b.handleCFilterMsg(msg) case *donePeerMsg: b.handleDonePeerMsg(candidatePeers, msg.peer) case getSyncPeerMsg: msg.reply <- b.syncPeer /*case processBlockMsg: _, isOrphan, err := b.chain.ProcessBlock( msg.block, msg.flags) if err != nil { msg.reply <- processBlockResponse{ isOrphan: false, err: err, } } msg.reply <- processBlockResponse{ isOrphan: isOrphan, err: nil, }*/ case isCurrentMsg: msg.reply <- b.current() default: log.Warnf("Invalid message type in block "+ "handler: %T", msg) } case <-b.quit: break out } } b.wg.Done() log.Trace("Block handler done") } // queueHandler reads the message channel and queues the message. This allows // lookahead checks in // isSyncCandidate returns whether or not the peer is a candidate to consider // syncing from. func (b *blockManager) isSyncCandidate(sp *serverPeer) bool { // The peer is not a candidate for sync if it's not a full node. return sp.Services()&wire.SFNodeNetwork == wire.SFNodeNetwork } // findNextHeaderCheckpoint returns the next checkpoint after the passed height. // It returns nil when there is not one either because the height is already // later than the final checkpoint or there are none for the current network. func (b *blockManager) findNextHeaderCheckpoint(height int32) *chaincfg.Checkpoint { // There is no next checkpoint if there are none for this current // network. checkpoints := b.server.chainParams.Checkpoints if len(checkpoints) == 0 { return nil } // There is no next checkpoint if the height is already after the final // checkpoint. finalCheckpoint := &checkpoints[len(checkpoints)-1] if height >= finalCheckpoint.Height { return nil } // Find the next checkpoint. nextCheckpoint := finalCheckpoint for i := len(checkpoints) - 2; i >= 0; i-- { if height >= checkpoints[i].Height { break } nextCheckpoint = &checkpoints[i] } return nextCheckpoint } // findPreviousHeaderCheckpoint returns the last checkpoint before the passed // height. It returns a checkpoint matching the genesis block when the height // is earlier than the first checkpoint or there are no checkpoints for the // current network. This is used for resettng state when a malicious peer sends // us headers that don't lead up to a known checkpoint. func (b *blockManager) findPreviousHeaderCheckpoint(height int32) *chaincfg.Checkpoint { // Start with the genesis block - earliest checkpoint to which our // code will want to reset prevCheckpoint := &chaincfg.Checkpoint{ Height: 0, Hash: b.server.chainParams.GenesisHash, } // Find the latest checkpoint lower than height or return genesis block // if there are none. checkpoints := b.server.chainParams.Checkpoints for i := 0; i < len(checkpoints); i++ { if height <= checkpoints[i].Height { break } prevCheckpoint = &checkpoints[i] } return prevCheckpoint } // resetHeaderState sets the headers-first mode state to values appropriate for // syncing from a new peer. func (b *blockManager) resetHeaderState(newestHeader *wire.BlockHeader, newestHeight int32) { b.headerList.Init() b.startHeader = nil b.mapMutex.Lock() b.basicHeaders = make( map[chainhash.Hash]map[chainhash.Hash][]*serverPeer, ) b.extendedHeaders = make( map[chainhash.Hash]map[chainhash.Hash][]*serverPeer, ) b.mapMutex.Unlock() // Add an entry for the latest known block into the header pool. // This allows the next downloaded header to prove it links to the chain // properly. node := headerNode{header: newestHeader, height: newestHeight} b.headerList.PushBack(&node) b.mapMutex.Lock() b.basicHeaders[newestHeader.BlockHash()] = make( map[chainhash.Hash][]*serverPeer, ) b.extendedHeaders[newestHeader.BlockHash()] = make( map[chainhash.Hash][]*serverPeer, ) b.mapMutex.Unlock() } // startSync will choose the best peer among the available candidate peers to // download/sync the blockchain from. When syncing is already running, it // simply returns. It also examines the candidates for any which are no longer // candidates and removes them as needed. func (b *blockManager) startSync(peers *list.List) { // Return now if we're already syncing. if b.syncPeer != nil { return } best, err := b.server.BestSnapshot() if err != nil { log.Errorf("Failed to get hash and height for the "+ "latest block: %s", err) return } var bestPeer *serverPeer var enext *list.Element for e := peers.Front(); e != nil; e = enext { enext = e.Next() sp := e.Value.(*serverPeer) // Remove sync candidate peers that are no longer candidates due // to passing their latest known block. NOTE: The < is // intentional as opposed to <=. While techcnically the peer // doesn't have a later block when it's equal, it will likely // have one soon so it is a reasonable choice. It also allows // the case where both are at 0 such as during regression test. if sp.LastBlock() < best.Height { peers.Remove(e) continue } // TODO: Use a better algorithm to choose the best peer. // For now, just pick the candidate with the highest last block. if bestPeer == nil || sp.LastBlock() > bestPeer.LastBlock() { bestPeer = sp } } // Start syncing from the best peer if one was selected. if bestPeer != nil { // Clear the requestedBlocks if the sync peer changes, otherwise // we may ignore blocks we need that the last sync peer failed // to send. b.requestedBlocks = make(map[chainhash.Hash]struct{}) locator, err := b.server.LatestBlockLocator() if err != nil { log.Errorf("Failed to get block locator for the "+ "latest block: %s", err) return } log.Infof("Syncing to block height %d from peer %s", bestPeer.LastBlock(), bestPeer.Addr()) // When the current height is less than a known checkpoint we // can use block headers to learn about which blocks comprise // the chain up to the checkpoint and perform less validation // for them. This is possible since each header contains the // hash of the previous header and a merkle root. Therefore if // we validate all of the received headers link together // properly and the checkpoint hashes match, we can be sure the // hashes for the blocks in between are accurate. Further, once // the full blocks are downloaded, the merkle root is computed // and compared against the value in the header which proves the // full block hasn't been tampered with. // // Once we have passed the final checkpoint, or checkpoints are // disabled, use standard inv messages learn about the blocks // and fully validate them. Finally, regression test mode does // not support the headers-first approach so do normal block // downloads when in regression test mode. b.syncPeer = bestPeer if b.nextCheckpoint != nil && best.Height < b.nextCheckpoint.Height { b.syncPeer.PushGetHeadersMsg(locator, b.nextCheckpoint.Hash) log.Infof("Downloading headers for blocks %d to "+ "%d from peer %s", best.Height+1, b.nextCheckpoint.Height, bestPeer.Addr()) // This will get adjusted when we process headers if // we request more headers than the peer is willing to // give us in one message. } else { b.syncPeer.PushGetBlocksMsg(locator, &zeroHash) } } else { log.Warnf("No sync peer candidates available") } } // current returns true if we believe we are synced with our peers, false if we // still have blocks to check func (b *blockManager) current() bool { // Figure out the latest block we know. header, height, err := b.server.LatestBlock() if err != nil { return false } // There is no last checkpoint if checkpoints are disabled or there are // none for this current network. checkpoints := b.server.chainParams.Checkpoints if len(checkpoints) != 0 { // We aren't current if the newest block we know of isn't ahead // of all checkpoints. if checkpoints[len(checkpoints)-1].Height >= int32(height) { return false } } // If we have a syncPeer and are below the block we are syncing to, we // are not current. if b.syncPeer != nil && int32(height) < b.syncPeer.LastBlock() { return false } // If our time source (median times of all the connected peers) is at // least 24 hours ahead of our best known block, we aren't current. minus24Hours := b.server.timeSource.AdjustedTime().Add(-24 * time.Hour) return !header.Timestamp.Before(minus24Hours) } // IsCurrent returns whether or not the block manager believes it is synced with // the connected peers. func (b *blockManager) IsCurrent() bool { reply := make(chan bool) b.peerChan <- isCurrentMsg{reply: reply} return <-reply } // QueueInv adds the passed inv message and peer to the block handling queue. func (b *blockManager) QueueInv(inv *wire.MsgInv, sp *serverPeer) { // No channel handling here because peers do not need to block on inv // messages. if atomic.LoadInt32(&b.shutdown) != 0 { return } b.peerChan <- &invMsg{inv: inv, peer: sp} } // handleInvMsg handles inv messages from all peers. // We examine the inventory advertised by the remote peer and act accordingly. func (b *blockManager) handleInvMsg(imsg *invMsg) { // Attempt to find the final block in the inventory list. There may // not be one. lastBlock := -1 invVects := imsg.inv.InvList for i := len(invVects) - 1; i >= 0; i-- { if invVects[i].Type == wire.InvTypeBlock { lastBlock = i break } } // If this inv contains a block announcement, and this isn't coming from // our current sync peer or we're current, then update the last // announced block for this peer. We'll use this information later to // update the heights of peers based on blocks we've accepted that they // previously announced. if lastBlock != -1 && (imsg.peer != b.syncPeer || b.current()) { imsg.peer.UpdateLastAnnouncedBlock(&invVects[lastBlock].Hash) } // Ignore invs from peers that aren't the sync if we are not current. // Helps prevent dealing with orphans. if imsg.peer != b.syncPeer && !b.current() { return } // If our chain is current and a peer announces a block we already // know of, then update their current block height. if lastBlock != -1 && b.current() { _, blkHeight, err := b.server.GetBlockByHash(invVects[lastBlock].Hash) if err == nil { imsg.peer.UpdateLastBlockHeight(int32(blkHeight)) } } // Add blocks to the cache of known inventory for the peer. for _, iv := range invVects { if iv.Type == wire.InvTypeBlock { imsg.peer.AddKnownInventory(iv) } } // If this is the sync peer or we're current, get the headers // for the announced blocks and update the last announced block. if lastBlock != -1 && (imsg.peer == b.syncPeer || b.current()) { lastEl := b.headerList.Back() var lastHash chainhash.Hash if lastEl != nil { lastHash = lastEl.Value.(*headerNode).header.BlockHash() } // Only send getheaders if we don't already know about the last // block hash being announced. if lastHash != invVects[lastBlock].Hash && lastEl != nil && b.lastRequested != invVects[lastBlock].Hash { // Make a locator starting from the latest known header // we've processed. locator := make(blockchain.BlockLocator, 0, wire.MaxBlockLocatorsPerMsg) locator = append(locator, &lastHash) // Add locator from the database as backup. knownLocator, err := b.server.LatestBlockLocator() if err == nil { locator = append(locator, knownLocator...) } // Get headers based on locator. err = imsg.peer.PushGetHeadersMsg(locator, &invVects[lastBlock].Hash) if err != nil { log.Warnf("Failed to send getheaders message "+ "to peer %s: %s", imsg.peer.Addr(), err) return } b.lastRequested = invVects[lastBlock].Hash } } } // QueueHeaders adds the passed headers message and peer to the block handling // queue. func (b *blockManager) QueueHeaders(headers *wire.MsgHeaders, sp *serverPeer) { // No channel handling here because peers do not need to block on // headers messages. if atomic.LoadInt32(&b.shutdown) != 0 { return } b.peerChan <- &headersMsg{headers: headers, peer: sp} } // handleHeadersMsg handles headers messages from all peers. func (b *blockManager) handleHeadersMsg(hmsg *headersMsg) { msg := hmsg.headers numHeaders := len(msg.Headers) // Nothing to do for an empty headers message. if numHeaders == 0 { return } // For checking to make sure blocks aren't too far in the // future as of the time we receive the headers message. maxTimestamp := b.server.timeSource.AdjustedTime(). Add(maxTimeOffset) // Process all of the received headers ensuring each one connects to the // previous and that checkpoints match. receivedCheckpoint := false var finalHash *chainhash.Hash var finalHeight int32 for i, blockHeader := range msg.Headers { blockHash := blockHeader.BlockHash() finalHash = &blockHash // Ensure there is a previous header to compare against. prevNodeEl := b.headerList.Back() if prevNodeEl == nil { log.Warnf("Header list does not contain a previous" + "element as expected -- disconnecting peer") hmsg.peer.Disconnect() return } // Ensure the header properly connects to the previous one, // that the proof of work is good, and that the header's // timestamp isn't too far in the future, and add it to the // list of headers. node := headerNode{header: blockHeader} prevNode := prevNodeEl.Value.(*headerNode) prevHash := prevNode.header.BlockHash() if prevHash.IsEqual(&blockHeader.PrevBlock) { err := b.checkHeaderSanity(blockHeader, maxTimestamp, false) if err != nil { log.Warnf("Header doesn't pass sanity check: "+ "%s -- disconnecting peer", err) hmsg.peer.Disconnect() return } node.height = prevNode.height + 1 finalHeight = node.height err = b.server.putBlock(*blockHeader, uint32(node.height)) if err != nil { log.Criticalf("Couldn't write block to "+ "database: %s", err) // Should we panic here? } err = b.server.putMaxBlockHeight(uint32(node.height)) if err != nil { log.Criticalf("Couldn't write max block height"+ " to database: %s", err) // Should we panic here? } hmsg.peer.UpdateLastBlockHeight(node.height) e := b.headerList.PushBack(&node) b.mapMutex.Lock() b.basicHeaders[node.header.BlockHash()] = make( map[chainhash.Hash][]*serverPeer, ) b.extendedHeaders[node.header.BlockHash()] = make( map[chainhash.Hash][]*serverPeer, ) b.mapMutex.Unlock() if b.startHeader == nil { b.startHeader = e } } else { // The block doesn't connect to the last block we know. // We will need to do some additional checks to process // possible reorganizations or incorrect chain on either // our or the peer's side. // If we got these headers from a peer that's not our // sync peer, they might not be aligned correctly or // even on the right chain. Just ignore the rest of the // message. However, if we're current, this might be a // reorg, in which case we'll either change our sync // peer or disconnect the peer that sent us these // bad headers. if hmsg.peer != b.syncPeer && !b.current() { return } // Check if this is the last block we know of. This is // a shortcut for sendheaders so that each redundant // header doesn't cause a disk read. if blockHash == prevHash { continue } // Check if this block is known. If so, we continue to // the next one. _, _, err := b.server.GetBlockByHash(blockHash) if err == nil { continue } // Check if the previous block is known. If it is, this // is probably a reorg based on the estimated latest // block that matches between us and the peer as // derived from the block locator we sent to request // these headers. Otherwise, the headers don't connect // to anything we know and we should disconnect the // peer. backHead, backHeight, err := b.server.GetBlockByHash( blockHeader.PrevBlock) if err != nil { log.Warnf("Received block header that does not"+ " properly connect to the chain from"+ " peer %s (%s) -- disconnecting", hmsg.peer.Addr(), err) hmsg.peer.Disconnect() return } // We've found a branch we weren't aware of. If the // branch is earlier than the latest synchronized // checkpoint, it's invalid and we need to disconnect // the reporting peer. prevCheckpoint := b.findPreviousHeaderCheckpoint( prevNode.height) if backHeight < uint32(prevCheckpoint.Height) { log.Errorf("Attempt at a reorg earlier than a "+ "checkpoint past which we've already "+ "synchronized -- disconnecting peer "+ "%s", hmsg.peer.Addr()) hmsg.peer.Disconnect() return } // Check the sanity of the new branch. If any of the // blocks don't pass sanity checks, disconnect the peer. // We also keep track of the work represented by these // headers so we can compare it to the work in the known // good chain. b.reorgList.Init() b.reorgList.PushBack(&headerNode{ header: &backHead, height: int32(backHeight), }) totalWork := big.NewInt(0) for j, reorgHeader := range msg.Headers[i:] { err = b.checkHeaderSanity(reorgHeader, maxTimestamp, true) if err != nil { log.Warnf("Header doesn't pass sanity"+ " check: %s -- disconnecting "+ "peer", err) hmsg.peer.Disconnect() return } totalWork.Add(totalWork, blockchain.CalcWork(reorgHeader.Bits)) b.reorgList.PushBack(&headerNode{ header: reorgHeader, height: int32(backHeight+1) + int32(j), }) } log.Tracef("Sane reorg attempted. Total work from "+ "reorg chain: %v", totalWork) // All the headers pass sanity checks. Now we calculate // the total work for the known chain. knownWork := big.NewInt(0) // This should NEVER be nil because the most recent // block is always pushed back by resetHeaderState knownEl := b.headerList.Back() var knownHead wire.BlockHeader for j := uint32(prevNode.height); j > backHeight; j-- { if knownEl != nil { knownHead = *knownEl.Value.(*headerNode).header knownEl = knownEl.Prev() } else { knownHead, _, err = b.server.GetBlockByHash( knownHead.PrevBlock) if err != nil { log.Criticalf("Can't get block"+ "header for hash %s: "+ "%v", knownHead.PrevBlock, err) // Should we panic here? } } knownWork.Add(knownWork, blockchain.CalcWork(knownHead.Bits)) } log.Tracef("Total work from known chain: %v", knownWork) // Compare the two work totals and reject the new chain // if it doesn't have more work than the previously // known chain. Disconnect if it's actually less than // the known chain. switch knownWork.Cmp(totalWork) { case 1: log.Warnf("Reorg attempt that has less work "+ "than known chain from peer %s -- "+ "disconnecting", hmsg.peer.Addr()) hmsg.peer.Disconnect() fallthrough case 0: return default: } // At this point, we have a valid reorg, so we roll // back the existing chain and add the new block header. // We also change the sync peer. Then we can continue // with the rest of the headers in the message as if // nothing has happened. // TODO: Error handling, duh! b.syncPeer = hmsg.peer b.server.rollbackToHeight(backHeight) b.server.putBlock(*blockHeader, backHeight+1) b.mapMutex.Lock() b.basicHeaders[node.header.BlockHash()] = make( map[chainhash.Hash][]*serverPeer, ) b.extendedHeaders[node.header.BlockHash()] = make( map[chainhash.Hash][]*serverPeer, ) b.mapMutex.Unlock() b.server.putMaxBlockHeight(backHeight + 1) b.resetHeaderState(&backHead, int32(backHeight)) b.headerList.PushBack(&headerNode{ header: blockHeader, height: int32(backHeight + 1), }) } // Verify the header at the next checkpoint height matches. if b.nextCheckpoint != nil && node.height == b.nextCheckpoint.Height { nodeHash := node.header.BlockHash() if nodeHash.IsEqual(b.nextCheckpoint.Hash) { receivedCheckpoint = true log.Infof("Verified downloaded block "+ "header against checkpoint at height "+ "%d/hash %s", node.height, nodeHash) } else { log.Warnf("Block header at height %d/hash "+ "%s from peer %s does NOT match "+ "expected checkpoint hash of %s -- "+ "disconnecting", node.height, nodeHash, hmsg.peer.Addr(), b.nextCheckpoint.Hash) prevCheckpoint := b.findPreviousHeaderCheckpoint(node.height) log.Infof("Rolling back to previous validated "+ "checkpoint at height %d/hash %s", prevCheckpoint.Height, prevCheckpoint.Hash) _, err := b.server.rollbackToHeight(uint32( prevCheckpoint.Height)) if err != nil { log.Criticalf("Rollback failed: %s", err) // Should we panic here? } hmsg.peer.Disconnect() return } break } } // When this header is a checkpoint, switch to fetching the blocks for // all of the headers since the last checkpoint. if receivedCheckpoint { // TODO - aakselrod - fix this completely and start getting // committed filter headers for the known block headers // Since the first entry of the list is always the final block // that is already in the database and is only used to ensure // the next header links properly, it must be removed before // fetching the blocks. b.headerList.Remove(b.headerList.Front()) //log.Infof("Received %v block headers: Fetching blocks", // b.headerList.Len()) //b.progressLogger.SetLastLogTime(time.Now()) b.nextCheckpoint = b.findNextHeaderCheckpoint(finalHeight) //b.fetchHeaderBlocks() //return } // Send getcfheaders to each peer based on these headers. cfhLocator := blockchain.BlockLocator([]*chainhash.Hash{ &msg.Headers[0].PrevBlock, }) cfhStopHash := msg.Headers[len(msg.Headers)-1].BlockHash() cfhCount := len(msg.Headers) cfhReqB := cfhRequest{ extended: false, stopHash: cfhStopHash, } cfhReqE := cfhRequest{ extended: true, stopHash: cfhStopHash, } b.server.ForAllPeers(func(sp *serverPeer) { // Should probably use better isolation for this but we're in // the same package. One of the things to clean up when we do // more general cleanup. sp.requestedCFHeaders[cfhReqB] = cfhCount sp.pushGetCFHeadersMsg(cfhLocator, &cfhStopHash, false) sp.requestedCFHeaders[cfhReqE] = cfhCount sp.pushGetCFHeadersMsg(cfhLocator, &cfhStopHash, true) }) // If not current, request the next batch of headers starting from the // latest known header and ending with the next checkpoint. if !b.current() || b.server.chainParams.Net == chaincfg.SimNetParams.Net { locator := blockchain.BlockLocator([]*chainhash.Hash{finalHash}) nextHash := zeroHash if b.nextCheckpoint != nil { nextHash = *b.nextCheckpoint.Hash } err := hmsg.peer.PushGetHeadersMsg(locator, &nextHash) if err != nil { log.Warnf("Failed to send getheaders message to "+ "peer %s: %s", hmsg.peer.Addr(), err) // Unnecessary but we might put other code after this // eventually. return } } } // QueueCFHeaders adds the passed headers message and peer to the block handling // queue. func (b *blockManager) QueueCFHeaders(cfheaders *wire.MsgCFHeaders, sp *serverPeer) { // No channel handling here because peers do not need to block on // cfheaders messages. if atomic.LoadInt32(&b.shutdown) != 0 { return } b.peerChan <- &cfheadersMsg{cfheaders: cfheaders, peer: sp} } // handleCFHeadersMsg handles cfheaders messages from all peers. func (b *blockManager) handleCFHeadersMsg(cfhmsg *cfheadersMsg) { // Grab the matching request we sent, as this message should correspond // to that, and delete it from the map on return as we're now handling // it. req := cfhRequest{ extended: cfhmsg.cfheaders.Extended, stopHash: cfhmsg.cfheaders.StopHash, } defer delete(cfhmsg.peer.requestedCFHeaders, req) // Check that the count is correct. This works even when the map lookup // fails as it returns 0 in that case. headerList := cfhmsg.cfheaders.HeaderHashes respLen := len(headerList) if cfhmsg.peer.requestedCFHeaders[req] != respLen { log.Warnf("Received cfheaders message doesn't match any "+ "getcfheaders request. Peer %s is probably on a "+ "different chain -- ignoring", cfhmsg.peer.Addr()) return } if respLen == 0 { return } // Find the block header matching the last filter header, if any. el := b.headerList.Back() for el != nil { if el.Value.(*headerNode).header.BlockHash() == req.stopHash { break } el = el.Prev() } // If nothing matched, there's nothing more to do. if el == nil { return } // Cycle through the filter header hashes and process them. filterMap := b.basicHeaders if req.extended { filterMap = b.extendedHeaders } var node *headerNode var hash chainhash.Hash for i := respLen - 1; i >= 0 && el != nil; i-- { // If there's no map for this header, the header is either no // longer valid or has already been processed and committed to // the database. Either way, break processing. node = el.Value.(*headerNode) hash = node.header.BlockHash() if _, ok := filterMap[hash]; !ok { break } // Process this header and set up the next iteration. b.mapMutex.Lock() filterMap[hash][*headerList[i]] = append( filterMap[hash][*headerList[i]], cfhmsg.peer, ) b.mapMutex.Unlock() el = el.Prev() } b.intChan <- &processCFHeadersMsg{ earliestNode: node, stopHash: req.stopHash, extended: req.extended, } log.Tracef("Processed cfheaders starting at %s, ending at %s, from "+ "peer %s, extended: %t", node.header.BlockHash(), req.stopHash, cfhmsg.peer.Addr(), req.extended) } // handleProcessCFHeadersMsg checks to see if we have enough cfheaders to make // a decision about what the correct headers are, makes that decision if // possible, and downloads any cfilters and blocks necessary to make that // decision. func (b *blockManager) handleProcessCFHeadersMsg(msg *processCFHeadersMsg) { // Assume we aren't ready to make a decision about correct headers yet. ready := false filterMap := b.basicHeaders writeFunc := b.server.putBasicHeader readFunc := b.server.GetBasicHeader lastCFHeaderHeight := &b.lastBasicCFHeaderHeight if msg.extended { filterMap = b.extendedHeaders writeFunc = b.server.putExtHeader readFunc = b.server.GetExtHeader lastCFHeaderHeight = &b.lastExtCFHeaderHeight } // If we have started receiving cfheaders messages for blocks farther // than the last set we haven't made a decision on, it's time to make // a decision. if msg.earliestNode.height > *lastCFHeaderHeight { if *lastCFHeaderHeight != 0 { ready = true } *lastCFHeaderHeight = msg.earliestNode.height } // If there are no other messages left, we should go ahead and make a // decision because we have all the info we're going to get. if len(b.peerChan) == 0 { ready = true } // Do nothing if we're not ready to make a decision yet. if !ready { return } // At this point, we've got all the cfheaders messages we're going to // get for the range of headers described by the passed message. We now // iterate through all of those headers, looking for conflicts. If we // find a conflict, we have to do additional checks; otherwise, we write // the filter header to the database. el := b.headerList.Front() for el != nil { node := el.Value.(*headerNode) hash := node.header.BlockHash() if node.height >= msg.earliestNode.height { b.mapMutex.Lock() blockMap := filterMap[hash] switch len(blockMap) { // This should only happen if the filter has already // been written to the database or if there's a reorg. case 0: if _, err := readFunc(hash); err != nil { // We don't have the filter stored in // the DB, there's been a reorg. log.Warnf("Somehow we have 0 cfheaders"+ " for block %d (%s)", node.height, hash) return } // This is the normal case when nobody's trying to // bamboozle us (or ALL our peers are). case 1: // This will only cycle once for filterHash := range blockMap { writeFunc(hash, filterHash) } // This is when we have conflicting information from // multiple peers. // TODO: Handle this case. default: } b.mapMutex.Unlock() } //elToRemove := el el = el.Next() //b.headerList.Remove(elToRemove) //b.startHeader = el // If we've reached the end, we can return if hash == msg.stopHash { log.Tracef("Finished processing cfheaders messages up "+ "to height %d/hash %s, extended: %t", node.height, hash, msg.extended) return } } } // QueueCFilter adds the passed cfilter message and peer to the block handling // queue. func (b *blockManager) QueueCFilter(cfilter *wire.MsgCFilter, sp *serverPeer) { // No channel handling here because peers do not need to block on // headers messages. if atomic.LoadInt32(&b.shutdown) != 0 { return } b.peerChan <- &cfilterMsg{cfilter: cfilter, peer: sp} } // handleCFilterMsg handles cfilter messages from all peers. func (b *blockManager) handleCFilterMsg(cfmsg *cfilterMsg) { } // checkHeaderSanity checks the PoW, and timestamp of a block header. func (b *blockManager) checkHeaderSanity(blockHeader *wire.BlockHeader, maxTimestamp time.Time, reorgAttempt bool) error { diff, err := b.calcNextRequiredDifficulty( blockHeader.Timestamp, reorgAttempt) if err != nil { return err } stubBlock := btcutil.NewBlock(&wire.MsgBlock{ Header: *blockHeader, }) err = blockchain.CheckProofOfWork(stubBlock, blockchain.CompactToBig(diff)) if err != nil { return err } // Ensure the block time is not too far in the future. if blockHeader.Timestamp.After(maxTimestamp) { return fmt.Errorf("block timestamp of %v is too far in the "+ "future", blockHeader.Timestamp) } return nil } // calcNextRequiredDifficulty calculates the required difficulty for the block // after the passed previous block node based on the difficulty retarget rules. func (b *blockManager) calcNextRequiredDifficulty(newBlockTime time.Time, reorgAttempt bool) (uint32, error) { hList := b.headerList if reorgAttempt { hList = b.reorgList } lastNodeEl := hList.Back() // Genesis block. if lastNodeEl == nil { return b.server.chainParams.PowLimitBits, nil } lastNode := lastNodeEl.Value.(*headerNode) // Return the previous block's difficulty requirements if this block // is not at a difficulty retarget interval. if (lastNode.height+1)%b.blocksPerRetarget != 0 { // For networks that support it, allow special reduction of the // required difficulty once too much time has elapsed without // mining a block. if b.server.chainParams.ReduceMinDifficulty { // Return minimum difficulty when more than the desired // amount of time has elapsed without mining a block. reductionTime := int64( b.server.chainParams.MinDiffReductionTime / time.Second) allowMinTime := lastNode.header.Timestamp.Unix() + reductionTime if newBlockTime.Unix() > allowMinTime { return b.server.chainParams.PowLimitBits, nil } // The block was mined within the desired timeframe, so // return the difficulty for the last block which did // not have the special minimum difficulty rule applied. prevBits, err := b.findPrevTestNetDifficulty(hList) if err != nil { return 0, err } return prevBits, nil } // For the main network (or any unrecognized networks), simply // return the previous block's difficulty requirements. return lastNode.header.Bits, nil } // Get the block node at the previous retarget (targetTimespan days // worth of blocks). firstNode, _, err := b.server.GetBlockByHeight( uint32(lastNode.height + 1 - b.blocksPerRetarget)) if err != nil { return 0, err } // Limit the amount of adjustment that can occur to the previous // difficulty. actualTimespan := lastNode.header.Timestamp.Unix() - firstNode.Timestamp.Unix() adjustedTimespan := actualTimespan if actualTimespan < b.minRetargetTimespan { adjustedTimespan = b.minRetargetTimespan } else if actualTimespan > b.maxRetargetTimespan { adjustedTimespan = b.maxRetargetTimespan } // Calculate new target difficulty as: // currentDifficulty * (adjustedTimespan / targetTimespan) // The result uses integer division which means it will be slightly // rounded down. Bitcoind also uses integer division to calculate this // result. oldTarget := blockchain.CompactToBig(lastNode.header.Bits) newTarget := new(big.Int).Mul(oldTarget, big.NewInt(adjustedTimespan)) targetTimeSpan := int64(b.server.chainParams.TargetTimespan / time.Second) newTarget.Div(newTarget, big.NewInt(targetTimeSpan)) // Limit new value to the proof of work limit. if newTarget.Cmp(b.server.chainParams.PowLimit) > 0 { newTarget.Set(b.server.chainParams.PowLimit) } // Log new target difficulty and return it. The new target logging is // intentionally converting the bits back to a number instead of using // newTarget since conversion to the compact representation loses // precision. newTargetBits := blockchain.BigToCompact(newTarget) log.Debugf("Difficulty retarget at block height %d", lastNode.height+1) log.Debugf("Old target %08x (%064x)", lastNode.header.Bits, oldTarget) log.Debugf("New target %08x (%064x)", newTargetBits, blockchain.CompactToBig(newTargetBits)) log.Debugf("Actual timespan %v, adjusted timespan %v, target timespan %v", time.Duration(actualTimespan)*time.Second, time.Duration(adjustedTimespan)*time.Second, b.server.chainParams.TargetTimespan) return newTargetBits, nil } // findPrevTestNetDifficulty returns the difficulty of the previous block which // did not have the special testnet minimum difficulty rule applied. func (b *blockManager) findPrevTestNetDifficulty(hList *list.List) (uint32, error) { startNodeEl := hList.Back() // Genesis block. if startNodeEl == nil { return b.server.chainParams.PowLimitBits, nil } startNode := startNodeEl.Value.(*headerNode) // Search backwards through the chain for the last block without // the special rule applied. iterEl := startNodeEl iterNode := startNode.header iterHeight := startNode.height for iterNode != nil && iterHeight%b.blocksPerRetarget != 0 && iterNode.Bits == b.server.chainParams.PowLimitBits { // Get the previous block node. This function is used over // simply accessing iterNode.parent directly as it will // dynamically create previous block nodes as needed. This // helps allow only the pieces of the chain that are needed // to remain in memory. iterHeight-- el := iterEl.Prev() if el != nil { iterNode = el.Value.(*headerNode).header } else { node, _, err := b.server.GetBlockByHeight(uint32(iterHeight)) if err != nil { log.Errorf("GetBlockByHeight: %s", err) return 0, err } iterNode = &node } } // Return the found difficulty or the minimum difficulty if no // appropriate block was found. lastBits := b.server.chainParams.PowLimitBits if iterNode != nil { lastBits = iterNode.Bits } return lastBits, nil } /* import ( "os" "path/filepath" "sort" "github.com/btcsuite/btcd/database" ) // handleBlockMsg handles block messages from all peers. func (b *blockManager) handleBlockMsg(bmsg *blockMsg) { // If we didn't ask for this block then the peer is misbehaving. blockHash := bmsg.block.Hash() if _, exists := bmsg.peer.requestedBlocks[*blockHash]; !exists { log.Warnf("Got unrequested block %v from %s -- "+ "disconnecting", blockHash, bmsg.peer.Addr()) bmsg.peer.Disconnect() return } // When in headers-first mode, if the block matches the hash of the // first header in the list of headers that are being fetched, it's // eligible for less validation since the headers have already been // verified to link together and are valid up to the next checkpoint. // Also, remove the list entry for all blocks except the checkpoint // since it is needed to verify the next round of headers links // properly. isCheckpointBlock := false behaviorFlags := blockchain.BFNone firstNodeEl := b.headerList.Front() if firstNodeEl != nil { firstNode := firstNodeEl.Value.(*headerNode) if blockHash.IsEqual(firstNode.hash) { behaviorFlags |= blockchain.BFFastAdd if firstNode.hash.IsEqual(b.nextCheckpoint.Hash) { isCheckpointBlock = true } else { b.headerList.Remove(firstNodeEl) } } } // Remove block from request maps. Either chain will know about it and // so we shouldn't have any more instances of trying to fetch it, or we // will fail the insert and thus we'll retry next time we get an inv. delete(bmsg.peer.requestedBlocks, *blockHash) delete(b.requestedBlocks, *blockHash) // Process the block to include validation, best chain selection, orphan // handling, etc. _, isOrphan, err := b.chain.ProcessBlock(bmsg.block, behaviorFlags) if err != nil { // When the error is a rule error, it means the block was simply // rejected as opposed to something actually going wrong, so log // it as such. Otherwise, something really did go wrong, so log // it as an actual error. if _, ok := err.(blockchain.RuleError); ok { log.Infof("Rejected block %v from %s: %v", blockHash, bmsg.peer, err) } else { log.Errorf("Failed to process block %v: %v", blockHash, err) } if dbErr, ok := err.(database.Error); ok && dbErr.ErrorCode == database.ErrCorruption { panic(dbErr) } // Convert the error into an appropriate reject message and // send it. code, reason := mempool.ErrToRejectErr(err) bmsg.peer.PushRejectMsg(wire.CmdBlock, code, reason, blockHash, false) return } // Meta-data about the new block this peer is reporting. We use this // below to update this peer's lastest block height and the heights of // other peers based on their last announced block hash. This allows us // to dynamically update the block heights of peers, avoiding stale // heights when looking for a new sync peer. Upon acceptance of a block // or recognition of an orphan, we also use this information to update // the block heights over other peers who's invs may have been ignored // if we are actively syncing while the chain is not yet current or // who may have lost the lock announcment race. var heightUpdate int32 var blkHashUpdate *chainhash.Hash // Request the parents for the orphan block from the peer that sent it. if isOrphan { // We've just received an orphan block from a peer. In order // to update the height of the peer, we try to extract the // block height from the scriptSig of the coinbase transaction. // Extraction is only attempted if the block's version is // high enough (ver 2+). header := &bmsg.block.MsgBlock().Header if blockchain.ShouldHaveSerializedBlockHeight(header) { coinbaseTx := bmsg.block.Transactions()[0] cbHeight, err := blockchain.ExtractCoinbaseHeight(coinbaseTx) if err != nil { log.Warnf("Unable to extract height from "+ "coinbase tx: %v", err) } else { log.Debugf("Extracted height of %v from "+ "orphan block", cbHeight) heightUpdate = cbHeight blkHashUpdate = blockHash } } orphanRoot := b.chain.GetOrphanRoot(blockHash) locator, err := b.chain.LatestBlockLocator() if err != nil { log.Warnf("Failed to get block locator for the "+ "latest block: %v", err) } else { bmsg.peer.PushGetBlocksMsg(locator, orphanRoot) } } else { // When the block is not an orphan, log information about it and // update the chain state. b.progressLogger.LogBlockHeight(bmsg.block) // Update this peer's latest block height, for future // potential sync node candidacy. best := b.chain.BestSnapshot() heightUpdate = best.Height blkHashUpdate = &best.Hash // Clear the rejected transactions. b.rejectedTxns = make(map[chainhash.Hash]struct{}) // Allow any clients performing long polling via the // getblocktemplate RPC to be notified when the new block causes // their old block template to become stale. rpcServer := b.server.rpcServer if rpcServer != nil { rpcServer.gbtWorkState.NotifyBlockConnected(blockHash) } } // Update the block height for this peer. But only send a message to // the server for updating peer heights if this is an orphan or our // chain is "current". This avoids sending a spammy amount of messages // if we're syncing the chain from scratch. if blkHashUpdate != nil && heightUpdate != 0 { bmsg.peer.UpdateLastBlockHeight(heightUpdate) if isOrphan || b.current() { go b.server.UpdatePeerHeights(blkHashUpdate, heightUpdate, bmsg.peer) } } // Nothing more to do if we aren't in headers-first mode. if !b.headersFirstMode { return } // This is headers-first mode, so if the block is not a checkpoint // request more blocks using the header list when the request queue is // getting short. if !isCheckpointBlock { if b.startHeader != nil && len(bmsg.peer.requestedBlocks) < minInFlightBlocks { b.fetchHeaderBlocks() } return } // This is headers-first mode and the block is a checkpoint. When // there is a next checkpoint, get the next round of headers by asking // for headers starting from the block after this one up to the next // checkpoint. prevHeight := b.nextCheckpoint.Height prevHash := b.nextCheckpoint.Hash b.nextCheckpoint = b.findNextHeaderCheckpoint(prevHeight) if b.nextCheckpoint != nil { locator := blockchain.BlockLocator([]*chainhash.Hash{prevHash}) err := bmsg.peer.PushGetHeadersMsg(locator, b.nextCheckpoint.Hash) if err != nil { log.Warnf("Failed to send getheaders message to "+ "peer %s: %v", bmsg.peer.Addr(), err) return } log.Infof("Downloading headers for blocks %d to %d from "+ "peer %s", prevHeight+1, b.nextCheckpoint.Height, b.syncPeer.Addr()) return } // This is headers-first mode, the block is a checkpoint, and there are // no more checkpoints, so switch to normal mode by requesting blocks // from the block after this one up to the end of the chain (zero hash). b.headersFirstMode = false b.headerList.Init() log.Infof("Reached the final checkpoint -- switching to normal mode") locator := blockchain.BlockLocator([]*chainhash.Hash{blockHash}) err = bmsg.peer.PushGetBlocksMsg(locator, &zeroHash) if err != nil { log.Warnf("Failed to send getblocks message to peer %s: %v", bmsg.peer.Addr(), err) return } } // fetchHeaderBlocks creates and sends a request to the syncPeer for the next // list of blocks to be downloaded based on the current list of headers. func (b *blockManager) fetchHeaderBlocks() { // Nothing to do if there is no start header. if b.startHeader == nil { log.Warnf("fetchHeaderBlocks called with no start header") return } // Build up a getdata request for the list of blocks the headers // describe. The size hint will be limited to wire.MaxInvPerMsg by // the function, so no need to double check it here. gdmsg := wire.NewMsgGetDataSizeHint(uint(b.headerList.Len())) numRequested := 0 for e := b.startHeader; e != nil; e = e.Next() { node, ok := e.Value.(*headerNode) if !ok { log.Warn("Header list node type is not a headerNode") continue } iv := wire.NewInvVect(wire.InvTypeBlock, node.hash) haveInv, err := b.haveInventory(iv) if err != nil { log.Warnf("Unexpected failure when checking for "+ "existing inventory during header block "+ "fetch: %v", err) } if !haveInv { b.requestedBlocks[*node.hash] = struct{}{} b.syncPeer.requestedBlocks[*node.hash] = struct{}{} gdmsg.AddInvVect(iv) numRequested++ } b.startHeader = e.Next() if numRequested >= wire.MaxInvPerMsg { break } } if len(gdmsg.InvList) > 0 { b.syncPeer.QueueMessage(gdmsg, nil) } } // haveInventory returns whether or not the inventory represented by the passed // inventory vector is known. This includes checking all of the various places // inventory can be when it is in different states such as blocks that are part // of the main chain, on a side chain, in the orphan pool, and transactions that // are in the memory pool (either the main pool or orphan pool). func (b *blockManager) haveInventory(invVect *wire.InvVect) (bool, error) { switch invVect.Type { case wire.InvTypeBlock: // Ask chain if the block is known to it in any form (main // chain, side chain, or orphan). return b.chain.HaveBlock(&invVect.Hash) case wire.InvTypeTx: // Ask the transaction memory pool if the transaction is known // to it in any form (main pool or orphan). if b.server.txMemPool.HaveTransaction(&invVect.Hash) { return true, nil } // Check if the transaction exists from the point of view of the // end of the main chain. entry, err := b.chain.FetchUtxoEntry(&invVect.Hash) if err != nil { return false, err } return entry != nil && !entry.IsFullySpent(), nil } // The requested inventory is is an unsupported type, so just claim // it is known to avoid requesting it. return true, nil } // limitMap is a helper function for maps that require a maximum limit by // evicting a random transaction if adding a new value would cause it to // overflow the maximum allowed. func (b *blockManager) limitMap(m map[chainhash.Hash]struct{}, limit int) { if len(m)+1 > limit { // Remove a random entry from the map. For most compilers, Go's // range statement iterates starting at a random item although // that is not 100% guaranteed by the spec. The iteration order // is not important here because an adversary would have to be // able to pull off preimage attacks on the hashing function in // order to target eviction of specific entries anyways. for txHash := range m { delete(m, txHash) return } } } // handleNotifyMsg handles notifications from blockchain. It does things such // as request orphan block parents and relay accepted blocks to connected peers. func (b *blockManager) handleNotifyMsg(notification *blockchain.Notification) { switch notification.Type { // A block has been accepted into the block chain. Relay it to other // peers. case blockchain.NTBlockAccepted: // Don't relay if we are not current. Other peers that are // current should already know about it. if !b.current() { return } block, ok := notification.Data.(*btcutil.Block) if !ok { log.Warnf("Chain accepted notification is not a block.") break } // Generate the inventory vector and relay it. //iv := wire.NewInvVect(wire.InvTypeBlock, block.Hash()) //b.server.RelayInventory(iv, block.MsgBlock().Header) // A block has been connected to the main block chain. case blockchain.NTBlockConnected: block, ok := notification.Data.(*btcutil.Block) if !ok { log.Warnf("Chain connected notification is not a block.") break } // Remove all of the transactions (except the coinbase) in the // connected block from the transaction pool. Secondly, remove any // transactions which are now double spends as a result of these // new transactions. Finally, remove any transaction that is // no longer an orphan. Transactions which depend on a confirmed // transaction are NOT removed recursively because they are still // valid. for _, tx := range block.Transactions()[1:] { b.server.txMemPool.RemoveTransaction(tx, false) b.server.txMemPool.RemoveDoubleSpends(tx) b.server.txMemPool.RemoveOrphan(tx) acceptedTxs := b.server.txMemPool.ProcessOrphans(tx) b.server.AnnounceNewTransactions(acceptedTxs) } if r := b.server.rpcServer; r != nil { // Now that this block is in the blockchain we can mark // all the transactions (except the coinbase) as no // longer needing rebroadcasting. for _, tx := range block.Transactions()[1:] { iv := wire.NewInvVect(wire.InvTypeTx, tx.Hash()) b.server.RemoveRebroadcastInventory(iv) } // Notify registered websocket clients of incoming block. r.ntfnMgr.NotifyBlockConnected(block) } // A block has been disconnected from the main block chain. case blockchain.NTBlockDisconnected: block, ok := notification.Data.(*btcutil.Block) if !ok { log.Warnf("Chain disconnected notification is not a block.") break } // Reinsert all of the transactions (except the coinbase) into // the transaction pool. for _, tx := range block.Transactions()[1:] { _, _, err := b.server.txMemPool.MaybeAcceptTransaction(tx, false, false) if err != nil { // Remove the transaction and all transactions // that depend on it if it wasn't accepted into // the transaction pool. b.server.txMemPool.RemoveTransaction(tx, true) } } // Notify registered websocket clients. if r := b.server.rpcServer; r != nil { r.ntfnMgr.NotifyBlockDisconnected(block) } } } // QueueBlock adds the passed block message and peer to the block handling queue. func (b *blockManager) QueueBlock(block *btcutil.Block, sp *serverPeer) { // Don't accept more blocks if we're shutting down. if atomic.LoadInt32(&b.shutdown) != 0 { sp.blockProcessed <- struct{}{} return } b.msgChan <- &blockMsg{block: block, peer: sp} } // SyncPeer returns the current sync peer. func (b *blockManager) SyncPeer() *serverPeer { reply := make(chan *serverPeer) b.msgChan <- getSyncPeerMsg{reply: reply} return <-reply } // ProcessBlock makes use of ProcessBlock on an internal instance of a block // chain. It is funneled through the block manager since btcchain is not safe // for concurrent access. func (b *blockManager) ProcessBlock(block *btcutil.Block, flags blockchain.BehaviorFlags) (bool, error) { reply := make(chan processBlockResponse, 1) b.msgChan <- processBlockMsg{block: block, flags: flags, reply: reply} response := <-reply return response.isOrphan, response.err } // checkpointSorter implements sort.Interface to allow a slice of checkpoints to // be sorted. type checkpointSorter []chaincfg.Checkpoint // Len returns the number of checkpoints in the slice. It is part of the // sort.Interface implementation. func (s checkpointSorter) Len() int { return len(s) } // Swap swaps the checkpoints at the passed indices. It is part of the // sort.Interface implementation. func (s checkpointSorter) Swap(i, j int) { s[i], s[j] = s[j], s[i] } // Less returns whether the checkpoint with index i should sort before the // checkpoint with index j. It is part of the sort.Interface implementation. func (s checkpointSorter) Less(i, j int) bool { return s[i].Height < s[j].Height } // mergeCheckpoints returns two slices of checkpoints merged into one slice // such that the checkpoints are sorted by height. In the case the additional // checkpoints contain a checkpoint with the same height as a checkpoint in the // default checkpoints, the additional checkpoint will take precedence and // overwrite the default one. func mergeCheckpoints(defaultCheckpoints, additional []chaincfg.Checkpoint) []chaincfg.Checkpoint { // Create a map of the additional checkpoints to remove duplicates while // leaving the most recently-specified checkpoint. extra := make(map[int32]chaincfg.Checkpoint) for _, checkpoint := range additional { extra[checkpoint.Height] = checkpoint } // Add all default checkpoints that do not have an override in the // additional checkpoints. numDefault := len(defaultCheckpoints) checkpoints := make([]chaincfg.Checkpoint, 0, numDefault+len(extra)) for _, checkpoint := range defaultCheckpoints { if _, exists := extra[checkpoint.Height]; !exists { checkpoints = append(checkpoints, checkpoint) } } // Append the additional checkpoints and return the sorted results. for _, checkpoint := range extra { checkpoints = append(checkpoints, checkpoint) } sort.Sort(checkpointSorter(checkpoints)) return checkpoints } // removeRegressionDB removes the existing regression test database if running // in regression test mode and it already exists. func removeRegressionDB(dbPath string) error { // Don't do anything if not in regression test mode. if !cfg.RegressionTest { return nil } // Remove the old regression test database if it already exists. fi, err := os.Stat(dbPath) if err == nil { btcdLog.Infof("Removing regression test database from '%s'", dbPath) if fi.IsDir() { err := os.RemoveAll(dbPath) if err != nil { return err } } else { err := os.Remove(dbPath) if err != nil { return err } } } return nil } // dbPath returns the path to the block database given a database type. func blockDbPath(dbType string) string { // The database name is based on the database type. dbName := blockDbNamePrefix + "_" + dbType if dbType == "sqlite" { dbName = dbName + ".db" } dbPath := filepath.Join(cfg.DataDir, dbName) return dbPath } // warnMultipeDBs shows a warning if multiple block database types are detected. // This is not a situation most users want. It is handy for development however // to support multiple side-by-side databases. func warnMultipeDBs() { // This is intentionally not using the known db types which depend // on the database types compiled into the binary since we want to // detect legacy db types as well. dbTypes := []string{"ffldb", "leveldb", "sqlite"} duplicateDbPaths := make([]string, 0, len(dbTypes)-1) for _, dbType := range dbTypes { if dbType == cfg.DbType { continue } // Store db path as a duplicate db if it exists. dbPath := blockDbPath(dbType) if fileExists(dbPath) { duplicateDbPaths = append(duplicateDbPaths, dbPath) } } // Warn if there are extra databases. if len(duplicateDbPaths) > 0 { selectedDbPath := blockDbPath(cfg.DbType) btcdLog.Warnf("WARNING: There are multiple block chain databases "+ "using different database types.\nYou probably don't "+ "want to waste disk space by having more than one.\n"+ "Your current database is located at [%v].\nThe "+ "additional database is located at %v", selectedDbPath, duplicateDbPaths) } } // loadBlockDB loads (or creates when needed) the block database taking into // account the selected database backend and returns a handle to it. It also // contains additional logic such warning the user if there are multiple // databases which consume space on the file system and ensuring the regression // test database is clean when in regression test mode. func loadBlockDB() (database.DB, error) { // The memdb backend does not have a file path associated with it, so // handle it uniquely. We also don't want to worry about the multiple // database type warnings when running with the memory database. if cfg.DbType == "memdb" { btcdLog.Infof("Creating block database in memory.") db, err := database.Create(cfg.DbType) if err != nil { return nil, err } return db, nil } warnMultipeDBs() // The database name is based on the database type. dbPath := blockDbPath(cfg.DbType) // The regression test is special in that it needs a clean database for // each run, so remove it now if it already exists. removeRegressionDB(dbPath) btcdLog.Infof("Loading block database from '%s'", dbPath) db, err := database.Open(cfg.DbType, dbPath, activeNetParams.Net) if err != nil { // Return the error if it's not because the database doesn't // exist. if dbErr, ok := err.(database.Error); !ok || dbErr.ErrorCode != database.ErrDbDoesNotExist { return nil, err } // Create the db if it does not exist. err = os.MkdirAll(cfg.DataDir, 0700) if err != nil { return nil, err } db, err = database.Create(cfg.DbType, dbPath, activeNetParams.Net) if err != nil { return nil, err } } btcdLog.Info("Block database loaded") return db, nil } */