/* * Copyright (c) 2013 Conformal Systems LLC * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ package wallet import ( "bytes" "code.google.com/p/go.crypto/ripemd160" "crypto/aes" "crypto/cipher" "crypto/ecdsa" "crypto/rand" "crypto/sha256" "crypto/sha512" "encoding/binary" "errors" "fmt" "github.com/conformal/btcec" "github.com/conformal/btcutil" "github.com/conformal/btcwire" "github.com/davecgh/go-spew/spew" "hash" "io" "math" "math/big" "sync" "time" ) var _ = spew.Dump const ( // Length in bytes of KDF output. kdfOutputBytes = 32 // Maximum length in bytes of a comment that can have a size represented // as a uint16. maxCommentLen = (1 << 16) - 1 ) const ( defaultKdfComputeTime = 0.25 defaultKdfMaxMem = 32 * 1024 * 1024 ) // Possible errors when dealing with wallets. var ( ErrChecksumMismatch = errors.New("checksum mismatch") ErrMalformedEntry = errors.New("malformed entry") ErrWalletDoesNotExist = errors.New("non-existant wallet") ) var ( // '\xbaWALLET\x00' fileID = [8]byte{0xba, 0x57, 0x41, 0x4c, 0x4c, 0x45, 0x54, 0x00} mainnetMagicBytes = [4]byte{0xf9, 0xbe, 0xb4, 0xd9} testnetMagicBytes = [4]byte{0x0b, 0x11, 0x09, 0x07} ) type entryHeader byte const ( addrCommentHeader entryHeader = 1 << iota txCommentHeader deletedHeader addrHeader entryHeader = 0 ) // We want to use binaryRead and binaryWrite instead of binary.Read // and binary.Write because those from the binary package do not return // the number of bytes actually written or read. We need to return // this value to correctly support the io.ReaderFrom and io.WriterTo // interfaces. func binaryRead(r io.Reader, order binary.ByteOrder, data interface{}) (n int64, err error) { var read int buf := make([]byte, binary.Size(data)) if read, err = r.Read(buf); err != nil { return int64(read), err } if read < binary.Size(data) { return int64(read), io.EOF } return int64(read), binary.Read(bytes.NewBuffer(buf), order, data) } // See comment for binaryRead(). func binaryWrite(w io.Writer, order binary.ByteOrder, data interface{}) (n int64, err error) { var buf bytes.Buffer if err = binary.Write(&buf, order, data); err != nil { return 0, err } written, err := w.Write(buf.Bytes()) return int64(written), err } // Calculate the hash of hasher over buf. func calcHash(buf []byte, hasher hash.Hash) []byte { hasher.Write(buf) return hasher.Sum(nil) } // calculate hash160 which is ripemd160(sha256(data)) func calcHash160(buf []byte) []byte { return calcHash(calcHash(buf, sha256.New()), ripemd160.New()) } // calculate hash256 which is sha256(sha256(data)) func calcHash256(buf []byte) []byte { return calcHash(calcHash(buf, sha256.New()), sha256.New()) } // calculate sha512(data) func calcSha512(buf []byte) []byte { return calcHash(buf, sha512.New()) } // First byte in uncompressed pubKey field. const pubkeyUncompressed = 0x4 // pubkeyFromPrivkey creates a 65-byte encoded pubkey based on a // 32-byte privkey. // // TODO(jrick): this must be changed to a compressed pubkey. func pubkeyFromPrivkey(privkey []byte) (pubkey []byte) { x, y := btcec.S256().ScalarBaseMult(privkey) pub := (*btcec.PublicKey)(&ecdsa.PublicKey{ Curve: btcec.S256(), X: x, Y: y, }) return pub.SerializeUncompressed() } func keyOneIter(passphrase, salt []byte, memReqts uint64) []byte { saltedpass := append(passphrase, salt...) lutbl := make([]byte, memReqts) // Seed for lookup table seed := calcSha512(saltedpass) copy(lutbl[:sha512.Size], seed) for nByte := 0; nByte < (int(memReqts) - sha512.Size); nByte += sha512.Size { hash := calcSha512(lutbl[nByte : nByte+sha512.Size]) copy(lutbl[nByte+sha512.Size:nByte+2*sha512.Size], hash[:]) } x := lutbl[cap(lutbl)-sha512.Size:] seqCt := uint32(memReqts / sha512.Size) nLookups := seqCt / 2 for i := uint32(0); i < nLookups; i++ { // Armory ignores endianness here. We assume LE. newIdx := binary.LittleEndian.Uint32(x[cap(x)-4:]) % seqCt // Index of hash result at newIdx vIdx := newIdx * sha512.Size v := lutbl[vIdx : vIdx+sha512.Size] // XOR hash x with hash v for j := 0; j < sha512.Size; j++ { x[j] ^= v[j] } // Save new hash to x hash := calcSha512(x) copy(x, hash[:]) } return x[:kdfOutputBytes] } // Key implements the key derivation function used by Armory // based on the ROMix algorithm described in Colin Percival's paper // "Stronger Key Derivation via Sequential Memory-Hard Functions" // (http://www.tarsnap.com/scrypt/scrypt.pdf). func Key(passphrase []byte, params *kdfParameters) []byte { masterKey := passphrase for i := uint32(0); i < params.nIter; i++ { masterKey = keyOneIter(masterKey, params.salt[:], params.mem) } return masterKey } // leftPad returns a new slice of length size. The contents of input are right // aligned in the new slice. func leftPad(input []byte, size int) (out []byte) { n := len(input) if n > size { n = size } out = make([]byte, size) copy(out[len(out)-n:], input) return } // ChainedPrivKey deterministically generates a new private key using a // previous address and chaincode. privkey and chaincode must be 32 // bytes long, and pubkey may either be 65 bytes or nil (in which case it // is generated by the privkey). func ChainedPrivKey(privkey, pubkey, chaincode []byte) ([]byte, error) { if len(privkey) != 32 { return nil, fmt.Errorf("invalid privkey length %d (must be 32)", len(privkey)) } if len(chaincode) != 32 { return nil, fmt.Errorf("invalid chaincode length %d (must be 32)", len(chaincode)) } if pubkey == nil { pubkey = pubkeyFromPrivkey(privkey) } else if len(pubkey) != 65 { return nil, fmt.Errorf("invalid pubkey length %d", len(pubkey)) } // This is a perfect example of YOLO crypto. Armory claims this XORing // with the SHA256 hash of the pubkey is done to add extra entropy (why // you'd want to add entropy to a deterministic function, I don't know), // even though the pubkey is generated directly from the privkey. In // terms of security or privacy, this is a complete waste of CPU cycles, // but we do the same because we want to keep compatibility with // Armory's chained address generation. xorbytes := make([]byte, 32) chainMod := calcHash256(pubkey) for i := range xorbytes { xorbytes[i] = chainMod[i] ^ chaincode[i] } chainXor := new(big.Int).SetBytes(xorbytes) privint := new(big.Int).SetBytes(privkey) t := new(big.Int).Mul(chainXor, privint) b := t.Mod(t, btcec.S256().N).Bytes() return leftPad(b, 32), nil } type varEntries []io.WriterTo func (v *varEntries) WriteTo(w io.Writer) (n int64, err error) { ss := ([]io.WriterTo)(*v) var written int64 for _, s := range ss { var err error if written, err = s.WriteTo(w); err != nil { return n + written, err } n += written } return n, nil } func (v *varEntries) ReadFrom(r io.Reader) (n int64, err error) { var read int64 // Remove any previous entries. *v = nil wts := ([]io.WriterTo)(*v) // Keep reading entries until an EOF is reached. for { var header entryHeader if read, err = binaryRead(r, binary.LittleEndian, &header); err != nil { // EOF here is not an error. if err == io.EOF { return n + read, nil } return n + read, err } n += read var wt io.WriterTo switch header { case addrHeader: var entry addrEntry if read, err = entry.ReadFrom(r); err != nil { return n + read, err } n += read wt = &entry case addrCommentHeader: var entry addrCommentEntry if read, err = entry.ReadFrom(r); err != nil { return n + read, err } n += read wt = &entry case txCommentHeader: var entry txCommentEntry if read, err = entry.ReadFrom(r); err != nil { return n + read, err } n += read wt = &entry case deletedHeader: var entry deletedEntry if read, err = entry.ReadFrom(r); err != nil { return n + read, err } n += read default: return n, fmt.Errorf("unknown entry header: %d", uint8(header)) } if wt != nil { wts = append(wts, wt) *v = wts } } } // Wallet represents an btcd/Armory wallet in memory. It // implements the io.ReaderFrom and io.WriterTo interfaces to read // from and write to any type of byte streams, including files. // TODO(jrick) remove as many more magic numbers as possible. type Wallet struct { version uint32 net btcwire.BitcoinNet flags walletFlags uniqID [6]byte createDate int64 name [32]byte desc [256]byte highestUsed int64 kdfParams kdfParameters keyGenerator btcAddress addrMap map[[ripemd160.Size]byte]*btcAddress addrCommentMap map[[ripemd160.Size]byte]*[]byte txCommentMap map[[sha256.Size]byte]*[]byte // These are not serialized key struct { sync.Mutex secret []byte } chainIdxMap map[int64]*[ripemd160.Size]byte lastChainIdx int64 } // NewWallet creates and initializes a new Wallet. name's and // desc's binary representation must not exceed 32 and 256 bytes, // respectively. All address private keys are encrypted with passphrase. // The wallet is returned unlocked. func NewWallet(name, desc string, passphrase []byte, net btcwire.BitcoinNet) (*Wallet, error) { if binary.Size(name) > 32 { return nil, errors.New("name exceeds 32 byte maximum size") } if binary.Size(desc) > 256 { return nil, errors.New("desc exceeds 256 byte maximum size") } kdfp := computeKdfParameters(defaultKdfComputeTime, defaultKdfMaxMem) rootkey, chaincode := make([]byte, 32), make([]byte, 32) rand.Read(rootkey) rand.Read(chaincode) root, err := newRootBtcAddress(rootkey, nil, chaincode) if err != nil { return nil, err } aeskey := Key([]byte(passphrase), kdfp) if err := root.encrypt(aeskey); err != nil { return nil, err } // Number of pregenerated addresses. const pregenerated = 100 // TODO(jrick): not sure we will need uniqID, but would be good for // compat with armory. w := &Wallet{ version: 0, // TODO(jrick): implement versioning net: net, flags: walletFlags{ useEncryption: true, watchingOnly: false, }, createDate: time.Now().Unix(), highestUsed: -1, kdfParams: *kdfp, keyGenerator: *root, addrMap: make(map[[ripemd160.Size]byte]*btcAddress), addrCommentMap: make(map[[ripemd160.Size]byte]*[]byte), txCommentMap: make(map[[sha256.Size]byte]*[]byte), chainIdxMap: make(map[int64]*[ripemd160.Size]byte), lastChainIdx: pregenerated - 1, } // Add root address to maps. w.addrMap[w.keyGenerator.pubKeyHash] = &w.keyGenerator w.chainIdxMap[w.keyGenerator.chainIndex] = &w.keyGenerator.pubKeyHash // Pre-generate 100 encrypted addresses and add to maps. addr := &w.keyGenerator cc := addr.chaincode[:] for i := 0; i < pregenerated; i++ { privkey, err := ChainedPrivKey(addr.privKeyCT, addr.pubKey[:], cc) if err != nil { return nil, err } newaddr, err := newBtcAddress(privkey, nil) if err != nil { return nil, err } if err = newaddr.encrypt(aeskey); err != nil { return nil, err } w.addrMap[newaddr.pubKeyHash] = newaddr newaddr.chainIndex = addr.chainIndex + 1 w.chainIdxMap[newaddr.chainIndex] = &newaddr.pubKeyHash copy(newaddr.chaincode[:], cc) // armory does this.. but why? addr = newaddr } copy(w.name[:], []byte(name)) copy(w.desc[:], []byte(desc)) return w, nil } // Name returns the name of a wallet. This name is used as the // account name for btcwallet JSON methods. func (w *Wallet) Name() string { return string(w.name[:]) } // ReadFrom reads data from a io.Reader and saves it to a Wallet, // returning the number of bytes read and any errors encountered. func (w *Wallet) ReadFrom(r io.Reader) (n int64, err error) { var read int64 w.addrMap = make(map[[ripemd160.Size]byte]*btcAddress) w.addrCommentMap = make(map[[ripemd160.Size]byte]*[]byte) w.chainIdxMap = make(map[int64]*[ripemd160.Size]byte) w.txCommentMap = make(map[[sha256.Size]byte]*[]byte) var id [8]byte var appendedEntries varEntries // Iterate through each entry needing to be read. If data // implements io.ReaderFrom, use its ReadFrom func. Otherwise, // data is a pointer to a fixed sized value. datas := []interface{}{ &id, &w.version, &w.net, &w.flags, &w.uniqID, &w.createDate, &w.name, &w.desc, &w.highestUsed, &w.kdfParams, make([]byte, 256), &w.keyGenerator, make([]byte, 1024), &appendedEntries, } for _, data := range datas { var err error if rf, ok := data.(io.ReaderFrom); ok { read, err = rf.ReadFrom(r) } else { read, err = binaryRead(r, binary.LittleEndian, data) } n += read if err != nil { return n, err } } if id != fileID { return n, errors.New("unknown file ID") } // Add root address to address map w.addrMap[w.keyGenerator.pubKeyHash] = &w.keyGenerator w.chainIdxMap[w.keyGenerator.chainIndex] = &w.keyGenerator.pubKeyHash // Fill unserializied fields. wts := ([]io.WriterTo)(appendedEntries) for _, wt := range wts { switch wt.(type) { case *addrEntry: e := wt.(*addrEntry) w.addrMap[e.pubKeyHash160] = &e.addr w.chainIdxMap[e.addr.chainIndex] = &e.pubKeyHash160 if w.lastChainIdx < e.addr.chainIndex { w.lastChainIdx = e.addr.chainIndex } case *addrCommentEntry: e := wt.(*addrCommentEntry) w.addrCommentMap[e.pubKeyHash160] = &e.comment case *txCommentEntry: e := wt.(*txCommentEntry) w.txCommentMap[e.txHash] = &e.comment default: return n, errors.New("unknown appended entry") } } return n, nil } // WriteTo serializes a Wallet and writes it to a io.Writer, // returning the number of bytes written and any errors encountered. func (w *Wallet) WriteTo(wtr io.Writer) (n int64, err error) { wts := make([]io.WriterTo, len(w.addrMap)-1) for hash, addr := range w.addrMap { if addr.chainIndex != -1 { // ignore root address e := &addrEntry{ pubKeyHash160: hash, addr: *addr, } wts[addr.chainIndex] = e } } for hash, comment := range w.addrCommentMap { e := &addrCommentEntry{ pubKeyHash160: hash, comment: *comment, } wts = append(wts, e) } for hash, comment := range w.txCommentMap { e := &txCommentEntry{ txHash: hash, comment: *comment, } wts = append(wts, e) } appendedEntries := varEntries(wts) // Iterate through each entry needing to be written. If data // implements io.WriterTo, use its WriteTo func. Otherwise, // data is a pointer to a fixed size value. datas := []interface{}{ &fileID, &w.version, &w.net, &w.flags, &w.uniqID, &w.createDate, &w.name, &w.desc, &w.highestUsed, &w.kdfParams, make([]byte, 256), &w.keyGenerator, make([]byte, 1024), &appendedEntries, } var written int64 for _, data := range datas { if s, ok := data.(io.WriterTo); ok { written, err = s.WriteTo(wtr) } else { written, err = binaryWrite(wtr, binary.LittleEndian, data) } n += written if err != nil { return n, err } } return n, nil } // Unlock derives an AES key from passphrase and wallet's KDF // parameters and unlocks the root key of the wallet. func (w *Wallet) Unlock(passphrase []byte) error { key := Key(passphrase, &w.kdfParams) // Attempt unlocking root address if err := w.keyGenerator.unlock(key); err != nil { return err } w.key.Lock() w.key.secret = key w.key.Unlock() return nil } // Lock does a best effort to zero the keys. // Being go this might not succeed but try anway. // TODO(jrick) func (w *Wallet) Lock() (err error) { // Remove clear text private keys from all entries. for _, addr := range w.addrMap { addr.privKeyCT = nil } w.key.Lock() if w.key.secret != nil { for i := range w.key.secret { w.key.secret[i] = 0 } w.key.secret = nil } else { err = fmt.Errorf("wallet already locked") } w.key.Unlock() return nil } // IsLocked returns whether a wallet is unlocked (in which case the // key is saved in memory), or locked. func (w *Wallet) IsLocked() (locked bool) { w.key.Lock() locked = w.key.secret == nil w.key.Unlock() return locked } // Version returns a wallet's version as a string and int. // TODO(jrick) func (w *Wallet) Version() (string, int) { return "", 0 } // NextUnusedAddress attempts to get the next chained address. It // currently relies on pre-generated addresses and will return an empty // string if the address pool has run out. TODO(jrick) func (w *Wallet) NextUnusedAddress() (string, error) { _ = w.lastChainIdx w.highestUsed++ new160, err := w.addr160ForIdx(w.highestUsed) if err != nil { return "", errors.New("cannot find generated address") } addr := w.addrMap[*new160] if addr == nil { return "", errors.New("cannot find generated address") } return addr.paymentAddress(w.net) } // GetAddressKey returns the private key for a payment address stored // in a wallet. This can fail if the payment address for a different // Bitcoin network than what this wallet uses, the address is not // contained in the wallet, the address does not include a public and // private key, or if the wallet is locked. func (w *Wallet) GetAddressKey(addr string) (key *ecdsa.PrivateKey, err error) { addr160, net, err := btcutil.DecodeAddress(addr) if err != nil { return nil, err } switch { case net == btcutil.MainNetAddr && w.net != btcwire.MainNet: fallthrough case net == btcutil.TestNetAddr && w.net != btcwire.TestNet: return nil, errors.New("wallet and address networks mismatch") } addrHash := new([ripemd160.Size]byte) copy(addrHash[:], addr160) btcaddr, ok := w.addrMap[*addrHash] if !ok { return nil, errors.New("address not in wallet") } if !btcaddr.flags.hasPubKey { return nil, errors.New("no public key for address") } if !btcaddr.flags.hasPrivKey { return nil, errors.New("no private key for address") } pubkey, err := btcec.ParsePubKey(btcaddr.pubKey[:], btcec.S256()) if err != nil { return nil, err } if err = btcaddr.unlock(w.key.secret); err != nil { return nil, err } d := new(big.Int).SetBytes(btcaddr.privKeyCT) key = &ecdsa.PrivateKey{ PublicKey: *pubkey, D: d, } return key, nil } // Net returns the bitcoin network identifier for this wallet. func (w *Wallet) Net() btcwire.BitcoinNet { return w.net } func (w *Wallet) addr160ForIdx(idx int64) (*[ripemd160.Size]byte, error) { if idx > w.lastChainIdx { return nil, errors.New("chain index out of range") } return w.chainIdxMap[idx], nil } // GetActiveAddresses returns all wallet addresses that have been // requested to be generated. These do not include pre-generated // addresses. func (w *Wallet) GetActiveAddresses() []string { addrs := []string{} for i := int64(-1); i <= w.highestUsed; i++ { addr160, err := w.addr160ForIdx(i) if err != nil { return addrs } addr := w.addrMap[*addr160] addrstr, err := addr.paymentAddress(w.net) // TODO(jrick): propigate error if err != nil { addrs = append(addrs, addrstr) } } return addrs } type walletFlags struct { useEncryption bool watchingOnly bool } func (wf *walletFlags) ReadFrom(r io.Reader) (n int64, err error) { raw := make([]byte, 8) n, err = binaryRead(r, binary.LittleEndian, raw) wf.useEncryption = raw[0] != 0 wf.watchingOnly = raw[1] != 0 return n, err } func (wf *walletFlags) WriteTo(w io.Writer) (n int64, err error) { raw := make([]byte, 8) if wf.useEncryption { raw[0] = 1 } if wf.watchingOnly { raw[1] = 1 } return binaryWrite(w, binary.LittleEndian, raw) } type addrFlags struct { hasPrivKey bool hasPubKey bool encrypted bool } func (af *addrFlags) ReadFrom(r io.Reader) (n int64, err error) { var read int64 var b [8]byte read, err = binaryRead(r, binary.LittleEndian, &b) if err != nil { return n + read, err } n += read if b[0]&(1<<0) != 0 { af.hasPrivKey = true } if b[0]&(1<<1) != 0 { af.hasPubKey = true } if b[0]&(1<<2) == 0 { return n, errors.New("address flag specifies unencrypted address") } af.encrypted = true return n, nil } func (af *addrFlags) WriteTo(w io.Writer) (n int64, err error) { var b [8]byte if af.hasPrivKey { b[0] |= 1 << 0 } if af.hasPubKey { b[0] |= 1 << 1 } if !af.encrypted { // We only support encrypted privkeys. return n, errors.New("address must be encrypted") } b[0] |= 1 << 2 return binaryWrite(w, binary.LittleEndian, b) } type btcAddress struct { pubKeyHash [ripemd160.Size]byte flags addrFlags chaincode [32]byte chainIndex int64 chainDepth int64 // currently unused (will use when extending a locked wallet) initVector [16]byte privKey [32]byte pubKey [65]byte firstSeen uint64 lastSeen uint64 firstBlock uint32 lastBlock uint32 privKeyCT []byte // non-nil if unlocked. } // newBtcAddress initializes and returns a new address. privkey must // be 32 bytes. iv must be 16 bytes, or nil (in which case it is // randomly generated). func newBtcAddress(privkey, iv []byte) (addr *btcAddress, err error) { if len(privkey) != 32 { return nil, errors.New("private key is not 32 bytes") } if iv == nil { iv = make([]byte, 16) rand.Read(iv) } else if len(iv) != 16 { return nil, errors.New("init vector must be nil or 16 bytes large") } addr = &btcAddress{ privKeyCT: privkey, flags: addrFlags{ hasPrivKey: true, hasPubKey: true, }, firstSeen: math.MaxUint64, firstBlock: math.MaxUint32, } copy(addr.initVector[:], iv) pub := pubkeyFromPrivkey(privkey) copy(addr.pubKey[:], pub) copy(addr.pubKeyHash[:], calcHash160(pub)) return addr, nil } // newRootBtcAddress generates a new address, also setting the // chaincode and chain index to represent this address as a root // address. func newRootBtcAddress(privKey, iv, chaincode []byte) (addr *btcAddress, err error) { if len(chaincode) != 32 { return nil, errors.New("chaincode is not 32 bytes") } addr, err = newBtcAddress(privKey, iv) if err != nil { return nil, err } copy(addr.chaincode[:], chaincode) addr.chainIndex = -1 return addr, err } // ReadFrom reads an encrypted address from an io.Reader. func (a *btcAddress) ReadFrom(r io.Reader) (n int64, err error) { var read int64 // Checksums var chkPubKeyHash uint32 var chkChaincode uint32 var chkInitVector uint32 var chkPrivKey uint32 var chkPubKey uint32 // Read serialized wallet into addr fields and checksums. datas := []interface{}{ &a.pubKeyHash, &chkPubKeyHash, make([]byte, 4), // version &a.flags, &a.chaincode, &chkChaincode, &a.chainIndex, &a.chainDepth, &a.initVector, &chkInitVector, &a.privKey, &chkPrivKey, &a.pubKey, &chkPubKey, &a.firstSeen, &a.lastSeen, &a.firstBlock, &a.lastBlock, } for _, data := range datas { if rf, ok := data.(io.ReaderFrom); ok { read, err = rf.ReadFrom(r) } else { read, err = binaryRead(r, binary.LittleEndian, data) } if err != nil { return n + read, err } n += read } // Verify checksums, correct errors where possible. checks := []struct { data []byte chk uint32 }{ {a.pubKeyHash[:], chkPubKeyHash}, {a.chaincode[:], chkChaincode}, {a.initVector[:], chkInitVector}, {a.privKey[:], chkPrivKey}, {a.pubKey[:], chkPubKey}, } for i := range checks { if err = verifyAndFix(checks[i].data, checks[i].chk); err != nil { return n, err } } return n, nil } func (a *btcAddress) WriteTo(w io.Writer) (n int64, err error) { var written int64 datas := []interface{}{ &a.pubKeyHash, walletHash(a.pubKeyHash[:]), make([]byte, 4), //version &a.flags, &a.chaincode, walletHash(a.chaincode[:]), &a.chainIndex, &a.chainDepth, &a.initVector, walletHash(a.initVector[:]), &a.privKey, walletHash(a.privKey[:]), &a.pubKey, walletHash(a.pubKey[:]), &a.firstSeen, &a.lastSeen, &a.firstBlock, &a.lastBlock, } for _, data := range datas { if wt, ok := data.(io.WriterTo); ok { written, err = wt.WriteTo(w) } else { written, err = binaryWrite(w, binary.LittleEndian, data) } if err != nil { return n + written, err } n += written } return n, nil } // encrypt attempts to encrypt an address's clear text private key, // failing if the address is already encrypted or if the private key is // not 32 bytes. If successful, the encryption flag is set. func (a *btcAddress) encrypt(key []byte) error { if a.flags.encrypted { return errors.New("address already encrypted") } if len(a.privKeyCT) != 32 { return errors.New("invalid clear text private key") } aesBlockEncrypter, err := aes.NewCipher(key) if err != nil { return err } aesEncrypter := cipher.NewCFBEncrypter(aesBlockEncrypter, a.initVector[:]) aesEncrypter.XORKeyStream(a.privKey[:], a.privKeyCT) a.flags.encrypted = true return nil } // lock removes the reference this address holds to its clear text // private key. This function fails if the address is not encrypted. func (a *btcAddress) lock() error { if !a.flags.encrypted { return errors.New("unable to lock unencrypted address") } a.privKeyCT = nil return nil } // unlock decrypts and stores a pointer to this address's private key, // failing if the address is not encrypted, or the provided key is // incorrect. func (a *btcAddress) unlock(key []byte) error { if !a.flags.encrypted { return errors.New("unable to unlock unencrypted address") } aesBlockDecrypter, err := aes.NewCipher(key) if err != nil { return err } aesDecrypter := cipher.NewCFBDecrypter(aesBlockDecrypter, a.initVector[:]) ct := make([]byte, 32) aesDecrypter.XORKeyStream(ct, a.privKey[:]) pubKey, err := btcec.ParsePubKey(a.pubKey[:], btcec.S256()) if err != nil { return fmt.Errorf("cannot parse pubkey: %s", err) } x, y := btcec.S256().ScalarBaseMult(ct) if x.Cmp(pubKey.X) != 0 || y.Cmp(pubKey.Y) != 0 { return errors.New("decryption failed") } a.privKeyCT = ct return nil } // TODO(jrick) func (a *btcAddress) changeEncryptionKey(oldkey, newkey []byte) error { return errors.New("unimplemented") } // paymentAddress returns a human readable payment address string for // an address. func (a *btcAddress) paymentAddress(net btcwire.BitcoinNet) (string, error) { var netID byte switch net { case btcwire.MainNet: netID = btcutil.MainNetAddr case btcwire.TestNet: fallthrough case btcwire.TestNet3: netID = btcutil.TestNetAddr default: // wrong! return "", errors.New("unknown bitcoin network") } return btcutil.EncodeAddress(a.pubKeyHash[:], netID) } func walletHash(b []byte) uint32 { sum := btcwire.DoubleSha256(b) return binary.LittleEndian.Uint32(sum) } // TODO(jrick) add error correction. func verifyAndFix(b []byte, chk uint32) error { if walletHash(b) != chk { return ErrChecksumMismatch } return nil } type kdfParameters struct { mem uint64 nIter uint32 salt [32]byte } // computeKdfParameters returns best guess parameters to the // memory-hard key derivation function to make the computation last // targetSec seconds, while using no more than maxMem bytes of memory. func computeKdfParameters(targetSec float64, maxMem uint64) *kdfParameters { params := &kdfParameters{} rand.Read(params.salt[:]) testKey := []byte("This is an example key to test KDF iteration speed") memoryReqtBytes := uint64(1024) approxSec := float64(0) for approxSec <= targetSec/4 && memoryReqtBytes < maxMem { memoryReqtBytes *= 2 before := time.Now() _ = keyOneIter(testKey, params.salt[:], memoryReqtBytes) approxSec = time.Since(before).Seconds() } allItersSec := float64(0) nIter := uint32(1) for allItersSec < 0.02 { // This is a magic number straight from armory's source. nIter *= 2 before := time.Now() for i := uint32(0); i < nIter; i++ { _ = keyOneIter(testKey, params.salt[:], memoryReqtBytes) } allItersSec = time.Since(before).Seconds() } params.mem = memoryReqtBytes params.nIter = nIter return params } func (params *kdfParameters) WriteTo(w io.Writer) (n int64, err error) { var written int64 memBytes := make([]byte, 8) nIterBytes := make([]byte, 4) binary.LittleEndian.PutUint64(memBytes, params.mem) binary.LittleEndian.PutUint32(nIterBytes, params.nIter) chkedBytes := append(memBytes, nIterBytes...) chkedBytes = append(chkedBytes, params.salt[:]...) datas := []interface{}{ ¶ms.mem, ¶ms.nIter, ¶ms.salt, walletHash(chkedBytes), make([]byte, 256-(binary.Size(params)+4)), // padding } for _, data := range datas { if written, err = binaryWrite(w, binary.LittleEndian, data); err != nil { return n + written, err } n += written } return n, nil } func (params *kdfParameters) ReadFrom(r io.Reader) (n int64, err error) { var read int64 // These must be read in but are not saved directly to params. chkedBytes := make([]byte, 44) var chk uint32 padding := make([]byte, 256-(binary.Size(params)+4)) datas := []interface{}{ chkedBytes, &chk, padding, } for _, data := range datas { if read, err = binaryRead(r, binary.LittleEndian, data); err != nil { return n + read, err } n += read } // Verify checksum if err = verifyAndFix(chkedBytes, chk); err != nil { return n, err } // Read params buf := bytes.NewBuffer(chkedBytes) datas = []interface{}{ ¶ms.mem, ¶ms.nIter, ¶ms.salt, } for _, data := range datas { if err = binary.Read(buf, binary.LittleEndian, data); err != nil { return n, err } } return n, nil } type addrEntry struct { pubKeyHash160 [ripemd160.Size]byte addr btcAddress } func (e *addrEntry) WriteTo(w io.Writer) (n int64, err error) { var written int64 // Write header if written, err = binaryWrite(w, binary.LittleEndian, addrHeader); err != nil { return n + written, err } n += written // Write hash if written, err = binaryWrite(w, binary.LittleEndian, &e.pubKeyHash160); err != nil { return n + written, err } n += written // Write btcAddress written, err = e.addr.WriteTo(w) n += written return n, err } func (e *addrEntry) ReadFrom(r io.Reader) (n int64, err error) { var read int64 if read, err = binaryRead(r, binary.LittleEndian, &e.pubKeyHash160); err != nil { return n + read, err } n += read read, err = e.addr.ReadFrom(r) return n + read, err } type addrCommentEntry struct { pubKeyHash160 [ripemd160.Size]byte comment []byte } func (e *addrCommentEntry) WriteTo(w io.Writer) (n int64, err error) { var written int64 // Comments shall not overflow their entry. if len(e.comment) > maxCommentLen { return n, ErrMalformedEntry } // Write header if written, err = binaryWrite(w, binary.LittleEndian, addrCommentHeader); err != nil { return n + written, err } n += written // Write hash if written, err = binaryWrite(w, binary.LittleEndian, &e.pubKeyHash160); err != nil { return n + written, err } n += written // Write length if written, err = binaryWrite(w, binary.LittleEndian, uint16(len(e.comment))); err != nil { return n + written, err } n += written // Write comment written, err = binaryWrite(w, binary.LittleEndian, e.comment) return n + written, err } func (e *addrCommentEntry) ReadFrom(r io.Reader) (n int64, err error) { var read int64 if read, err = binaryRead(r, binary.LittleEndian, &e.pubKeyHash160); err != nil { return n + read, err } n += read var clen uint16 if read, err = binaryRead(r, binary.LittleEndian, &clen); err != nil { return n + read, err } n += read e.comment = make([]byte, clen) read, err = binaryRead(r, binary.LittleEndian, e.comment) return n + read, err } type txCommentEntry struct { txHash [sha256.Size]byte comment []byte } func (e *txCommentEntry) WriteTo(w io.Writer) (n int64, err error) { var written int64 // Comments shall not overflow their entry. if len(e.comment) > maxCommentLen { return n, ErrMalformedEntry } // Write header if written, err = binaryWrite(w, binary.LittleEndian, txCommentHeader); err != nil { return n + written, err } n += written // Write length if written, err = binaryWrite(w, binary.LittleEndian, uint16(len(e.comment))); err != nil { return n + written, err } // Write comment written, err = binaryWrite(w, binary.LittleEndian, e.comment) return n + written, err } func (e *txCommentEntry) ReadFrom(r io.Reader) (n int64, err error) { var read int64 if read, err = binaryRead(r, binary.LittleEndian, &e.txHash); err != nil { return n + read, err } n += read var clen uint16 if read, err = binaryRead(r, binary.LittleEndian, &clen); err != nil { return n + read, err } n += read e.comment = make([]byte, clen) read, err = binaryRead(r, binary.LittleEndian, e.comment) return n + read, err } type deletedEntry struct { } func (e *deletedEntry) ReadFrom(r io.Reader) (n int64, err error) { var read int64 var ulen uint16 if read, err = binaryRead(r, binary.LittleEndian, &ulen); err != nil { return n + read, err } n += read unused := make([]byte, ulen) nRead, err := r.Read(unused) if err == io.EOF { return n + int64(nRead), nil } return n + int64(nRead), err }