/* * Copyright (c) 2013, 2014 Conformal Systems LLC * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ package wallet import ( "bytes" "code.google.com/p/go.crypto/ripemd160" "crypto/aes" "crypto/cipher" "crypto/ecdsa" "crypto/rand" "crypto/sha256" "crypto/sha512" "encoding/binary" "encoding/hex" "errors" "fmt" "github.com/conformal/btcec" "github.com/conformal/btcutil" "github.com/conformal/btcwire" "io" "math/big" "time" ) const ( // Length in bytes of KDF output. kdfOutputBytes = 32 // Maximum length in bytes of a comment that can have a size represented // as a uint16. maxCommentLen = (1 << 16) - 1 ) const ( defaultKdfComputeTime = 0.25 defaultKdfMaxMem = 32 * 1024 * 1024 ) // Possible errors when dealing with wallets. var ( ErrAddressNotFound = errors.New("address not found") ErrChecksumMismatch = errors.New("checksum mismatch") ErrDuplicate = errors.New("duplicate key or address") ErrMalformedEntry = errors.New("malformed entry") ErrNetworkMismatch = errors.New("network mismatch") ErrWalletDoesNotExist = errors.New("non-existant wallet") ErrWalletLocked = errors.New("wallet is locked") ) var ( // '\xbaWALLET\x00' fileID = [8]byte{0xba, 0x57, 0x41, 0x4c, 0x4c, 0x45, 0x54, 0x00} mainnetMagicBytes = [4]byte{0xf9, 0xbe, 0xb4, 0xd9} testnetMagicBytes = [4]byte{0x0b, 0x11, 0x09, 0x07} ) type entryHeader byte const ( addrCommentHeader entryHeader = 1 << iota txCommentHeader deletedHeader addrHeader entryHeader = 0 ) // We want to use binaryRead and binaryWrite instead of binary.Read // and binary.Write because those from the binary package do not return // the number of bytes actually written or read. We need to return // this value to correctly support the io.ReaderFrom and io.WriterTo // interfaces. func binaryRead(r io.Reader, order binary.ByteOrder, data interface{}) (n int64, err error) { var read int buf := make([]byte, binary.Size(data)) if read, err = r.Read(buf); err != nil { return int64(read), err } if read < binary.Size(data) { return int64(read), io.EOF } return int64(read), binary.Read(bytes.NewBuffer(buf), order, data) } // See comment for binaryRead(). func binaryWrite(w io.Writer, order binary.ByteOrder, data interface{}) (n int64, err error) { var buf bytes.Buffer if err = binary.Write(&buf, order, data); err != nil { return 0, err } written, err := w.Write(buf.Bytes()) return int64(written), err } // pubkeyFromPrivkey creates an encoded pubkey based on a // 32-byte privkey. The returned pubkey is 33 bytes if compressed, // or 65 bytes if uncompressed. func pubkeyFromPrivkey(privkey []byte, compress bool) (pubkey []byte) { x, y := btcec.S256().ScalarBaseMult(privkey) pub := (*btcec.PublicKey)(&ecdsa.PublicKey{ Curve: btcec.S256(), X: x, Y: y, }) if compress { return pub.SerializeCompressed() } return pub.SerializeUncompressed() } func keyOneIter(passphrase, salt []byte, memReqts uint64) []byte { saltedpass := append(passphrase, salt...) lutbl := make([]byte, memReqts) // Seed for lookup table seed := sha512.Sum512(saltedpass) copy(lutbl[:sha512.Size], seed[:]) for nByte := 0; nByte < (int(memReqts) - sha512.Size); nByte += sha512.Size { hash := sha512.Sum512(lutbl[nByte : nByte+sha512.Size]) copy(lutbl[nByte+sha512.Size:nByte+2*sha512.Size], hash[:]) } x := lutbl[cap(lutbl)-sha512.Size:] seqCt := uint32(memReqts / sha512.Size) nLookups := seqCt / 2 for i := uint32(0); i < nLookups; i++ { // Armory ignores endianness here. We assume LE. newIdx := binary.LittleEndian.Uint32(x[cap(x)-4:]) % seqCt // Index of hash result at newIdx vIdx := newIdx * sha512.Size v := lutbl[vIdx : vIdx+sha512.Size] // XOR hash x with hash v for j := 0; j < sha512.Size; j++ { x[j] ^= v[j] } // Save new hash to x hash := sha512.Sum512(x) copy(x, hash[:]) } return x[:kdfOutputBytes] } // Key implements the key derivation function used by Armory // based on the ROMix algorithm described in Colin Percival's paper // "Stronger Key Derivation via Sequential Memory-Hard Functions" // (http://www.tarsnap.com/scrypt/scrypt.pdf). func Key(passphrase []byte, params *kdfParameters) []byte { masterKey := passphrase for i := uint32(0); i < params.nIter; i++ { masterKey = keyOneIter(masterKey, params.salt[:], params.mem) } return masterKey } func pad(size int, b []byte) []byte { // Prevent a possible panic if the input exceeds the expected size. if len(b) > size { size = len(b) } p := make([]byte, size) copy(p[size-len(b):], b) return p } // ChainedPrivKey deterministically generates a new private key using a // previous address and chaincode. privkey and chaincode must be 32 // bytes long, and pubkey may either be 33 or 65 bytes. func ChainedPrivKey(privkey, pubkey, chaincode []byte) ([]byte, error) { if len(privkey) != 32 { return nil, fmt.Errorf("invalid privkey length %d (must be 32)", len(privkey)) } if len(chaincode) != 32 { return nil, fmt.Errorf("invalid chaincode length %d (must be 32)", len(chaincode)) } if !(len(pubkey) == 65 || len(pubkey) == 33) { return nil, fmt.Errorf("invalid pubkey length %d", len(pubkey)) } xorbytes := make([]byte, 32) chainMod := btcwire.DoubleSha256(pubkey) for i := range xorbytes { xorbytes[i] = chainMod[i] ^ chaincode[i] } chainXor := new(big.Int).SetBytes(xorbytes) privint := new(big.Int).SetBytes(privkey) t := new(big.Int).Mul(chainXor, privint) b := t.Mod(t, btcec.S256().N).Bytes() return pad(32, b), nil } // ChainedPubKey deterministically generates a new public key using a // previous public key and chaincode. pubkey must be 33 or 65 bytes, and // chaincode must be 32 bytes long. func ChainedPubKey(pubkey, chaincode []byte) ([]byte, error) { if !(len(pubkey) == 65 || len(pubkey) == 33) { return nil, fmt.Errorf("invalid pubkey length %v", len(pubkey)) } if len(chaincode) != 32 { return nil, fmt.Errorf("invalid chaincode length %d (must be 32)", len(chaincode)) } xorbytes := make([]byte, 32) chainMod := btcwire.DoubleSha256(pubkey) for i := range xorbytes { xorbytes[i] = chainMod[i] ^ chaincode[i] } oldPk, err := btcec.ParsePubKey(pubkey, btcec.S256()) if err != nil { return nil, err } newX, newY := btcec.S256().ScalarMult(oldPk.X, oldPk.Y, xorbytes) if err != nil { return nil, err } newPk := &ecdsa.PublicKey{ Curve: btcec.S256(), X: newX, Y: newY, } if len(pubkey) == 65 { return (*btcec.PublicKey)(newPk).SerializeUncompressed(), nil } return (*btcec.PublicKey)(newPk).SerializeCompressed(), nil } type version struct { major byte minor byte bugfix byte autoincrement byte } // Enforce that version satisifies the io.ReaderFrom and // io.WriterTo interfaces. var _ io.ReaderFrom = &version{} var _ io.WriterTo = &version{} // ReaderFromVersion is an io.ReaderFrom and io.WriterTo that // can specify any particular wallet file format for reading // depending on the wallet file version. type ReaderFromVersion interface { ReadFromVersion(version, io.Reader) (int64, error) io.WriterTo } func (v version) String() string { str := fmt.Sprintf("%d.%d", v.major, v.minor) if v.bugfix != 0x00 || v.autoincrement != 0x00 { str += fmt.Sprintf(".%d", v.bugfix) } if v.autoincrement != 0x00 { str += fmt.Sprintf(".%d", v.autoincrement) } return str } func (v version) Uint32() uint32 { return uint32(v.major)<<6 | uint32(v.minor)<<4 | uint32(v.bugfix)<<2 | uint32(v.autoincrement) } func (v *version) ReadFrom(r io.Reader) (int64, error) { // Read 4 bytes for the version. versBytes := make([]byte, 4) n, err := r.Read(versBytes) if err != nil { return int64(n), err } v.major = versBytes[0] v.minor = versBytes[1] v.bugfix = versBytes[2] v.autoincrement = versBytes[3] return int64(n), nil } func (v *version) WriteTo(w io.Writer) (int64, error) { // Write 4 bytes for the version. versBytes := []byte{ v.major, v.minor, v.bugfix, v.autoincrement, } n, err := w.Write(versBytes) return int64(n), err } // LT returns whether v is an earlier version than v2. func (v version) LT(v2 version) bool { switch { case v.major < v2.major: return true case v.minor < v2.minor: return true case v.bugfix < v2.bugfix: return true case v.autoincrement < v2.autoincrement: return true default: return false } } // EQ returns whether v2 is an equal version to v. func (v version) EQ(v2 version) bool { switch { case v.major != v2.major: return false case v.minor != v2.minor: return false case v.bugfix != v2.bugfix: return false case v.autoincrement != v2.autoincrement: return false default: return true } } // GT returns whether v is a later version than v2. func (v version) GT(v2 version) bool { switch { case v.major > v2.major: return true case v.minor > v2.minor: return true case v.bugfix > v2.bugfix: return true case v.autoincrement > v2.autoincrement: return true default: return false } } // Various versions. var ( // VersArmory is the latest version used by Armory. VersArmory = version{1, 35, 0, 0} // Vers20LastBlocks is the version where wallet files now hold // the 20 most recently seen block hashes. Vers20LastBlocks = version{1, 36, 0, 0} // VersCurrent is the current wallet file version. VersCurrent = Vers20LastBlocks ) type varEntries []io.WriterTo func (v *varEntries) WriteTo(w io.Writer) (n int64, err error) { ss := []io.WriterTo(*v) var written int64 for _, s := range ss { var err error if written, err = s.WriteTo(w); err != nil { return n + written, err } n += written } return n, nil } func (v *varEntries) ReadFrom(r io.Reader) (n int64, err error) { var read int64 // Remove any previous entries. *v = nil wts := []io.WriterTo(*v) // Keep reading entries until an EOF is reached. for { var header entryHeader if read, err = binaryRead(r, binary.LittleEndian, &header); err != nil { // EOF here is not an error. if err == io.EOF { return n + read, nil } return n + read, err } n += read var wt io.WriterTo switch header { case addrHeader: var entry addrEntry if read, err = entry.ReadFrom(r); err != nil { return n + read, err } n += read wt = &entry case addrCommentHeader: var entry addrCommentEntry if read, err = entry.ReadFrom(r); err != nil { return n + read, err } n += read wt = &entry case txCommentHeader: var entry txCommentEntry if read, err = entry.ReadFrom(r); err != nil { return n + read, err } n += read wt = &entry case deletedHeader: var entry deletedEntry if read, err = entry.ReadFrom(r); err != nil { return n + read, err } n += read default: return n, fmt.Errorf("unknown entry header: %d", uint8(header)) } if wt != nil { wts = append(wts, wt) *v = wts } } } type transactionHashKey string type comment []byte // Wallet represents an btcwallet wallet in memory. It implements // the io.ReaderFrom and io.WriterTo interfaces to read from and // write to any type of byte streams, including files. type Wallet struct { net btcwire.BitcoinNet flags walletFlags uniqID [6]byte createDate int64 name [32]byte desc [256]byte highestUsed int64 kdfParams kdfParameters keyGenerator btcAddress // These are non-standard and fit in the extra 1024 bytes between the // root address and the appended entries. recent recentBlocks addrMap map[btcutil.AddressPubKeyHash]*btcAddress addrCommentMap map[btcutil.AddressPubKeyHash]comment txCommentMap map[transactionHashKey]comment // The rest of the fields in this struct are not serialized. secret []byte chainIdxMap map[int64]*btcutil.AddressPubKeyHash importedAddrs []*btcAddress lastChainIdx int64 missingKeysStart int64 } // NewWallet creates and initializes a new Wallet. name's and // desc's binary representation must not exceed 32 and 256 bytes, // respectively. All address private keys are encrypted with passphrase. // The wallet is returned locked. func NewWallet(name, desc string, passphrase []byte, net btcwire.BitcoinNet, createdAt *BlockStamp, keypoolSize uint) (*Wallet, error) { // Check sizes of inputs. if len([]byte(name)) > 32 { return nil, errors.New("name exceeds 32 byte maximum size") } if len([]byte(desc)) > 256 { return nil, errors.New("desc exceeds 256 byte maximum size") } // Check for a valid network. if !(net == btcwire.MainNet || net == btcwire.TestNet3) { return nil, errors.New("wallets must use mainnet or testnet3") } // Randomly-generate rootkey and chaincode. rootkey, chaincode := make([]byte, 32), make([]byte, 32) if _, err := rand.Read(rootkey); err != nil { return nil, err } if _, err := rand.Read(chaincode); err != nil { return nil, err } // Create new root address from key and chaincode. root, err := newRootBtcAddress(rootkey, nil, chaincode, createdAt) if err != nil { return nil, err } // Verify root address keypairs. if err := root.verifyKeypairs(); err != nil { return nil, err } // Compute AES key and encrypt root address. kdfp, err := computeKdfParameters(defaultKdfComputeTime, defaultKdfMaxMem) if err != nil { return nil, err } aeskey := Key([]byte(passphrase), kdfp) if err := root.encrypt(aeskey); err != nil { return nil, err } // Create and fill wallet. w := &Wallet{ // TODO(jrick): not sure we will need uniqID, but would be good for // compat with armory. net: net, flags: walletFlags{ useEncryption: true, watchingOnly: false, }, createDate: time.Now().Unix(), highestUsed: rootKeyChainIdx, kdfParams: *kdfp, keyGenerator: *root, recent: recentBlocks{ lastHeight: createdAt.Height, hashes: []*btcwire.ShaHash{ &createdAt.Hash, }, }, addrMap: make(map[btcutil.AddressPubKeyHash]*btcAddress), addrCommentMap: make(map[btcutil.AddressPubKeyHash]comment), txCommentMap: make(map[transactionHashKey]comment), chainIdxMap: make(map[int64]*btcutil.AddressPubKeyHash), lastChainIdx: rootKeyChainIdx, secret: aeskey, } copy(w.name[:], []byte(name)) copy(w.desc[:], []byte(desc)) // Add root address to maps. w.addrMap[*w.keyGenerator.address(net)] = &w.keyGenerator w.chainIdxMap[rootKeyChainIdx] = w.keyGenerator.address(net) // Fill keypool. if err := w.extendKeypool(keypoolSize, createdAt); err != nil { return nil, err } // Wallet must be returned locked. if err := w.Lock(); err != nil { return nil, err } return w, nil } // Name returns the name of a wallet. This name is used as the // account name for btcwallet JSON methods. func (w *Wallet) Name() string { last := len(w.name[:]) for i, b := range w.name[:] { if b == 0x00 { last = i break } } return string(w.name[:last]) } // ReadFrom reads data from a io.Reader and saves it to a Wallet, // returning the number of bytes read and any errors encountered. func (w *Wallet) ReadFrom(r io.Reader) (n int64, err error) { var read int64 w.addrMap = make(map[btcutil.AddressPubKeyHash]*btcAddress) w.addrCommentMap = make(map[btcutil.AddressPubKeyHash]comment) w.chainIdxMap = make(map[int64]*btcutil.AddressPubKeyHash) w.txCommentMap = make(map[transactionHashKey]comment) var id [8]byte var vers version var appendedEntries varEntries // Iterate through each entry needing to be read. If data // implements io.ReaderFrom, use its ReadFrom func. Otherwise, // data is a pointer to a fixed sized value. datas := []interface{}{ &id, &vers, &w.net, &w.flags, &w.uniqID, &w.createDate, &w.name, &w.desc, &w.highestUsed, &w.kdfParams, make([]byte, 256), &w.keyGenerator, newUnusedSpace(1024, &w.recent), &appendedEntries, } for _, data := range datas { var err error switch d := data.(type) { case ReaderFromVersion: read, err = d.ReadFromVersion(vers, r) case io.ReaderFrom: read, err = d.ReadFrom(r) default: read, err = binaryRead(r, binary.LittleEndian, d) } n += read if err != nil { return n, err } } if id != fileID { return n, errors.New("unknown file ID") } // Add root address to address map. rootAddr := w.keyGenerator.address(w.net) w.addrMap[*rootAddr] = &w.keyGenerator w.chainIdxMap[rootKeyChainIdx] = rootAddr // Fill unserializied fields. wts := ([]io.WriterTo)(appendedEntries) for _, wt := range wts { switch e := wt.(type) { case *addrEntry: addr := e.addr.address(w.net) w.addrMap[*addr] = &e.addr if e.addr.chainIndex == importedKeyChainIdx { w.importedAddrs = append(w.importedAddrs, &e.addr) } else { w.chainIdxMap[e.addr.chainIndex] = addr if w.lastChainIdx < e.addr.chainIndex { w.lastChainIdx = e.addr.chainIndex } } // If the private keys have not ben created yet, mark the // earliest so all can be created on next wallet unlock. if e.addr.flags.createPrivKeyNextUnlock { if w.missingKeysStart < e.addr.chainIndex { w.missingKeysStart = e.addr.chainIndex } } case *addrCommentEntry: addr := e.address(w.net) w.addrCommentMap[*addr] = comment(e.comment) case *txCommentEntry: txKey := transactionHashKey(e.txHash[:]) w.txCommentMap[txKey] = comment(e.comment) default: return n, errors.New("unknown appended entry") } } return n, nil } // WriteTo serializes a Wallet and writes it to a io.Writer, // returning the number of bytes written and any errors encountered. func (w *Wallet) WriteTo(wtr io.Writer) (n int64, err error) { var wts []io.WriterTo var chainedAddrs = make([]io.WriterTo, len(w.chainIdxMap)-1) var importedAddrs []io.WriterTo for addr, btcAddr := range w.addrMap { e := &addrEntry{ addr: *btcAddr, } copy(e.pubKeyHash160[:], addr.ScriptAddress()) if btcAddr.chainIndex >= 0 { // Chained addresses are sorted. This is // kind of nice but probably isn't necessary. chainedAddrs[btcAddr.chainIndex] = e } else if btcAddr.chainIndex == importedKeyChainIdx { // No order for imported addresses. importedAddrs = append(importedAddrs, e) } } wts = append(chainedAddrs, importedAddrs...) for addr, comment := range w.addrCommentMap { e := &addrCommentEntry{ comment: []byte(comment), } copy(e.pubKeyHash160[:], addr.ScriptAddress()) wts = append(wts, e) } for hash, comment := range w.txCommentMap { e := &txCommentEntry{ comment: []byte(comment), } copy(e.txHash[:], []byte(hash)) wts = append(wts, e) } appendedEntries := varEntries(wts) // Iterate through each entry needing to be written. If data // implements io.WriterTo, use its WriteTo func. Otherwise, // data is a pointer to a fixed size value. datas := []interface{}{ &fileID, &VersCurrent, &w.net, &w.flags, &w.uniqID, &w.createDate, &w.name, &w.desc, &w.highestUsed, &w.kdfParams, make([]byte, 256), &w.keyGenerator, newUnusedSpace(1024, &w.recent), &appendedEntries, } var written int64 for _, data := range datas { if s, ok := data.(io.WriterTo); ok { written, err = s.WriteTo(wtr) } else { written, err = binaryWrite(wtr, binary.LittleEndian, data) } n += written if err != nil { return n, err } } return n, nil } // Unlock derives an AES key from passphrase and wallet's KDF // parameters and unlocks the root key of the wallet. If // the unlock was successful, the wallet's secret key is saved, // allowing the decryption of any encrypted private key. Any // addresses created while the wallet was locked without private // keys are created at this time. func (w *Wallet) Unlock(passphrase []byte) error { // Derive key from KDF parameters and passphrase. key := Key(passphrase, &w.kdfParams) // Unlock root address with derived key. if _, err := w.keyGenerator.unlock(key); err != nil { return err } // If unlock was successful, save the secret key. w.secret = key return w.createMissingPrivateKeys() } // Lock performs a best try effort to remove and zero all secret keys // associated with the wallet. func (w *Wallet) Lock() (err error) { // Remove clear text passphrase from wallet. if len(w.secret) != 32 { err = ErrWalletLocked } else { zero(w.secret) w.secret = nil } // Remove clear text private keys from all address entries. for _, addr := range w.addrMap { zero(addr.privKeyCT) addr.privKeyCT = nil } return err } func zero(b []byte) { for i := range b { b[i] = 0 } } // IsLocked returns whether a wallet is unlocked (in which case the // key is saved in memory), or locked. func (w *Wallet) IsLocked() bool { return len(w.secret) != 32 } // Version returns a wallet's version as a string and int. func (w *Wallet) Version() (string, int) { return "", 0 } // NextChainedAddress attempts to get the next chained address. // If there are addresses available in the keypool, the next address // is used. If not and the wallet is unlocked, the keypool is extended. // If locked, a new address's pubkey is chained off the last pubkey // and added to the wallet. func (w *Wallet) NextChainedAddress(bs *BlockStamp, keypoolSize uint) (*btcutil.AddressPubKeyHash, error) { // Attempt to get address hash of next chained address. nextAPKH, ok := w.chainIdxMap[w.highestUsed+1] if !ok { // Extending the keypool requires an unlocked wallet. if len(w.secret) == 32 { // Key is available, extend keypool. if err := w.extendKeypool(keypoolSize, bs); err != nil { return nil, err } } else { if err := w.extendLockedWallet(bs); err != nil { return nil, err } } // Should be added to the internal maps, try lookup again. nextAPKH, ok = w.chainIdxMap[w.highestUsed+1] if !ok { return nil, errors.New("chain index map inproperly updated") } } // Look up address. addr, ok := w.addrMap[*nextAPKH] if !ok { return nil, errors.New("cannot find generated address") } w.highestUsed++ // Create and return payment address for address hash. return addr.address(w.net), nil } // LastChainedAddress returns the most recently requested chained // address from calling NextChainedAddress, or the root address if // no chained addresses have been requested. func (w *Wallet) LastChainedAddress() btcutil.Address { return w.chainIdxMap[w.highestUsed] } // extendKeypool grows the keypool by n addresses. func (w *Wallet) extendKeypool(n uint, bs *BlockStamp) error { // Get last chained address. New chained addresses will be // chained off of this address's chaincode and private key. a := w.chainIdxMap[w.lastChainIdx] addr, ok := w.addrMap[*a] if !ok { return errors.New("expected last chained address not found") } privkey, err := addr.unlock(w.secret) if err != nil { return err } cc := addr.chaincode[:] // Create n encrypted addresses and add each to the wallet's // bookkeeping maps. for i := uint(0); i < n; i++ { privkey, err = ChainedPrivKey(privkey, addr.pubKey, cc) if err != nil { return err } newaddr, err := newBtcAddress(privkey, nil, bs, true) if err != nil { return err } if err := newaddr.verifyKeypairs(); err != nil { return err } if err = newaddr.encrypt(w.secret); err != nil { return err } a := newaddr.address(w.net) w.addrMap[*a] = newaddr newaddr.chainIndex = addr.chainIndex + 1 w.chainIdxMap[newaddr.chainIndex] = a w.lastChainIdx++ // armory does this.. but all the chaincodes are equal so why // not use the root's? copy(newaddr.chaincode[:], cc) addr = newaddr } return nil } // extendLockedWallet creates one new address without a private key // (allowing for extending the address chain from a locked wallet) // chained from the last used chained address and adds the address to // the wallet's internal bookkeeping structures. This function should // not be called unless the keypool has been depleted. func (w *Wallet) extendLockedWallet(bs *BlockStamp) error { a := w.chainIdxMap[w.lastChainIdx] addr, ok := w.addrMap[*a] if !ok { return errors.New("expected last chained address not found") } cc := addr.chaincode[:] prevPubkey := addr.pubKey nextPubkey, err := ChainedPubKey(prevPubkey, cc) if err != nil { return err } newaddr, err := newBtcAddressWithoutPrivkey(nextPubkey, nil, bs) if err != nil { return err } a = newaddr.address(w.net) w.addrMap[*a] = newaddr newaddr.chainIndex = addr.chainIndex + 1 w.chainIdxMap[newaddr.chainIndex] = a w.lastChainIdx++ copy(newaddr.chaincode[:], cc) if w.missingKeysStart == 0 { w.missingKeysStart = newaddr.chainIndex } return nil } func (w *Wallet) createMissingPrivateKeys() error { idx := w.missingKeysStart if idx == 0 { return nil } // Lookup previous address. apkh, ok := w.chainIdxMap[idx-1] if !ok { return errors.New("missing previous chained address") } prevAddr := w.addrMap[*apkh] prevPrivKey, err := prevAddr.unlock(w.secret) if err != nil { return err } for i := idx; ; i++ { // Get the next private key for the ith address in the address chain. ithPrivKey, err := ChainedPrivKey(prevPrivKey, prevAddr.pubKey, prevAddr.chaincode[:]) if err != nil { return err } // Get the address with the missing private key, set, and // encrypt. apkh, ok := w.chainIdxMap[i] if !ok { // Finished. break } addr := w.addrMap[*apkh] addr.privKeyCT = ithPrivKey if err := addr.encrypt(w.secret); err != nil { return err } // Set previous address and private key for next iteration. prevAddr = addr prevPrivKey = ithPrivKey } w.missingKeysStart = 0 return nil } // AddressKey returns the private key for a payment address stored // in a wallet. This can fail if the payment address is for a different // Bitcoin network than what this wallet uses, the address is not // contained in the wallet, the address does not include a public and // private key, or if the wallet is locked. func (w *Wallet) AddressKey(a btcutil.Address) (key *ecdsa.PrivateKey, err error) { // Currently, only P2PKH addresses are supported. This should // be extended to a switch-case statement when support for other // addresses are added. addr, ok := a.(*btcutil.AddressPubKeyHash) if !ok { return nil, errors.New("unsupported address") } // Lookup address from map. btcaddr, ok := w.addrMap[*addr] if !ok { return nil, ErrAddressNotFound } // Both the pubkey and encrypted privkey must be recorded to return // the private key. Error if neither are saved. if !btcaddr.flags.hasPubKey { return nil, errors.New("no public key for address") } if !btcaddr.flags.hasPrivKey { return nil, errors.New("no private key for address") } // Parse public key. pubkey, err := btcec.ParsePubKey(btcaddr.pubKey, btcec.S256()) if err != nil { return nil, err } // Wallet must be unlocked to decrypt the private key. if len(w.secret) != 32 { return nil, ErrWalletLocked } // Unlock address with wallet secret. unlock returns a copy of the // clear text private key, and may be used safely even during an address // lock. privKeyCT, err := btcaddr.unlock(w.secret) if err != nil { return nil, err } return &ecdsa.PrivateKey{ PublicKey: *pubkey, D: new(big.Int).SetBytes(privKeyCT), }, nil } // AddressInfo returns an AddressInfo structure for an address in a wallet. func (w *Wallet) AddressInfo(a btcutil.Address) (*AddressInfo, error) { // Currently, only P2PKH addresses are supported. This should // be extended to a switch-case statement when support for other // addresses are added. addr, ok := a.(*btcutil.AddressPubKeyHash) if !ok { return nil, errors.New("unsupported address") } // Look up address by address hash. btcaddr, ok := w.addrMap[*addr] if !ok { return nil, ErrAddressNotFound } return btcaddr.info(w.net) } // Net returns the bitcoin network identifier for this wallet. func (w *Wallet) Net() btcwire.BitcoinNet { return w.net } // SetSyncedWith marks the wallet to be in sync with the block // described by height and hash. func (w *Wallet) SetSyncedWith(bs *BlockStamp) { // Check if we're trying to rollback the last seen history. // If so, and this bs is already saved, remove anything // after and return. Otherwire, remove previous hashes. if bs.Height < w.recent.lastHeight { maybeIdx := len(w.recent.hashes) - 1 - int(w.recent.lastHeight-bs.Height) if maybeIdx >= 0 && maybeIdx < len(w.recent.hashes) && *w.recent.hashes[maybeIdx] == bs.Hash { w.recent.lastHeight = bs.Height // subslice out the removed hashes. w.recent.hashes = w.recent.hashes[:maybeIdx] return } w.recent.hashes = nil } if bs.Height != w.recent.lastHeight+1 { w.recent.hashes = nil } w.recent.lastHeight = bs.Height blockSha := new(btcwire.ShaHash) copy(blockSha[:], bs.Hash[:]) if len(w.recent.hashes) == 20 { // Make room for the most recent hash. copy(w.recent.hashes, w.recent.hashes[1:]) // Set new block in the last position. w.recent.hashes[19] = blockSha } else { w.recent.hashes = append(w.recent.hashes, blockSha) } } // SyncedWith returns the height and hash of the block the wallet is // currently marked to be in sync with. func (w *Wallet) SyncedWith() *BlockStamp { nHashes := len(w.recent.hashes) if nHashes == 0 || w.recent.lastHeight == -1 { return &BlockStamp{ Height: -1, } } lastSha := w.recent.hashes[nHashes-1] return &BlockStamp{ Height: w.recent.lastHeight, Hash: *lastSha, } } // NewIterateRecentBlocks returns an iterator for recently-seen blocks. // The iterator starts at the most recently-added block, and Prev should // be used to access earlier blocks. func (w *Wallet) NewIterateRecentBlocks() RecentBlockIterator { return w.recent.NewIterator() } // EarliestBlockHeight returns the height of the blockchain for when any // wallet address first appeared. This will usually be the block height // at the time of wallet creation, unless a private key with an earlier // block height was imported into the wallet. This is needed when // performing a full rescan to prevent unnecessary rescanning before // wallet addresses first appeared. func (w *Wallet) EarliestBlockHeight() int32 { height := w.keyGenerator.firstBlock // Imported keys will be the only ones that may have an earlier // blockchain height. Check each and set the returned height for _, addr := range w.importedAddrs { if addr.firstBlock < height { height = addr.firstBlock // Can't go any lower than 0. if height == 0 { break } } } return height } // SetBetterEarliestBlockHeight sets a better earliest block height. // At wallet creation time, a earliest block is guessed, but this // could be incorrect if btcd is out of sync. This function can be // used to correct a previous guess with a better value. func (w *Wallet) SetBetterEarliestBlockHeight(height int32) { if height > w.keyGenerator.firstBlock { w.keyGenerator.firstBlock = height } } // ImportPrivateKey creates a new encrypted btcAddress with a // user-provided private key and adds it to the wallet. If the // import is successful, the payment address string is returned. func (w *Wallet) ImportPrivateKey(privkey []byte, compressed bool, bs *BlockStamp) (string, error) { // First, must check that the key being imported will not result // in a duplicate address. pkh := btcutil.Hash160(pubkeyFromPrivkey(privkey, compressed)) // Will always be valid inputs so omit error check. apkh, err := btcutil.NewAddressPubKeyHash(pkh, w.Net()) if err != nil { return "", err } if _, ok := w.addrMap[*apkh]; ok { return "", ErrDuplicate } // The wallet must be unlocked to encrypt the imported private key. if len(w.secret) != 32 { return "", ErrWalletLocked } // Create new address with this private key. btcaddr, err := newBtcAddress(privkey, nil, bs, compressed) if err != nil { return "", err } btcaddr.chainIndex = importedKeyChainIdx // Encrypt imported address with the derived AES key. if err = btcaddr.encrypt(w.secret); err != nil { return "", err } // Add address to wallet's bookkeeping structures. Adding to // the map will result in the imported address being serialized // on the next WriteTo call. w.addrMap[*btcaddr.address(w.net)] = btcaddr w.importedAddrs = append(w.importedAddrs, btcaddr) // Create and return encoded payment address string. Error is // ignored as the length of the pubkey hash and net will always // be valid. addr, _ := btcutil.NewAddressPubKeyHash(btcaddr.pubKeyHash[:], w.Net()) return addr.String(), nil } // CreateDate returns the Unix time of the wallet creation time. This // is used to compare the wallet creation time against block headers and // set a better minimum block height of where to being rescans. func (w *Wallet) CreateDate() int64 { return w.createDate } // AddressInfo holds information regarding an address needed to manage // a complete wallet. type AddressInfo struct { btcutil.Address AddrHash string Compressed bool FirstBlock int32 Imported bool Pubkey string } // SortedActiveAddresses returns all wallet addresses that have been // requested to be generated. These do not include unused addresses in // the key pool. Use this when ordered addresses are needed. Otherwise, // ActiveAddresses is preferred. func (w *Wallet) SortedActiveAddresses() []*AddressInfo { addrs := make([]*AddressInfo, 0, w.highestUsed+int64(len(w.importedAddrs))+1) for i := int64(rootKeyChainIdx); i <= w.highestUsed; i++ { a := w.chainIdxMap[i] info, err := w.addrMap[*a].info(w.Net()) if err == nil { addrs = append(addrs, info) } } for _, addr := range w.importedAddrs { info, err := addr.info(w.Net()) if err == nil { addrs = append(addrs, info) } } return addrs } // ActiveAddresses returns a map between active payment addresses // and their full info. These do not include unused addresses in the // key pool. If addresses must be sorted, use SortedActiveAddresses. func (w *Wallet) ActiveAddresses() map[btcutil.Address]*AddressInfo { addrs := make(map[btcutil.Address]*AddressInfo) for i := int64(rootKeyChainIdx); i <= w.highestUsed; i++ { a := w.chainIdxMap[i] info, err := w.addrMap[*a].info(w.Net()) if err == nil { addrs[info.Address] = info } } for _, addr := range w.importedAddrs { info, err := addr.info(w.Net()) if err == nil { addrs[info.Address] = info } } return addrs } /* // unlockAddress decrypts and stores a pointer to an address's private // key, failing if the address is not encrypted, or the provided key is // incorrect. If the requested address's private key has not yet been // saved, the previous chained address is looked up and the private key // is saved and encrypted. The returned clear text private key will always // be a copy that may be safely used by the caller without worrying about it // being zeroed during an address lock. func (w *Wallet) unlockAddress(a *btcAddress, key []byte) (privKeyCT []byte, err error) { if !a.flags.encrypted { return nil, errors.New("unable to unlock unencrypted address") } if a.flags.createPrivKeyNextUnlock { // Look up previous chained address and unlock its private key. prevAPKH, ok := w.chainIdxMap[a.chainIndex-1] if !ok { return nil, errors.New("cannot determine previous address to create privkey") } prevAddr := w.addrMap[*prevAPKH] prevPrivKey, err := w.unlockAddress(prevAddr, key) if err != nil { return nil, err } // Generate this address's private key. privkey, err := ChainedPrivKey(prevPrivKey, prevAddr.pubKey, prevAddr.chaincode[:]) if err != nil { return nil, err } a.privKeyCT = privkey // Encrypt clear text private key. if err := a.encrypt(key); err != nil { return nil, err } a.flags.hasPrivKey = true a.flags.createPrivKeyNextUnlock = false } return a.unlock(key) } */ type walletFlags struct { useEncryption bool watchingOnly bool } func (wf *walletFlags) ReadFrom(r io.Reader) (n int64, err error) { raw := make([]byte, 8) n, err = binaryRead(r, binary.LittleEndian, raw) wf.useEncryption = raw[0] != 0 wf.watchingOnly = raw[1] != 0 return n, err } func (wf *walletFlags) WriteTo(w io.Writer) (n int64, err error) { raw := make([]byte, 8) if wf.useEncryption { raw[0] = 1 } if wf.watchingOnly { raw[1] = 1 } return binaryWrite(w, binary.LittleEndian, raw) } type addrFlags struct { hasPrivKey bool hasPubKey bool encrypted bool createPrivKeyNextUnlock bool // unimplemented in btcwallet compressed bool } func (af *addrFlags) ReadFrom(r io.Reader) (int64, error) { var b [8]byte n, err := r.Read(b[:]) if err != nil { return int64(n), err } af.hasPrivKey = b[0]&(1<<0) != 0 af.hasPubKey = b[0]&(1<<1) != 0 af.encrypted = b[0]&(1<<2) != 0 af.createPrivKeyNextUnlock = b[0]&(1<<3) != 0 af.compressed = b[0]&(1<<4) != 0 // Currently (at least until watching-only wallets are implemented) // btcwallet shall refuse to open any unencrypted addresses. This // check only makes sense if there is a private key to encrypt, which // there may not be if the keypool was extended from just the last // public key and no private keys were written. if af.hasPrivKey && !af.encrypted { return int64(n), errors.New("private key is unencrypted") } return int64(n), nil } func (af *addrFlags) WriteTo(w io.Writer) (int64, error) { var b [8]byte if af.hasPrivKey { b[0] |= 1 << 0 } if af.hasPubKey { b[0] |= 1 << 1 } if af.hasPrivKey && !af.encrypted { // We only support encrypted privkeys. return 0, errors.New("address must be encrypted") } if af.encrypted { b[0] |= 1 << 2 } if af.createPrivKeyNextUnlock { b[0] |= 1 << 3 } if af.compressed { b[0] |= 1 << 4 } n, err := w.Write(b[:]) return int64(n), err } // recentBlocks holds at most the last 20 seen block hashes as well as // the block height of the most recently seen block. type recentBlocks struct { hashes []*btcwire.ShaHash lastHeight int32 } type blockIterator struct { height int32 index int rb *recentBlocks } func (rb *recentBlocks) ReadFromVersion(v version, r io.Reader) (int64, error) { if !v.LT(Vers20LastBlocks) { // Use current version. return rb.ReadFrom(r) } // Old file versions only saved the most recently seen // block height and hash, not the last 20. var read int64 var syncedBlockHash btcwire.ShaHash // Read height. heightBytes := make([]byte, 4) // 4 bytes for a int32 n, err := r.Read(heightBytes) if err != nil { return read + int64(n), err } read += int64(n) rb.lastHeight = int32(binary.LittleEndian.Uint32(heightBytes)) // If height is -1, the last synced block is unknown, so don't try // to read a block hash. if rb.lastHeight == -1 { rb.hashes = nil return read, nil } // Read block hash. n, err = r.Read(syncedBlockHash[:]) if err != nil { return read + int64(n), err } read += int64(n) rb.hashes = []*btcwire.ShaHash{ &syncedBlockHash, } return read, nil } func (rb *recentBlocks) ReadFrom(r io.Reader) (int64, error) { var read int64 // Read number of saved blocks. This should not exceed 20. nBlockBytes := make([]byte, 4) // 4 bytes for a uint32 n, err := r.Read(nBlockBytes) if err != nil { return read + int64(n), err } read += int64(n) nBlocks := binary.LittleEndian.Uint32(nBlockBytes) if nBlocks > 20 { return read, errors.New("number of last seen blocks exceeds maximum of 20") } // If number of blocks is 0, our work here is done. if nBlocks == 0 { rb.lastHeight = -1 rb.hashes = nil return read, nil } // Read most recently seen block height. heightBytes := make([]byte, 4) // 4 bytes for a int32 n, err = r.Read(heightBytes) if err != nil { return read + int64(n), err } read += int64(n) height := int32(binary.LittleEndian.Uint32(heightBytes)) // height should not be -1 (or any other negative number) // since at this point we should be reading in at least one // known block. if height < 0 { return read, errors.New("expected a block but specified height is negative") } // Set last seen height. rb.lastHeight = height // Read nBlocks block hashes. Hashes are expected to be in // order of oldest to newest, but there's no way to check // that here. rb.hashes = make([]*btcwire.ShaHash, 0, nBlocks) for i := uint32(0); i < nBlocks; i++ { blockSha := new(btcwire.ShaHash) n, err := r.Read(blockSha[:]) if err != nil { return read + int64(n), err } read += int64(n) rb.hashes = append(rb.hashes, blockSha) } return read, nil } func (rb *recentBlocks) WriteTo(w io.Writer) (int64, error) { var written int64 // Write number of saved blocks. This should not exceed 20. nBlocks := uint32(len(rb.hashes)) if nBlocks > 20 { return written, errors.New("number of last seen blocks exceeds maximum of 20") } if nBlocks != 0 && rb.lastHeight < 0 { return written, errors.New("number of block hashes is positive, but height is negative") } if nBlocks == 0 && rb.lastHeight != -1 { return written, errors.New("no block hashes available, but height is not -1") } nBlockBytes := make([]byte, 4) // 4 bytes for a uint32 binary.LittleEndian.PutUint32(nBlockBytes, nBlocks) n, err := w.Write(nBlockBytes) if err != nil { return written + int64(n), err } written += int64(n) // If number of blocks is 0, our work here is done. if nBlocks == 0 { return written, nil } // Write most recently seen block height. heightBytes := make([]byte, 4) // 4 bytes for a int32 binary.LittleEndian.PutUint32(heightBytes, uint32(rb.lastHeight)) n, err = w.Write(heightBytes) if err != nil { return written + int64(n), err } written += int64(n) // Write block hashes. for _, hash := range rb.hashes { n, err := w.Write(hash[:]) if err != nil { return written + int64(n), err } written += int64(n) } return written, nil } // RecentBlockIterator is a type to iterate through recent-seen // blocks. type RecentBlockIterator interface { Next() bool Prev() bool BlockStamp() *BlockStamp } func (rb *recentBlocks) NewIterator() RecentBlockIterator { if rb.lastHeight == -1 { return nil } return &blockIterator{ height: rb.lastHeight, index: len(rb.hashes) - 1, rb: rb, } } func (it *blockIterator) Next() bool { if it.index+1 >= len(it.rb.hashes) { return false } it.index += 1 return true } func (it *blockIterator) Prev() bool { if it.index-1 < 0 { return false } it.index -= 1 return true } func (it *blockIterator) BlockStamp() *BlockStamp { return &BlockStamp{ Height: it.rb.lastHeight - int32(len(it.rb.hashes)-1-it.index), Hash: *it.rb.hashes[it.index], } } // unusedSpace is a wrapper type to read or write one or more types // that btcwallet fits into an unused space left by Armory's wallet file // format. type unusedSpace struct { nBytes int // number of unused bytes that armory left. rfvs []ReaderFromVersion } func newUnusedSpace(nBytes int, rfvs ...ReaderFromVersion) *unusedSpace { return &unusedSpace{ nBytes: nBytes, rfvs: rfvs, } } func (u *unusedSpace) ReadFromVersion(v version, r io.Reader) (int64, error) { var read int64 for _, rfv := range u.rfvs { n, err := rfv.ReadFromVersion(v, r) if err != nil { return read + n, err } read += n if read > int64(u.nBytes) { return read, errors.New("read too much from armory's unused space") } } // Read rest of actually unused bytes. unused := make([]byte, u.nBytes-int(read)) n, err := r.Read(unused) return read + int64(n), err } func (u *unusedSpace) WriteTo(w io.Writer) (int64, error) { var written int64 for _, wt := range u.rfvs { n, err := wt.WriteTo(w) if err != nil { return written + n, err } written += n if written > int64(u.nBytes) { return written, errors.New("wrote too much to armory's unused space") } } // Write rest of actually unused bytes. unused := make([]byte, u.nBytes-int(written)) n, err := w.Write(unused) return written + int64(n), err } type btcAddress struct { pubKeyHash [ripemd160.Size]byte flags addrFlags chaincode [32]byte chainIndex int64 chainDepth int64 // currently unused (will use when extending a locked wallet) initVector [16]byte privKey [32]byte pubKey publicKey firstSeen int64 lastSeen int64 firstBlock int32 lastBlock int32 privKeyCT []byte // non-nil if unlocked. } const ( // Root address has a chain index of -1. Each subsequent // chained address increments the index. rootKeyChainIdx = -1 // Imported private keys are not part of the chain, and have a // special index of -2. importedKeyChainIdx = -2 ) const ( pubkeyCompressed byte = 0x2 pubkeyUncompressed byte = 0x4 ) type publicKey []byte func (k *publicKey) ReadFrom(r io.Reader) (n int64, err error) { var read int64 var format byte read, err = binaryRead(r, binary.LittleEndian, &format) if err != nil { return n + read, err } n += read // Remove the oddness from the format noodd := format noodd &= ^byte(0x1) var s []byte switch noodd { case pubkeyUncompressed: // Read the remaining 64 bytes. s = make([]byte, 64) case pubkeyCompressed: // Read the remaining 32 bytes. s = make([]byte, 32) default: return n, errors.New("unrecognized pubkey format") } read, err = binaryRead(r, binary.LittleEndian, &s) if err != nil { return n + read, err } n += read *k = append([]byte{format}, s...) return } func (k *publicKey) WriteTo(w io.Writer) (n int64, err error) { return binaryWrite(w, binary.LittleEndian, []byte(*k)) } // newBtcAddress initializes and returns a new address. privkey must // be 32 bytes. iv must be 16 bytes, or nil (in which case it is // randomly generated). func newBtcAddress(privkey, iv []byte, bs *BlockStamp, compressed bool) (addr *btcAddress, err error) { if len(privkey) != 32 { return nil, errors.New("private key is not 32 bytes") } if iv == nil { iv = make([]byte, 16) if _, err := rand.Read(iv); err != nil { return nil, err } } else if len(iv) != 16 { return nil, errors.New("init vector must be nil or 16 bytes large") } addr = &btcAddress{ flags: addrFlags{ hasPrivKey: true, hasPubKey: true, createPrivKeyNextUnlock: false, compressed: compressed, encrypted: false, // will be, but isn't yet. }, firstSeen: time.Now().Unix(), firstBlock: bs.Height, } addr.privKeyCT = privkey copy(addr.initVector[:], iv) addr.pubKey = pubkeyFromPrivkey(privkey, compressed) copy(addr.pubKeyHash[:], btcutil.Hash160(addr.pubKey)) return addr, nil } // newBtcAddressWithoutPrivkey initializes and returns a new address with an // unknown (at the time) private key that must be found later. pubkey must be // 33 or 65 bytes, and iv must be 16 bytes or empty (in which case it is // randomly generated). func newBtcAddressWithoutPrivkey(pubkey, iv []byte, bs *BlockStamp) (addr *btcAddress, err error) { var compressed bool switch len(pubkey) { case 33: compressed = true case 65: compressed = false default: return nil, errors.New("incorrect pubkey length") } if len(iv) == 0 { iv = make([]byte, 16) if _, err := rand.Read(iv); err != nil { return nil, err } } else if len(iv) != 16 { return nil, errors.New("init vector must be nil or 16 bytes large") } addr = &btcAddress{ flags: addrFlags{ hasPrivKey: false, hasPubKey: true, createPrivKeyNextUnlock: true, compressed: compressed, encrypted: false, }, firstSeen: time.Now().Unix(), firstBlock: bs.Height, } copy(addr.initVector[:], iv) addr.pubKey = pubkey copy(addr.pubKeyHash[:], btcutil.Hash160(pubkey)) return addr, nil } // newRootBtcAddress generates a new address, also setting the // chaincode and chain index to represent this address as a root // address. func newRootBtcAddress(privKey, iv, chaincode []byte, bs *BlockStamp) (addr *btcAddress, err error) { if len(chaincode) != 32 { return nil, errors.New("chaincode is not 32 bytes") } // Create new btcAddress with provided inputs. This will // always use a compressed pubkey. addr, err = newBtcAddress(privKey, iv, bs, true) if err != nil { return nil, err } copy(addr.chaincode[:], chaincode) addr.chainIndex = rootKeyChainIdx return addr, err } // verifyKeypairs creates a signature using the parsed private key and // verifies the signature with the parsed public key. If either of these // steps fail, the keypair generation failed and any funds sent to this // address will be unspendable. This step requires an unencrypted or // unlocked btcAddress. func (a *btcAddress) verifyKeypairs() error { // Parse public key. pubkey, err := btcec.ParsePubKey(a.pubKey, btcec.S256()) if err != nil { return err } if len(a.privKeyCT) != 32 { return errors.New("private key unavailable") } privkey := &ecdsa.PrivateKey{ PublicKey: *pubkey, D: new(big.Int).SetBytes(a.privKeyCT), } data := "String to sign." r, s, err := ecdsa.Sign(rand.Reader, privkey, []byte(data)) if err != nil { return err } ok := ecdsa.Verify(&privkey.PublicKey, []byte(data), r, s) if !ok { return errors.New("ecdsa verification failed") } return nil } // ReadFrom reads an encrypted address from an io.Reader. func (a *btcAddress) ReadFrom(r io.Reader) (n int64, err error) { var read int64 // Checksums var chkPubKeyHash uint32 var chkChaincode uint32 var chkInitVector uint32 var chkPrivKey uint32 var chkPubKey uint32 // Read serialized wallet into addr fields and checksums. datas := []interface{}{ &a.pubKeyHash, &chkPubKeyHash, make([]byte, 4), // version &a.flags, &a.chaincode, &chkChaincode, &a.chainIndex, &a.chainDepth, &a.initVector, &chkInitVector, &a.privKey, &chkPrivKey, &a.pubKey, &chkPubKey, &a.firstSeen, &a.lastSeen, &a.firstBlock, &a.lastBlock, } for _, data := range datas { if rf, ok := data.(io.ReaderFrom); ok { read, err = rf.ReadFrom(r) } else { read, err = binaryRead(r, binary.LittleEndian, data) } if err != nil { return n + read, err } n += read } // Verify checksums, correct errors where possible. checks := []struct { data []byte chk uint32 }{ {a.pubKeyHash[:], chkPubKeyHash}, {a.chaincode[:], chkChaincode}, {a.initVector[:], chkInitVector}, {a.privKey[:], chkPrivKey}, {a.pubKey, chkPubKey}, } for i := range checks { if err = verifyAndFix(checks[i].data, checks[i].chk); err != nil { return n, err } } return n, nil } func (a *btcAddress) WriteTo(w io.Writer) (n int64, err error) { var written int64 datas := []interface{}{ &a.pubKeyHash, walletHash(a.pubKeyHash[:]), make([]byte, 4), //version &a.flags, &a.chaincode, walletHash(a.chaincode[:]), &a.chainIndex, &a.chainDepth, &a.initVector, walletHash(a.initVector[:]), &a.privKey, walletHash(a.privKey[:]), &a.pubKey, walletHash(a.pubKey), &a.firstSeen, &a.lastSeen, &a.firstBlock, &a.lastBlock, } for _, data := range datas { if wt, ok := data.(io.WriterTo); ok { written, err = wt.WriteTo(w) } else { written, err = binaryWrite(w, binary.LittleEndian, data) } if err != nil { return n + written, err } n += written } return n, nil } // encrypt attempts to encrypt an address's clear text private key, // failing if the address is already encrypted or if the private key is // not 32 bytes. If successful, the encryption flag is set. func (a *btcAddress) encrypt(key []byte) error { if a.flags.encrypted { return errors.New("address already encrypted") } if len(a.privKeyCT) != 32 { return errors.New("invalid clear text private key") } aesBlockEncrypter, err := aes.NewCipher(key) if err != nil { return err } aesEncrypter := cipher.NewCFBEncrypter(aesBlockEncrypter, a.initVector[:]) aesEncrypter.XORKeyStream(a.privKey[:], a.privKeyCT) a.flags.hasPrivKey = true a.flags.encrypted = true return nil } // lock removes the reference this address holds to its clear text // private key. This function fails if the address is not encrypted. func (a *btcAddress) lock() error { if !a.flags.encrypted { return errors.New("unable to lock unencrypted address") } zero(a.privKeyCT) a.privKeyCT = nil return nil } // unlock decrypts and stores a pointer to an address's private key, // failing if the address is not encrypted, or the provided key is // incorrect. The returned clear text private key will always be a copy // that may be safely used by the caller without worrying about it being // zeroed during an address lock. func (a *btcAddress) unlock(key []byte) (privKeyCT []byte, err error) { if !a.flags.encrypted { return nil, errors.New("unable to unlock unencrypted address") } // If secret is already saved, return a copy without performing a full // unlock. if len(a.privKeyCT) == 32 { privKeyCT := make([]byte, 32) copy(privKeyCT, a.privKeyCT) return privKeyCT, nil } // Decrypt private key with AES key. aesBlockDecrypter, err := aes.NewCipher(key) if err != nil { return nil, err } aesDecrypter := cipher.NewCFBDecrypter(aesBlockDecrypter, a.initVector[:]) privkey := make([]byte, 32) aesDecrypter.XORKeyStream(privkey, a.privKey[:]) // Generate new x, y from clear text private key and check that they // match the recorded pubkey. pubKey, err := btcec.ParsePubKey(a.pubKey, btcec.S256()) if err != nil { return nil, fmt.Errorf("cannot parse pubkey: %s", err) } x, y := btcec.S256().ScalarBaseMult(privkey) if x.Cmp(pubKey.X) != 0 || y.Cmp(pubKey.Y) != 0 { return nil, errors.New("decryption failed") } privkeyCopy := make([]byte, 32) copy(privkeyCopy, privkey) a.privKeyCT = privkey return privkeyCopy, nil } // TODO(jrick) func (a *btcAddress) changeEncryptionKey(oldkey, newkey []byte) error { return errors.New("unimplemented") } // address returns a btcutil.AddressPubKeyHash for a btcAddress. func (a *btcAddress) address(net btcwire.BitcoinNet) *btcutil.AddressPubKeyHash { // error is not returned because the hash will always be 20 // bytes, and net is assumed to be valid. addr, _ := btcutil.NewAddressPubKeyHash(a.pubKeyHash[:], net) return addr } // info returns information about a btcAddress stored in a AddressInfo // struct. func (a *btcAddress) info(net btcwire.BitcoinNet) (*AddressInfo, error) { address := a.address(net) return &AddressInfo{ Address: address, AddrHash: string(a.pubKeyHash[:]), Compressed: a.flags.compressed, FirstBlock: a.firstBlock, Imported: a.chainIndex == importedKeyChainIdx, Pubkey: hex.EncodeToString(a.pubKey), }, nil } func walletHash(b []byte) uint32 { sum := btcwire.DoubleSha256(b) return binary.LittleEndian.Uint32(sum) } // TODO(jrick) add error correction. func verifyAndFix(b []byte, chk uint32) error { if walletHash(b) != chk { return ErrChecksumMismatch } return nil } type kdfParameters struct { mem uint64 nIter uint32 salt [32]byte } // computeKdfParameters returns best guess parameters to the // memory-hard key derivation function to make the computation last // targetSec seconds, while using no more than maxMem bytes of memory. func computeKdfParameters(targetSec float64, maxMem uint64) (*kdfParameters, error) { params := &kdfParameters{} if _, err := rand.Read(params.salt[:]); err != nil { return nil, err } testKey := []byte("This is an example key to test KDF iteration speed") memoryReqtBytes := uint64(1024) approxSec := float64(0) for approxSec <= targetSec/4 && memoryReqtBytes < maxMem { memoryReqtBytes *= 2 before := time.Now() _ = keyOneIter(testKey, params.salt[:], memoryReqtBytes) approxSec = time.Since(before).Seconds() } allItersSec := float64(0) nIter := uint32(1) for allItersSec < 0.02 { // This is a magic number straight from armory's source. nIter *= 2 before := time.Now() for i := uint32(0); i < nIter; i++ { _ = keyOneIter(testKey, params.salt[:], memoryReqtBytes) } allItersSec = time.Since(before).Seconds() } params.mem = memoryReqtBytes params.nIter = nIter return params, nil } func (params *kdfParameters) WriteTo(w io.Writer) (n int64, err error) { var written int64 memBytes := make([]byte, 8) nIterBytes := make([]byte, 4) binary.LittleEndian.PutUint64(memBytes, params.mem) binary.LittleEndian.PutUint32(nIterBytes, params.nIter) chkedBytes := append(memBytes, nIterBytes...) chkedBytes = append(chkedBytes, params.salt[:]...) datas := []interface{}{ ¶ms.mem, ¶ms.nIter, ¶ms.salt, walletHash(chkedBytes), make([]byte, 256-(binary.Size(params)+4)), // padding } for _, data := range datas { if written, err = binaryWrite(w, binary.LittleEndian, data); err != nil { return n + written, err } n += written } return n, nil } func (params *kdfParameters) ReadFrom(r io.Reader) (n int64, err error) { var read int64 // These must be read in but are not saved directly to params. chkedBytes := make([]byte, 44) var chk uint32 padding := make([]byte, 256-(binary.Size(params)+4)) datas := []interface{}{ chkedBytes, &chk, padding, } for _, data := range datas { if read, err = binaryRead(r, binary.LittleEndian, data); err != nil { return n + read, err } n += read } // Verify checksum if err = verifyAndFix(chkedBytes, chk); err != nil { return n, err } // Read params buf := bytes.NewBuffer(chkedBytes) datas = []interface{}{ ¶ms.mem, ¶ms.nIter, ¶ms.salt, } for _, data := range datas { if err = binary.Read(buf, binary.LittleEndian, data); err != nil { return n, err } } return n, nil } type addrEntry struct { pubKeyHash160 [ripemd160.Size]byte addr btcAddress } func (e *addrEntry) WriteTo(w io.Writer) (n int64, err error) { var written int64 // Write header if written, err = binaryWrite(w, binary.LittleEndian, addrHeader); err != nil { return n + written, err } n += written // Write hash if written, err = binaryWrite(w, binary.LittleEndian, &e.pubKeyHash160); err != nil { return n + written, err } n += written // Write btcAddress written, err = e.addr.WriteTo(w) n += written return n, err } func (e *addrEntry) ReadFrom(r io.Reader) (n int64, err error) { var read int64 if read, err = binaryRead(r, binary.LittleEndian, &e.pubKeyHash160); err != nil { return n + read, err } n += read read, err = e.addr.ReadFrom(r) return n + read, err } type addrCommentEntry struct { pubKeyHash160 [ripemd160.Size]byte comment []byte } func (e *addrCommentEntry) address(net btcwire.BitcoinNet) *btcutil.AddressPubKeyHash { // error is not returned because the hash will always be 20 // bytes, and net is assumed to be valid. addr, _ := btcutil.NewAddressPubKeyHash(e.pubKeyHash160[:], net) return addr } func (e *addrCommentEntry) WriteTo(w io.Writer) (n int64, err error) { var written int64 // Comments shall not overflow their entry. if len(e.comment) > maxCommentLen { return n, ErrMalformedEntry } // Write header if written, err = binaryWrite(w, binary.LittleEndian, addrCommentHeader); err != nil { return n + written, err } n += written // Write hash if written, err = binaryWrite(w, binary.LittleEndian, &e.pubKeyHash160); err != nil { return n + written, err } n += written // Write length if written, err = binaryWrite(w, binary.LittleEndian, uint16(len(e.comment))); err != nil { return n + written, err } n += written // Write comment written, err = binaryWrite(w, binary.LittleEndian, e.comment) return n + written, err } func (e *addrCommentEntry) ReadFrom(r io.Reader) (n int64, err error) { var read int64 if read, err = binaryRead(r, binary.LittleEndian, &e.pubKeyHash160); err != nil { return n + read, err } n += read var clen uint16 if read, err = binaryRead(r, binary.LittleEndian, &clen); err != nil { return n + read, err } n += read e.comment = make([]byte, clen) read, err = binaryRead(r, binary.LittleEndian, e.comment) return n + read, err } type txCommentEntry struct { txHash [sha256.Size]byte comment []byte } func (e *txCommentEntry) WriteTo(w io.Writer) (n int64, err error) { var written int64 // Comments shall not overflow their entry. if len(e.comment) > maxCommentLen { return n, ErrMalformedEntry } // Write header if written, err = binaryWrite(w, binary.LittleEndian, txCommentHeader); err != nil { return n + written, err } n += written // Write length if written, err = binaryWrite(w, binary.LittleEndian, uint16(len(e.comment))); err != nil { return n + written, err } // Write comment written, err = binaryWrite(w, binary.LittleEndian, e.comment) return n + written, err } func (e *txCommentEntry) ReadFrom(r io.Reader) (n int64, err error) { var read int64 if read, err = binaryRead(r, binary.LittleEndian, &e.txHash); err != nil { return n + read, err } n += read var clen uint16 if read, err = binaryRead(r, binary.LittleEndian, &clen); err != nil { return n + read, err } n += read e.comment = make([]byte, clen) read, err = binaryRead(r, binary.LittleEndian, e.comment) return n + read, err } type deletedEntry struct{} func (e *deletedEntry) ReadFrom(r io.Reader) (n int64, err error) { var read int64 var ulen uint16 if read, err = binaryRead(r, binary.LittleEndian, &ulen); err != nil { return n + read, err } n += read unused := make([]byte, ulen) nRead, err := r.Read(unused) if err == io.EOF { return n + int64(nRead), nil } return n + int64(nRead), err } // BlockStamp defines a block (by height and a unique hash) and is // used to mark a point in the blockchain that a wallet element is // synced to. type BlockStamp struct { Height int32 Hash btcwire.ShaHash }