/* * Copyright (c) 2013, 2014 Conformal Systems LLC * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ package wallet import ( "bytes" "crypto/ecdsa" "crypto/rand" "encoding/hex" "github.com/conformal/btcec" "github.com/conformal/btcutil" "github.com/conformal/btcwire" "github.com/davecgh/go-spew/spew" "math/big" "os" "reflect" "testing" ) var _ = spew.Dump func TestBtcAddressSerializer(t *testing.T) { kdfp := &kdfParameters{ mem: 1024, nIter: 5, } if _, err := rand.Read(kdfp.salt[:]); err != nil { t.Error(err.Error()) return } key := Key([]byte("banana"), kdfp) privKey := make([]byte, 32) if _, err := rand.Read(privKey); err != nil { t.Error(err.Error()) return } addr, err := newBtcAddress(privKey, nil, &BlockStamp{}, true) if err != nil { t.Error(err.Error()) return } err = addr.encrypt(key) if err != nil { t.Error(err.Error()) return } file, err := os.Create("btcaddress.bin") if err != nil { t.Error(err.Error()) return } defer file.Close() if _, err := addr.WriteTo(file); err != nil { t.Error(err.Error()) return } file.Seek(0, 0) var readAddr btcAddress _, err = readAddr.ReadFrom(file) if err != nil { t.Error(err.Error()) return } if _, err = readAddr.unlock(key); err != nil { t.Error(err.Error()) return } if !reflect.DeepEqual(addr, &readAddr) { t.Error("Original and read btcAddress differ.") } } func TestWalletCreationSerialization(t *testing.T) { createdAt := &BlockStamp{} w1, err := NewWallet("banana wallet", "A wallet for testing.", []byte("banana"), btcwire.MainNet, createdAt, 100) if err != nil { t.Error("Error creating new wallet: " + err.Error()) return } file, err := os.Create("newwallet.bin") if err != nil { t.Error(err.Error()) return } defer file.Close() if _, err := w1.WriteTo(file); err != nil { t.Error("Error writing new wallet: " + err.Error()) return } file.Seek(0, 0) w2 := new(Wallet) _, err = w2.ReadFrom(file) if err != nil { t.Error("Error reading newly written wallet: " + err.Error()) return } w1.Lock() w2.Lock() if err = w1.Unlock([]byte("banana")); err != nil { t.Error("Decrypting original wallet failed: " + err.Error()) return } if err = w2.Unlock([]byte("banana")); err != nil { t.Error("Decrypting newly read wallet failed: " + err.Error()) return } if !reflect.DeepEqual(w1, w2) { t.Error("Created and read-in wallets do not match.") spew.Dump(w1, w2) return } } func TestChaining(t *testing.T) { tests := []struct { name string cc []byte origPrivateKey []byte nextPrivateKeyUncompressed []byte nextPrivateKeyCompressed []byte nextPublicKeyUncompressed []byte nextPublicKeyCompressed []byte }{ { name: "chaintest 1", cc: []byte("3318959fff419ab8b556facb3c429a86"), origPrivateKey: []byte("5ffc975976eaaa1f7b179f384ebbc053"), nextPrivateKeyUncompressed: []byte{ 0xd3, 0xfe, 0x2e, 0x96, 0x44, 0x12, 0x2d, 0xaa, 0x80, 0x8e, 0x36, 0x17, 0xb5, 0x9f, 0x8c, 0xd2, 0x72, 0x8c, 0xaf, 0xf1, 0xdb, 0xd6, 0x4a, 0x92, 0xd7, 0xc7, 0xee, 0x2b, 0x56, 0x34, 0xe2, 0x87, }, nextPrivateKeyCompressed: []byte{ 0x08, 0x56, 0x7a, 0x1b, 0x89, 0x56, 0x2e, 0xfa, 0xb4, 0x02, 0x59, 0x69, 0x10, 0xc3, 0x60, 0x1f, 0x34, 0xf0, 0x55, 0x02, 0x8a, 0xbf, 0x37, 0xf5, 0x22, 0x80, 0x9f, 0xd2, 0xe5, 0x42, 0x5b, 0x2d, }, nextPublicKeyUncompressed: []byte{ 0x04, 0xdd, 0x70, 0x31, 0xa5, 0xf9, 0x06, 0x70, 0xd3, 0x9a, 0x24, 0x5b, 0xd5, 0x73, 0xdd, 0xb6, 0x15, 0x81, 0x0b, 0x78, 0x19, 0xbc, 0xc8, 0x26, 0xc9, 0x16, 0x86, 0x73, 0xae, 0xe4, 0xc0, 0xed, 0x39, 0x81, 0xb4, 0x86, 0x2d, 0x19, 0x8c, 0x67, 0x9c, 0x93, 0x99, 0xf6, 0xd2, 0x3f, 0xd1, 0x53, 0x9e, 0xed, 0xbd, 0x07, 0xd6, 0x4f, 0xa9, 0x81, 0x61, 0x85, 0x46, 0x84, 0xb1, 0xa0, 0xed, 0xbc, 0xa7, }, nextPublicKeyCompressed: []byte{ 0x02, 0x2c, 0x48, 0x73, 0x37, 0x35, 0x74, 0x7f, 0x05, 0x58, 0xc1, 0x4e, 0x0d, 0x18, 0xc2, 0xbf, 0xcc, 0x83, 0xa2, 0x4d, 0x64, 0xab, 0xba, 0xea, 0xeb, 0x4c, 0xcd, 0x4c, 0x0c, 0x21, 0xc4, 0x30, 0x0f, }, }, } for _, test := range tests { // Create both uncompressed and compressed public keys for original // private key. origPubUncompressed := pubkeyFromPrivkey(test.origPrivateKey, false) origPubCompressed := pubkeyFromPrivkey(test.origPrivateKey, true) // Create next chained private keys, chained from both the uncompressed // and compressed pubkeys. nextPrivUncompressed, err := ChainedPrivKey(test.origPrivateKey, origPubUncompressed, test.cc) if err != nil { t.Errorf("%s: Uncompressed ChainedPrivKey failed: %v", test.name, err) return } nextPrivCompressed, err := ChainedPrivKey(test.origPrivateKey, origPubCompressed, test.cc) if err != nil { t.Errorf("%s: Compressed ChainedPrivKey failed: %v", test.name, err) return } // Verify that the new private keys match the expected values // in the test case. if !bytes.Equal(nextPrivUncompressed, test.nextPrivateKeyUncompressed) { t.Errorf("%s: Next private key (from uncompressed pubkey) does not match expected.\nGot: %s\nExpected: %s", test.name, spew.Sdump(nextPrivUncompressed), spew.Sdump(test.nextPrivateKeyUncompressed)) return } if !bytes.Equal(nextPrivCompressed, test.nextPrivateKeyCompressed) { t.Errorf("%s: Next private key (from compressed pubkey) does not match expected.\nGot: %s\nExpected: %s", test.name, spew.Sdump(nextPrivCompressed), spew.Sdump(test.nextPrivateKeyCompressed)) return } // Create the next pubkeys generated from the next private keys. nextPubUncompressedFromPriv := pubkeyFromPrivkey(nextPrivUncompressed, false) nextPubCompressedFromPriv := pubkeyFromPrivkey(nextPrivCompressed, true) // Create the next pubkeys by chaining directly off the original // pubkeys (without using the original's private key). nextPubUncompressedFromPub, err := ChainedPubKey(origPubUncompressed, test.cc) if err != nil { t.Errorf("%s: Uncompressed ChainedPubKey failed: %v", test.name, err) return } nextPubCompressedFromPub, err := ChainedPubKey(origPubCompressed, test.cc) if err != nil { t.Errorf("%s: Compressed ChainedPubKey failed: %v", test.name, err) return } // Public keys (used to generate the bitcoin address) MUST match. if !bytes.Equal(nextPubUncompressedFromPriv, nextPubUncompressedFromPub) { t.Errorf("%s: Uncompressed public keys do not match.", test.name) } if !bytes.Equal(nextPubCompressedFromPriv, nextPubCompressedFromPub) { t.Errorf("%s: Compressed public keys do not match.", test.name) } // Verify that all generated public keys match the expected // values in the test case. if !bytes.Equal(nextPubUncompressedFromPub, test.nextPublicKeyUncompressed) { t.Errorf("%s: Next uncompressed public keys do not match expected value.\nGot: %s\nExpected: %s", test.name, spew.Sdump(nextPubUncompressedFromPub), spew.Sdump(test.nextPublicKeyUncompressed)) return } if !bytes.Equal(nextPubCompressedFromPub, test.nextPublicKeyCompressed) { t.Errorf("%s: Next compressed public keys do not match expected value.\nGot: %s\nExpected: %s", test.name, spew.Sdump(nextPubCompressedFromPub), spew.Sdump(test.nextPublicKeyCompressed)) return } // Sign data with the next private keys and verify signature with // the next pubkeys. pubkeyUncompressed, err := btcec.ParsePubKey(nextPubUncompressedFromPub, btcec.S256()) if err != nil { t.Errorf("%s: Unable to parse next uncompressed pubkey: %v", test.name, err) return } pubkeyCompressed, err := btcec.ParsePubKey(nextPubCompressedFromPub, btcec.S256()) if err != nil { t.Errorf("%s: Unable to parse next compressed pubkey: %v", test.name, err) return } privkeyUncompressed := &ecdsa.PrivateKey{ PublicKey: *pubkeyUncompressed, D: new(big.Int).SetBytes(nextPrivUncompressed), } privkeyCompressed := &ecdsa.PrivateKey{ PublicKey: *pubkeyCompressed, D: new(big.Int).SetBytes(nextPrivCompressed), } data := "String to sign." r, s, err := ecdsa.Sign(rand.Reader, privkeyUncompressed, []byte(data)) if err != nil { t.Errorf("%s: Unable to sign data with next private key (chained from uncompressed pubkey): %v", test.name, err) return } ok := ecdsa.Verify(&privkeyUncompressed.PublicKey, []byte(data), r, s) if !ok { t.Errorf("%s: ecdsa verification failed for next keypair (chained from uncompressed pubkey).", test.name) return } r, s, err = ecdsa.Sign(rand.Reader, privkeyCompressed, []byte(data)) if err != nil { t.Errorf("%s: Unable to sign data with next private key (chained from compressed pubkey): %v", test.name, err) return } ok = ecdsa.Verify(&privkeyCompressed.PublicKey, []byte(data), r, s) if !ok { t.Errorf("%s: ecdsa verification failed for next keypair (chained from compressed pubkey).", test.name) return } } } func TestWalletPubkeyChaining(t *testing.T) { // Set a reasonable keypool size that isn't too big nor too small for testing. const keypoolSize = 5 w, err := NewWallet("banana wallet", "A wallet for testing.", []byte("banana"), btcwire.MainNet, &BlockStamp{}, keypoolSize) if err != nil { t.Error("Error creating new wallet: " + err.Error()) return } if !w.IsLocked() { t.Error("New wallet is not locked.") } // Wallet should have a total of 6 addresses, one for the root, plus 5 in // the keypool with their private keys set. Ask for as many new addresses // as needed to deplete the pool. for i := 0; i < keypoolSize; i++ { _, err := w.NextChainedAddress(&BlockStamp{}, keypoolSize) if err != nil { t.Errorf("Error getting next address from keypool: %v", err) return } } // Get next chained address after depleting the keypool. This will extend // the chain based on the last pubkey, not privkey. addrWithoutPrivkey, err := w.NextChainedAddress(&BlockStamp{}, keypoolSize) if err != nil { t.Errorf("Failed to extend address chain from pubkey: %v", err) return } // Lookup address info. This should succeed even without the private // key available. info, err := w.AddressInfo(addrWithoutPrivkey) if err != nil { t.Errorf("Failed to get info about address without private key: %v", err) return } // sanity checks if !info.Compressed { t.Errorf("Pubkey should be compressed.") return } if info.Imported { t.Errorf("Should not be marked as imported.") return } // Try to lookup it's private key. This should fail. _, err = w.AddressKey(addrWithoutPrivkey) if err == nil { t.Errorf("Incorrectly returned nil error for looking up private key for address without one saved.") return } // Deserialize w and serialize into a new wallet. The rest of the checks // in this test test against both a fresh, as well as an "opened and closed" // wallet with the missing private key. serializedWallet := new(bytes.Buffer) _, err = w.WriteTo(serializedWallet) if err != nil { t.Errorf("Error writing wallet with missing private key: %v", err) return } w2 := new(Wallet) _, err = w2.ReadFrom(serializedWallet) if err != nil { t.Errorf("Error reading wallet with missing private key: %v", err) return } // Unlock wallet. This should trigger creating the private key for // the address. if err = w.Unlock([]byte("banana")); err != nil { t.Errorf("Can't unlock original wallet: %v", err) return } if err = w2.Unlock([]byte("banana")); err != nil { t.Errorf("Can't unlock re-read wallet: %v", err) return } // Same address, better variable name. addrWithPrivKey := addrWithoutPrivkey // Try a private key lookup again. The private key should now be available. key1, err := w.AddressKey(addrWithPrivKey) if err != nil { t.Errorf("Private key for original wallet was not created! %v", err) return } key2, err := w2.AddressKey(addrWithPrivKey) if err != nil { t.Errorf("Private key for re-read wallet was not created! %v", err) return } // Keys returned by both wallets must match. if !reflect.DeepEqual(key1, key2) { t.Errorf("Private keys for address originally created without one mismtach between original and re-read wallet.") return } // Sign some data with the private key, then verify signature with the pubkey. hash := []byte("hash to sign") r, s, err := ecdsa.Sign(rand.Reader, key1, hash) if err != nil { t.Errorf("Unable to sign hash with the created private key: %v", err) return } pubKeyStr, _ := hex.DecodeString(info.Pubkey) pubKey, err := btcec.ParsePubKey(pubKeyStr, btcec.S256()) ok := ecdsa.Verify(pubKey, hash, r, s) if !ok { t.Errorf("ECDSA verification failed; address's pubkey mismatches the privkey.") return } // Test that normal keypool extension and address creation continues to // work. With the wallet still unlocked, create a new address. This // will cause the keypool to refill and return the first address from the // keypool. nextAddr, err := w.NextChainedAddress(&BlockStamp{}, keypoolSize) if err != nil { t.Errorf("Unable to create next address or refill keypool after finding the privkey: %v", err) return } nextInfo, err := w.AddressInfo(nextAddr) if err != nil { t.Errorf("Couldn't get info about the next address in the chain: %v", err) return } nextKey, err := w.AddressKey(nextAddr) if err != nil { t.Errorf("Couldn't get private key for the next address in the chain: %v", err) return } // Do an ECDSA signature check here as well, this time for the next // address after the one made without the private key. r, s, err = ecdsa.Sign(rand.Reader, nextKey, hash) if err != nil { t.Errorf("Unable to sign hash with the created private key: %v", err) return } pubKeyStr, _ = hex.DecodeString(nextInfo.Pubkey) pubKey, err = btcec.ParsePubKey(pubKeyStr, btcec.S256()) ok = ecdsa.Verify(pubKey, hash, r, s) if !ok { t.Errorf("ECDSA verification failed; next address's keypair does not match.") return } } func TestWatchingWalletExport(t *testing.T) { const keypoolSize = 10 createdAt := &BlockStamp{} w, err := NewWallet("banana wallet", "A wallet for testing.", []byte("banana"), btcwire.MainNet, createdAt, keypoolSize) if err != nil { t.Error("Error creating new wallet: " + err.Error()) return } // Maintain a set of the active addresses in the wallet. activeAddrs := make(map[btcutil.AddressPubKeyHash]struct{}) // Add root address. activeAddrs[*w.LastChainedAddress()] = struct{}{} // Get as many new active addresses as necessary to deplete the keypool. // This is done as we will want to test that new addresses created by // the watching wallet do not pull from previous public keys in the // original keypool. for i := 0; i < keypoolSize; i++ { apkh, err := w.NextChainedAddress(createdAt, keypoolSize) if err != nil { t.Errorf("unable to get next address: %v", err) return } activeAddrs[*apkh] = struct{}{} } // Create watching wallet from w. ww, err := w.ExportWatchingWallet() if err != nil { t.Errorf("Could not create watching wallet: %v", err) return } // Verify correctness of wallet flags. if ww.flags.useEncryption { t.Errorf("Watching wallet marked as using encryption (but nothing to encrypt).") return } if !ww.flags.watchingOnly { t.Errorf("Wallet should be watching-only but is not marked so.") return } // Verify that all flags are set as expected. if ww.keyGenerator.flags.encrypted { t.Errorf("Watching root address should not be encrypted (nothing to encrypt)") return } if ww.keyGenerator.flags.hasPrivKey { t.Errorf("Watching root address marked as having a private key.") return } if !ww.keyGenerator.flags.hasPubKey { t.Errorf("Watching root address marked as missing a public key.") return } if ww.keyGenerator.flags.createPrivKeyNextUnlock { t.Errorf("Watching root address marked as needing a private key to be generated later.") return } for apkh, addr := range ww.addrMap { if addr.flags.encrypted { t.Errorf("Chained address should not be encrypted (nothing to encrypt)") return } if ww.keyGenerator.flags.hasPrivKey { t.Errorf("Chained address marked as having a private key.") return } if !ww.keyGenerator.flags.hasPubKey { t.Errorf("Chained address marked as missing a public key.") return } if ww.keyGenerator.flags.createPrivKeyNextUnlock { t.Errorf("Chained address marked as needing a private key to be generated later.") return } if _, ok := activeAddrs[apkh]; !ok { t.Errorf("Address from watching wallet not found in original wallet.") return } delete(activeAddrs, apkh) } if len(activeAddrs) != 0 { t.Errorf("%v address(es) were not exported to watching wallet.", len(activeAddrs)) return } // Check that the new addresses created by each wallet match. The // original wallet is unlocked so the keypool is refilled and chained // addresses use the previous' privkey, not pubkey. if err := w.Unlock([]byte("banana")); err != nil { t.Errorf("Unlocking original wallet failed: %v", err) } for i := 0; i < keypoolSize; i++ { addr, err := w.NextChainedAddress(createdAt, keypoolSize) if err != nil { t.Errorf("Cannot get next chained address for original wallet: %v", err) return } waddr, err := ww.NextChainedAddress(createdAt, keypoolSize) if err != nil { t.Errorf("Cannot get next chained address for watching wallet: %v", err) return } if addr.String() != waddr.String() { t.Errorf("Next addresses for each wallet do not match eachother.") return } } // Test that ExtendActiveAddresses for the watching wallet match // manually requested addresses of the original wallet. newAddrs := make([]btcutil.Address, 0, keypoolSize) for i := 0; i < keypoolSize; i++ { addr, err := w.NextChainedAddress(createdAt, keypoolSize) if err != nil { t.Errorf("Cannot get next chained address for original wallet: %v", err) return } newAddrs = append(newAddrs, addr) } newWWAddrs, err := ww.ExtendActiveAddresses(keypoolSize, keypoolSize) if err != nil { t.Errorf("Cannot extend active addresses for watching wallet: %v", err) return } for i := range newAddrs { if newAddrs[i].EncodeAddress() != newWWAddrs[i].EncodeAddress() { t.Errorf("Extended active addresses do not match manually requested addresses.") return } } // Test ExtendActiveAddresses for the original wallet after manually // requesting addresses for the watching wallet. newWWAddrs = make([]btcutil.Address, 0, keypoolSize) for i := 0; i < keypoolSize; i++ { addr, err := ww.NextChainedAddress(createdAt, keypoolSize) if err != nil { t.Errorf("Cannot get next chained address for watching wallet: %v", err) return } newWWAddrs = append(newWWAddrs, addr) } newAddrs, err = w.ExtendActiveAddresses(keypoolSize, keypoolSize) if err != nil { t.Errorf("Cannot extend active addresses for original wallet: %v", err) return } for i := range newAddrs { if newAddrs[i].EncodeAddress() != newWWAddrs[i].EncodeAddress() { t.Errorf("Extended active addresses do not match manually requested addresses.") return } } // Test (de)serialization of watching wallet. buf := new(bytes.Buffer) _, err = ww.WriteTo(buf) if err != nil { t.Errorf("Cannot write watching wallet: %v", err) return } ww2 := new(Wallet) _, err = ww2.ReadFrom(buf) if err != nil { t.Errorf("Cannot read watching wallet: %v", err) return } // Check that (de)serialized watching wallet matches the exported wallet. if !reflect.DeepEqual(ww, ww2) { t.Error("Exported and read-in watching wallets do not match.") return } // Verify that nonsensical functions fail with correct error. if err := ww.Lock(); err != ErrWalletIsWatchingOnly { t.Errorf("Nonsensical func Lock returned no or incorrect error: %v", err) return } if err := ww.Unlock([]byte("banana")); err != ErrWalletIsWatchingOnly { t.Errorf("Nonsensical func Unlock returned no or incorrect error: %v", err) return } if _, err := ww.AddressKey(w.keyGenerator.address(ww.net)); err != ErrWalletIsWatchingOnly { t.Errorf("Nonsensical func AddressKey returned no or incorrect error: %v", err) return } if _, err := ww.ExportWatchingWallet(); err != ErrWalletIsWatchingOnly { t.Errorf("Nonsensical func ExportWatchingWallet returned no or incorrect error: %v", err) return } if _, err := ww.ImportPrivateKey(make([]byte, 32), true, createdAt); err != ErrWalletIsWatchingOnly { t.Errorf("Nonsensical func ImportPrivateKey returned no or incorrect error: %v", err) return } }