from typing import Dict from twisted.internet import defer import torba.baseledger from torba.mnemonic import Mnemonic from torba.bip32 import PrivateKey, PubKey, from_extended_key_string from torba.hash import double_sha256, aes_encrypt, aes_decrypt class KeyChain: def __init__(self, account, parent_key, chain_number, gap, maximum_use_per_address): # type: ('BaseAccount', PubKey, int, int, int) -> None self.account = account self.db = account.ledger.db self.main_key = parent_key.child(chain_number) self.chain_number = chain_number self.gap = gap self.maximum_use_per_address = maximum_use_per_address def get_addresses(self, limit=None, details=False): return self.db.get_addresses(self.account, self.chain_number, limit, details) def get_usable_addresses(self, limit=None): return self.db.get_usable_addresses( self.account, self.chain_number, self.maximum_use_per_address, limit ) @defer.inlineCallbacks def generate_keys(self, start, end): new_keys = [] for index in range(start, end+1): new_keys.append((index, self.main_key.child(index))) yield self.db.add_keys( self.account, self.chain_number, new_keys ) defer.returnValue([key[1].address for key in new_keys]) @defer.inlineCallbacks def ensure_address_gap(self): addresses = yield self.get_addresses(self.gap, True) existing_gap = 0 for address in addresses: if address['used_times'] == 0: existing_gap += 1 else: break if existing_gap == self.gap: defer.returnValue([]) start = addresses[0]['position']+1 if addresses else 0 end = start + (self.gap - existing_gap) new_keys = yield self.generate_keys(start, end-1) defer.returnValue(new_keys) @defer.inlineCallbacks def get_or_create_usable_address(self): addresses = yield self.get_usable_addresses(1) if addresses: defer.returnValue(addresses[0]) addresses = yield self.ensure_address_gap() defer.returnValue(addresses[0]) class BaseAccount(object): mnemonic_class = Mnemonic private_key_class = PrivateKey public_key_class = PubKey def __init__(self, ledger, seed, encrypted, private_key, public_key, receiving_gap=20, change_gap=6, receiving_maximum_use_per_address=2, change_maximum_use_per_address=2): # type: (torba.baseledger.BaseLedger, str, bool, PrivateKey, PubKey, int, int, int, int) -> None self.ledger = ledger self.seed = seed self.encrypted = encrypted self.private_key = private_key self.public_key = public_key self.receiving, self.change = self.keychains = ( KeyChain(self, public_key, 0, receiving_gap, receiving_maximum_use_per_address), KeyChain(self, public_key, 1, change_gap, change_maximum_use_per_address) ) ledger.add_account(self) @classmethod def generate(cls, ledger, password): # type: (torba.baseledger.BaseLedger, str) -> BaseAccount seed = cls.mnemonic_class().make_seed() return cls.from_seed(ledger, seed, password) @classmethod def from_seed(cls, ledger, seed, password): # type: (torba.baseledger.BaseLedger, str, str) -> BaseAccount private_key = cls.get_private_key_from_seed(ledger, seed, password) return cls( ledger=ledger, seed=seed, encrypted=False, private_key=private_key, public_key=private_key.public_key ) @classmethod def get_private_key_from_seed(cls, ledger, seed, password): # type: (torba.baseledger.BaseLedger, str, str) -> PrivateKey return cls.private_key_class.from_seed( ledger, cls.mnemonic_class.mnemonic_to_seed(seed, password) ) @classmethod def from_dict(cls, ledger, d): # type: (torba.baseledger.BaseLedger, Dict) -> BaseAccount if not d['encrypted']: private_key = from_extended_key_string(ledger, d['private_key']) public_key = private_key.public_key else: private_key = d['private_key'] public_key = from_extended_key_string(ledger, d['public_key']) return cls( ledger=ledger, seed=d['seed'], encrypted=d['encrypted'], private_key=private_key, public_key=public_key, receiving_gap=d['receiving_gap'], change_gap=d['change_gap'], receiving_maximum_use_per_address=d['receiving_maximum_use_per_address'], change_maximum_use_per_address=d['change_maximum_use_per_address'] ) def to_dict(self): return { 'ledger': self.ledger.get_id(), 'seed': self.seed, 'encrypted': self.encrypted, 'private_key': self.private_key if self.encrypted else self.private_key.extended_key_string().decode(), 'public_key': self.public_key.extended_key_string().decode(), 'receiving_gap': self.receiving.gap, 'change_gap': self.change.gap, 'receiving_maximum_use_per_address': self.receiving.maximum_use_per_address, 'change_maximum_use_per_address': self.change.maximum_use_per_address } def decrypt(self, password): assert self.encrypted, "Key is not encrypted." secret = double_sha256(password) self.seed = aes_decrypt(secret, self.seed) self.private_key = from_extended_key_string(self.ledger, aes_decrypt(secret, self.private_key)) self.encrypted = False def encrypt(self, password): assert not self.encrypted, "Key is already encrypted." secret = double_sha256(password) self.seed = aes_encrypt(secret, self.seed) self.private_key = aes_encrypt(secret, self.private_key.extended_key_string()) self.encrypted = True @defer.inlineCallbacks def ensure_address_gap(self): addresses = [] for keychain in self.keychains: new_addresses = yield keychain.ensure_address_gap() addresses.extend(new_addresses) defer.returnValue(addresses) def get_addresses(self, limit=None, details=False): return self.ledger.db.get_addresses(self, None, limit, details) def get_unused_addresses(self): return self.ledger.db.get_unused_addresses(self, None) def get_private_key(self, chain, index): assert not self.encrypted, "Cannot get private key on encrypted wallet account." return self.private_key.child(chain).child(index) def get_balance(self, **constraints): return self.ledger.db.get_balance_for_account(self, **constraints)