lbrycrd/test/functional/mempool_accept.py

315 lines
15 KiB
Python
Raw Normal View History

2017-11-17 18:54:39 +01:00
#!/usr/bin/env python3
# Copyright (c) 2017-2019 The Bitcoin Core developers
2017-11-17 18:54:39 +01:00
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test mempool acceptance of raw transactions."""
from io import BytesIO
import math
2017-11-17 18:54:39 +01:00
from test_framework.test_framework import BitcoinTestFramework
from test_framework.messages import (
BIP125_SEQUENCE_NUMBER,
COIN,
COutPoint,
CTransaction,
CTxOut,
MAX_BLOCK_BASE_SIZE,
)
from test_framework.script import (
hash160,
CScript,
OP_0,
OP_EQUAL,
OP_HASH160,
OP_RETURN,
)
from test_framework.util import (
assert_equal,
assert_raises_rpc_error,
hex_str_to_bytes,
)
class MempoolAcceptanceTest(BitcoinTestFramework):
def set_test_params(self):
self.num_nodes = 1
self.extra_args = [[
'-permitbaremultisig=0',
]] * self.num_nodes
self.supports_cli = False
2017-11-17 18:54:39 +01:00
def skip_test_if_missing_module(self):
self.skip_if_no_wallet()
2017-11-17 18:54:39 +01:00
def check_mempool_result(self, result_expected, *args, **kwargs):
"""Wrapper to check result of testmempoolaccept on node_0's mempool"""
result_test = self.nodes[0].testmempoolaccept(*args, **kwargs)
assert_equal(result_expected, result_test)
assert_equal(self.nodes[0].getmempoolinfo()['size'], self.mempool_size) # Must not change mempool state
def run_test(self):
node = self.nodes[0]
self.log.info('Start with empty mempool, and 200 blocks')
self.mempool_size = 0
assert_equal(node.getblockcount(), 200)
2017-11-17 18:54:39 +01:00
assert_equal(node.getmempoolinfo()['size'], self.mempool_size)
2018-12-15 00:16:06 +01:00
coins = node.listunspent()
2017-11-17 18:54:39 +01:00
self.log.info('Should not accept garbage to testmempoolaccept')
assert_raises_rpc_error(-3, 'Expected type array, got string', lambda: node.testmempoolaccept(rawtxs='ff00baar'))
assert_raises_rpc_error(-8, 'Array must contain exactly one raw transaction for now', lambda: node.testmempoolaccept(rawtxs=['ff00baar', 'ff22']))
assert_raises_rpc_error(-22, 'TX decode failed', lambda: node.testmempoolaccept(rawtxs=['ff00baar']))
self.log.info('A transaction already in the blockchain')
2018-12-15 00:16:06 +01:00
coin = coins.pop() # Pick a random coin(base) to spend
2017-11-17 18:54:39 +01:00
raw_tx_in_block = node.signrawtransactionwithwallet(node.createrawtransaction(
inputs=[{'txid': coin['txid'], 'vout': coin['vout']}],
outputs=[{node.getnewaddress(): 0.1}, {node.getnewaddress(): 0.8}],
2017-11-17 18:54:39 +01:00
))['hex']
txid_in_block = node.sendrawtransaction(hexstring=raw_tx_in_block, maxfeerate=0)
2017-11-17 18:54:39 +01:00
node.generate(1)
self.mempool_size = 0
self.check_mempool_result(
result_expected=[{'txid': txid_in_block, 'allowed': False, 'reject-reason': '18: txn-already-known'}],
rawtxs=[raw_tx_in_block],
)
2017-11-17 18:54:39 +01:00
self.log.info('A transaction not in the mempool')
fee = 0.00000700
2017-11-17 18:54:39 +01:00
raw_tx_0 = node.signrawtransactionwithwallet(node.createrawtransaction(
inputs=[{"txid": txid_in_block, "vout": 0, "sequence": BIP125_SEQUENCE_NUMBER}], # RBF is used later
outputs=[{node.getnewaddress(): 0.09 - fee}],
2017-11-17 18:54:39 +01:00
))['hex']
tx = CTransaction()
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
txid_0 = tx.rehash()
self.check_mempool_result(
result_expected=[{'txid': txid_0, 'allowed': True}],
rawtxs=[raw_tx_0],
)
self.log.info('A final transaction not in the mempool')
2018-12-15 00:16:06 +01:00
coin = coins.pop() # Pick a random coin(base) to spend
raw_tx_final = node.signrawtransactionwithwallet(node.createrawtransaction(
inputs=[{'txid': coin['txid'], 'vout': coin['vout'], "sequence": 0xffffffff}], # SEQUENCE_FINAL
outputs=[{node.getnewaddress(): 0.025}],
locktime=node.getblockcount() + 2000, # Can be anything
))['hex']
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_final)))
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': True}],
rawtxs=[tx.serialize().hex()],
maxfeerate=0,
)
node.sendrawtransaction(hexstring=raw_tx_final, maxfeerate=0)
self.mempool_size += 1
2017-11-17 18:54:39 +01:00
self.log.info('A transaction in the mempool')
node.sendrawtransaction(hexstring=raw_tx_0)
self.mempool_size += 1
2017-11-17 18:54:39 +01:00
self.check_mempool_result(
result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': '18: txn-already-in-mempool'}],
rawtxs=[raw_tx_0],
)
self.log.info('A transaction that replaces a mempool transaction')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
tx.vout[0].nValue -= int(fee * COIN) # Double the fee
tx.vin[0].nSequence = BIP125_SEQUENCE_NUMBER + 1 # Now, opt out of RBF
raw_tx_0 = node.signrawtransactionwithwallet(tx.serialize().hex())['hex']
2017-11-17 18:54:39 +01:00
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
txid_0 = tx.rehash()
self.check_mempool_result(
result_expected=[{'txid': txid_0, 'allowed': True}],
rawtxs=[raw_tx_0],
)
self.log.info('A transaction that conflicts with an unconfirmed tx')
# Send the transaction that replaces the mempool transaction and opts out of replaceability
node.sendrawtransaction(hexstring=tx.serialize().hex(), maxfeerate=0)
2017-11-17 18:54:39 +01:00
# take original raw_tx_0
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
tx.vout[0].nValue -= int(0.08 * fee * COIN) # Set more fee
2017-11-17 18:54:39 +01:00
# skip re-signing the tx
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '18: txn-mempool-conflict'}],
rawtxs=[tx.serialize().hex()],
maxfeerate=0,
2017-11-17 18:54:39 +01:00
)
self.log.info('A transaction with missing inputs, that never existed')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
tx.vin[0].prevout = COutPoint(hash=int('ff' * 32, 16), n=14)
# skip re-signing the tx
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'missing-inputs'}],
rawtxs=[tx.serialize().hex()],
2017-11-17 18:54:39 +01:00
)
self.log.info('A transaction with missing inputs, that existed once in the past')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0)))
tx.vin[0].prevout.n = 1 # Set vout to 1, to spend the other outpoint (49 coins) of the in-chain-tx we want to double spend
raw_tx_1 = node.signrawtransactionwithwallet(tx.serialize().hex())['hex']
txid_1 = node.sendrawtransaction(hexstring=raw_tx_1, maxfeerate=0)
2017-11-17 18:54:39 +01:00
# Now spend both to "clearly hide" the outputs, ie. remove the coins from the utxo set by spending them
raw_tx_spend_both = node.signrawtransactionwithwallet(node.createrawtransaction(
inputs=[
{'txid': txid_0, 'vout': 0},
{'txid': txid_1, 'vout': 0},
],
outputs=[{node.getnewaddress(): 0.1}]
))['hex']
txid_spend_both = node.sendrawtransaction(hexstring=raw_tx_spend_both, maxfeerate=0)
2017-11-17 18:54:39 +01:00
node.generate(1)
self.mempool_size = 0
# Now see if we can add the coins back to the utxo set by sending the exact txs again
self.check_mempool_result(
result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': 'missing-inputs'}],
rawtxs=[raw_tx_0],
)
self.check_mempool_result(
result_expected=[{'txid': txid_1, 'allowed': False, 'reject-reason': 'missing-inputs'}],
rawtxs=[raw_tx_1],
)
self.log.info('Create a signed "reference" tx for later use')
raw_tx_reference = node.signrawtransactionwithwallet(node.createrawtransaction(
inputs=[{'txid': txid_spend_both, 'vout': 0}],
outputs=[{node.getnewaddress(): 0.05}],
))['hex']
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
# Reference tx should be valid on itself
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': True}],
rawtxs=[tx.serialize().hex()],
maxfeerate=0,
2017-11-17 18:54:39 +01:00
)
self.log.info('A transaction with no outputs')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vout = []
# Skip re-signing the transaction for context independent checks from now on
# tx.deserialize(BytesIO(hex_str_to_bytes(node.signrawtransactionwithwallet(tx.serialize().hex())['hex'])))
2017-11-17 18:54:39 +01:00
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-vout-empty'}],
rawtxs=[tx.serialize().hex()],
2017-11-17 18:54:39 +01:00
)
self.log.info('A really large transaction')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vin = [tx.vin[0]] * math.ceil(MAX_BLOCK_BASE_SIZE / len(tx.vin[0].serialize()))
2017-11-17 18:54:39 +01:00
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-oversize'}],
rawtxs=[tx.serialize().hex()],
2017-11-17 18:54:39 +01:00
)
self.log.info('A transaction with negative output value')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vout[0].nValue *= -1
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-vout-negative'}],
rawtxs=[tx.serialize().hex()],
2017-11-17 18:54:39 +01:00
)
# The following two validations prevent overflow of the output amounts (see CVE-2010-5139).
2017-11-17 18:54:39 +01:00
self.log.info('A transaction with too large output value')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vout[0].nValue = 21000000000 * COIN + 1
2017-11-17 18:54:39 +01:00
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-vout-toolarge'}],
rawtxs=[tx.serialize().hex()],
2017-11-17 18:54:39 +01:00
)
self.log.info('A transaction with too large sum of output values')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vout = [tx.vout[0]] * 2
tx.vout[0].nValue = 21000000000 * COIN
2017-11-17 18:54:39 +01:00
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-txouttotal-toolarge'}],
rawtxs=[tx.serialize().hex()],
2017-11-17 18:54:39 +01:00
)
self.log.info('A transaction with duplicate inputs')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vin = [tx.vin[0]] * 2
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-inputs-duplicate'}],
rawtxs=[tx.serialize().hex()],
2017-11-17 18:54:39 +01:00
)
self.log.info('A coinbase transaction')
# Pick the input of the first tx we signed, so it has to be a coinbase tx
raw_tx_coinbase_spent = node.getrawtransaction(txid=node.decoderawtransaction(hexstring=raw_tx_in_block)['vin'][0]['txid'])
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_coinbase_spent)))
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: coinbase'}],
rawtxs=[tx.serialize().hex()],
2017-11-17 18:54:39 +01:00
)
self.log.info('Some nonstandard transactions')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.nVersion = 3 # A version currently non-standard
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: version'}],
rawtxs=[tx.serialize().hex()],
2017-11-17 18:54:39 +01:00
)
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vout[0].scriptPubKey = CScript([OP_0]) # Some non-standard script
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: scriptpubkey'}],
rawtxs=[tx.serialize().hex()],
2017-11-17 18:54:39 +01:00
)
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vin[0].scriptSig = CScript([OP_HASH160]) # Some not-pushonly scriptSig
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: scriptsig-not-pushonly'}],
rawtxs=[tx.serialize().hex()],
2017-11-17 18:54:39 +01:00
)
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
output_p2sh_burn = CTxOut(nValue=540, scriptPubKey=CScript([OP_HASH160, hash160(b'burn'), OP_EQUAL]))
num_scripts = 100000 // len(output_p2sh_burn.serialize()) # Use enough outputs to make the tx too large for our policy
tx.vout = [output_p2sh_burn] * num_scripts
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: tx-size'}],
rawtxs=[tx.serialize().hex()],
2017-11-17 18:54:39 +01:00
)
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vout[0] = output_p2sh_burn
tx.vout[0].nValue = 1 # Make output smaller, such that it is dust for our policy
2017-11-17 18:54:39 +01:00
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: dust'}],
rawtxs=[tx.serialize().hex()],
2017-11-17 18:54:39 +01:00
)
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vout[0].scriptPubKey = CScript([OP_RETURN, b'\xff'])
tx.vout = [tx.vout[0]] * 2
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: multi-op-return'}],
rawtxs=[tx.serialize().hex()],
2017-11-17 18:54:39 +01:00
)
self.log.info('A timelocked transaction')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vin[0].nSequence -= 1 # Should be non-max, so locktime is not ignored
tx.nLockTime = node.getblockcount() + 1
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: non-final'}],
rawtxs=[tx.serialize().hex()],
2017-11-17 18:54:39 +01:00
)
self.log.info('A transaction that is locked by BIP68 sequence logic')
tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference)))
tx.vin[0].nSequence = 2 # We could include it in the second block mined from now, but not the very next one
# Can skip re-signing the tx because of early rejection
self.check_mempool_result(
result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: non-BIP68-final'}],
rawtxs=[tx.serialize().hex()],
maxfeerate=0,
2017-11-17 18:54:39 +01:00
)
if __name__ == '__main__':
MempoolAcceptanceTest().main()