Correctly use the purpose of addresses that are added after the start
of the client. Addresses with purpose "refund" and "change" should not
be visible in the GUI. This is now handled correctly.
- extend PaymentServer with setOptionsModel() and rework initNetManager()
to make use of that
- fix all other places in the code to use display unit from options and no
hard-coded unit
There have been several incidents where mainnet experimentation with
raw transactions resulted in insane fees. This is hard to prevent
in the raw transaction api because the inputs may not be known.
Since sending doesn't work if the inputs aren't known, we can catch
it there.
This rejects fees > than 10000 * nMinRelayTxFee or 1 BTC with the
defaults and can be overridden with a bool at the rpc.
We're not seeing large reorgs that would justify waiting a large
amount past the rule required maturity, and the extra three
hours is just a nuisance. Take one more block to at least give
the 100th block time to propagate.
Seems it was forgotten about when IsPushOnly() and the unittests were
written. A particular oddity is that OP_RESERVED doesn't count towards
the >201 opcode limit unlike every other named opcode.
getblocktemplate only uses certain portions of the coinbase transaction,
notably ignoring the coinbase TX output entirely.
Use CreateNewBlock() rather than CreateNewBlockWithKey(), eliminating
the needless key passing.
Should be zero behavior changes.
With an encrypted wallet the GUI was prompting for a passphrase every time
the user requested a new address. This is unnecessary, increases the
exposure to keyboard sniffers, and discourages using fresh addresses for
every transaction.
Instead only prompt for a passphrase when the keypool runs out, also call
the new address function with the flag that prevents reuse.
Thanks to AlexNagy on IRC for pointing this out and who wouldn't take any
lip from a curmudgeonly developer and insisted on what he knew to be true.
WalletView:
- add new signal showNormalIfMinimized()
- emit the new signal in handleURI() to fix a bug, preventing the main
window to show up when using bitcoin: URIs
WalletStack:
- connect the showNormalIfMinimized() signal from WalletView with the
showNormalIfMinimized() slot in BitcoinGUI
- rework setCurrentWallet() to return a bool
- add check for valid walletModel in addWallet()
- add missing gui attribute initialisation in constructor
WalletFrame:
- remove unused or unneded class attributes gui and clientModel
- add a check for valid clientModel in setClientModel()
General:
- small code formatting changes
Add support for a Payment Protocol to Bitcoin-Qt.
Payment messages are protocol-buffer encoded and communicated over
http(s), so this adds a dependency on the Google protocol buffer
library, and requires Qt with OpenSSL support.
- move SelectParamsFromCommandLine() from init.cpp to bitcoin.cpp to allow
to use TestNet() for Bitcoin-Qt instead of GetBoolArg("-testnet", false)
- change order in bitcoind.cpp to match bitcoin.cpp functionality
- hamonize error message strings for missing datadir and failing
SelectParamsFromCommandLine() in bitcoin.cpp and bitcoind.cpp
- use TestNet() call in splashscreen.cpp
Straight refactor, so mapAddressBook stores a CAddressBookData
(which just contains a std::string) instead of a std::string.
Preparation for payment protocol work, which will add the notion
of refund addresses to the address book.
Replaces the validation check for "amount == 0" with an isDust check,
so very small output amounts are caught before the wallet
is unlocked, a transaction is created, etc.
- update translation master files
- include current translations from Transifex
- add several new languages
- fix a bug in bitcoin.qrc, which prevents some languages from beeing used
(wrong file extension .ts instead of .qm was used)
This reduces a peer's ability to attack network resources by
using a full bloom filter, but without reducing the usability
of bloom filters. It sets a default match everything filter
for peers and it generalizes a prior optimization to
cover more cases.
To fix a minor malleability found by Sergio Lerner (reported here:
https://bitcointalk.org/index.php?topic=8392.msg1245898#msg1245898)
The problem is that if (R,S) is a valid ECDSA signature for a given
message and public key, (R,-S) is also valid. Modulo N (the order
of the secp256k1 curve), this means that both (R,S) and (R,N-S) are
valid. Given that N is odd, S and N-S have a different lowest bit.
We solve the problem by forcing signatures to have an even S value,
excluding one of the alternatives.
This commit just changes the signing code to always produce even S
values, and adds a verification mode to check it. This code is not
enabled anywhere yet. Existing tests in key_tests.cpp verify that
the produced signatures are still valid.
The length of vectors, maps, sets, etc are serialized using
Write/ReadCompactSize -- which, unfortunately, do not use a
unique encoding.
So deserializing and then re-serializing a transaction (for example)
can give you different bits than you started with. That doesn't
cause any problems that we are aware of, but it is exactly the type
of subtle mismatch that can lead to exploits.
With this pull, reading a non-canonical CompactSize throws an
exception, which means nodes will ignore 'tx' or 'block' or
other messages that are not properly encoded.
Please check my logic... but this change is safe with respect to
causing a network split. Old clients that receive
non-canonically-encoded transactions or blocks deserialize
them into CTransaction/CBlock structures in memory, and then
re-serialize them before relaying them to peers.
And please check my logic with respect to causing a blockchain
split: there are no CompactSize fields in the block header, so
the block hash is always canonical. The merkle root in the block
header is computed on a vector<CTransaction>, so
any non-canonical encoding of the transactions in 'tx' or 'block'
messages is erased as they are read into memory by old clients,
and does not affect the block hash. And, as noted above, old
clients re-serialize (with canonical encoding) 'tx' and 'block'
messages before relaying to peers.
Fixes issue#2838; this is a tweaked version of pull#2845 that
should not leak the length of the password and is more generic,
in case we run into other situations where we need
timing-attack-resistant comparisons.
Orphan transactions were stored as a CDataStream pointer;
this changes the mapOrphanTransactions data structures to
store orphans as a CTransaction.
This also fixes CVE-2013-4627 by always re-serializing
transactions before relaying them.
- move the code for saving and restoring window positions from BitcoinGUI
to GUIUtil, make it more generic and also use it for saving/restoring
debug window positions
- it was possible to trigger an infinite loop in FreespaceChecker::check() by
simply removing the drive letter on Windows (which leads to an infinite
loop in the FreespaceChecker thread)
- this was caused by not checking if we make progress with
parentDir.parent_path()
- remove an unneded include for mswsock.h as we use winsock2.h anyway
- move typedef u_int SOCKET; into the #ifndef WIN32 part
- remove typedef int socklen_t; as this is defined in ws2tcpip.h
- fixes src\net.cpp:1601: Error:invalid conversion from 'void*' to
'const char*' [-fpermissive] in a setsockopt() call on Win32 that was
found by using MinGW 4.8.1 compiler suite
The key refactor changed the way unencrypted private keys with compressed
public key are stored in the wallet. Apparently older versions relied on
this to verify the correctness of stored keys.
Note that earlier pre-release versions do risk creating wallets that can
not be opened by 0.8.3 and earlier.
use std::string instead of psz for WalletFile
only allow wallets within $DATADIR
Use strWalletFile in salvage/recover
fix: remove unused variable pszWalletFile
move strWalletFile to init.h/init.cpp
avoid conversion of strWalletfile to c-string
dumpwallet: produce a dump of all keys in a wallet, in a format
compatible with Bitcoin Wallet for Android and Multibit.
importwallet: import such a dump
Compute safe lower bounds on the birth times of all wallet keys. For
pool keys or keys with metadata, the actually stored birth time is
used. For all others, the birth times are inferred from the wallet
transactions.
This function finds all keys affected by a particular output script,
supporting everything ExtractDestinations supports (pay-to-pubkey,
pay-to-pubkeyhash, multisig) and recurses into subscripts (P2SH).
In case no database exists yet, and -txindex(=1) is passed, we currently first
check whether fTxIndex differs from -txindex (and ask the user to reindex in
that case), and only afterwards initialize the database. By swapping these
around (the initialization is a no-op in case the database already exists),
we allow it to be born in txindex mode, without warning.
That also means we don't need to check -reindex anymore, as the wiping/reinit
of the databases happens before checking.
Refactor keytime:
* Key metadata is kept in a CWallet::mapKeyMetadata (std::map<CKeyId,CKeyMetadata>).
* When generating a new key, time is put in that map, and new key is written.
* AddKeyPubKey and AddCryptedKey do not take a creation time argument, but instead
pull it from that map, if it exists there.
Bugfix:
* AddKeyPubKey and AddCryptedKey in CWallet didn't override the CKeyStore
definition anymore. This is fixed, as they no longed need the nCreationTime
argument now.
Also a few related other changes:
* Metadata can be overwritten.
* Only GenerateNewKey calls GetTime(), as it's the only place where we know for
sure a key was not constructed earlier.
* When the nTimeFirstKey is known to be inaccurate, it is set to the value 1
(instead of 0, which would mean unknown).
* Use CPubKey instead of std::vector<unsigned char> where possible.
The new class is accessed via the Params() method and holds
most things that vary between main, test and regtest networks.
The regtest mode has two purposes, one is to run the
bitcoind/bitcoinj comparison tool which compares two separate
implementations of the Bitcoin protocol looking for divergence.
The other is that when run, you get a local node which can mine
a single block instantly, which is highly convenient for testing
apps during development as there's no need to wait 10 minutes for
a block on the testnet.
This adds an introduction screen that is shown when the client is first
started in which the user can choose a data directory.
It is also possible to force the intro screen to appear using command
line argument `-choosedatadir`.
The user is warned that the client will download and store 10Gb of data.
The intro screen shows how much space is available on the device that
contains the chosen directory and warns if this is less than the 10Gb.
To make it possible to translate the introduction dialog, the initialization
sequence is changed so that translations are
loaded before the data directory. This has the by-effect that it is
no longer possible to specify a language in bitcoin.conf inside the data
directory.
This (nearly) doesn't change fee rules at all:
* To make it into the fee transaction area, the dPriority comparison
changed from < to <=
* We now just ignore transactions > MAX_BLOCK_SIZE/4 instead of
doing some calculations to require increasingly large fees as
size increases.
Without this include, sometimes BOOST_VERSION was defined and sometimes
it was not, depending on which includes came before it. The result was a
random mix of sleep or sleep_for for boost versions >= 1.50.
- removes our NewThread() function an replaces remaining calls with
boost::thread with our TraceThread template
- remove ExitThread() function
- fix THREAD_PRIORITY_ABOVE_NORMAL for non Windows OSes
- adds a reindex dialog for Bitcoin-Qt to change -txindex without the need
to supply -reindex
- now also does a -reindex, when removing the -txindex switch