// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2011 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file license.txt or http://www.opensource.org/licenses/mit-license.php. #include "headers.h" using namespace std; using namespace boost; bool CheckSig(vector vchSig, vector vchPubKey, CScript scriptCode, const CTransaction& txTo, unsigned int nIn, int nHashType); typedef vector valtype; static const valtype vchFalse(0); static const valtype vchZero(0); static const valtype vchTrue(1, 1); static const CBigNum bnZero(0); static const CBigNum bnOne(1); static const CBigNum bnFalse(0); static const CBigNum bnTrue(1); static const size_t nMaxNumSize = 4; CBigNum CastToBigNum(const valtype& vch) { if (vch.size() > nMaxNumSize) throw runtime_error("CastToBigNum() : overflow"); // Get rid of extra leading zeros return CBigNum(CBigNum(vch).getvch()); } bool CastToBool(const valtype& vch) { for (int i = 0; i < vch.size(); i++) { if (vch[i] != 0) { // Can be negative zero if (i == vch.size()-1 && vch[i] == 0x80) return false; return true; } } return false; } void MakeSameSize(valtype& vch1, valtype& vch2) { // Lengthen the shorter one if (vch1.size() < vch2.size()) vch1.resize(vch2.size(), 0); if (vch2.size() < vch1.size()) vch2.resize(vch1.size(), 0); } // // Script is a stack machine (like Forth) that evaluates a predicate // returning a bool indicating valid or not. There are no loops. // #define stacktop(i) (stack.at(stack.size()+(i))) #define altstacktop(i) (altstack.at(altstack.size()+(i))) static inline void popstack(vector& stack) { if (stack.empty()) throw runtime_error("popstack() : stack empty"); stack.pop_back(); } bool EvalScript(vector >& stack, const CScript& script, const CTransaction& txTo, unsigned int nIn, int nHashType) { CAutoBN_CTX pctx; CScript::const_iterator pc = script.begin(); CScript::const_iterator pend = script.end(); CScript::const_iterator pbegincodehash = script.begin(); opcodetype opcode; valtype vchPushValue; vector vfExec; vector altstack; if (script.size() > 10000) return false; int nOpCount = 0; try { while (pc < pend) { bool fExec = !count(vfExec.begin(), vfExec.end(), false); // // Read instruction // if (!script.GetOp(pc, opcode, vchPushValue)) return false; if (vchPushValue.size() > 520) return false; if (opcode > OP_16 && ++nOpCount > 201) return false; if (opcode == OP_CAT || opcode == OP_SUBSTR || opcode == OP_LEFT || opcode == OP_RIGHT || opcode == OP_INVERT || opcode == OP_AND || opcode == OP_OR || opcode == OP_XOR || opcode == OP_2MUL || opcode == OP_2DIV || opcode == OP_MUL || opcode == OP_DIV || opcode == OP_MOD || opcode == OP_LSHIFT || opcode == OP_RSHIFT) return false; if (fExec && 0 <= opcode && opcode <= OP_PUSHDATA4) stack.push_back(vchPushValue); else if (fExec || (OP_IF <= opcode && opcode <= OP_ENDIF)) switch (opcode) { // // Push value // case OP_1NEGATE: case OP_1: case OP_2: case OP_3: case OP_4: case OP_5: case OP_6: case OP_7: case OP_8: case OP_9: case OP_10: case OP_11: case OP_12: case OP_13: case OP_14: case OP_15: case OP_16: { // ( -- value) CBigNum bn((int)opcode - (int)(OP_1 - 1)); stack.push_back(bn.getvch()); } break; // // Control // case OP_NOP: case OP_NOP1: case OP_NOP2: case OP_NOP3: case OP_NOP4: case OP_NOP5: case OP_NOP6: case OP_NOP7: case OP_NOP8: case OP_NOP9: case OP_NOP10: break; case OP_IF: case OP_NOTIF: { // if [statements] [else [statements]] endif bool fValue = false; if (fExec) { if (stack.size() < 1) return false; valtype& vch = stacktop(-1); fValue = CastToBool(vch); if (opcode == OP_NOTIF) fValue = !fValue; popstack(stack); } vfExec.push_back(fValue); } break; case OP_ELSE: { if (vfExec.empty()) return false; vfExec.back() = !vfExec.back(); } break; case OP_ENDIF: { if (vfExec.empty()) return false; vfExec.pop_back(); } break; case OP_VERIFY: { // (true -- ) or // (false -- false) and return if (stack.size() < 1) return false; bool fValue = CastToBool(stacktop(-1)); if (fValue) popstack(stack); else return false; } break; case OP_RETURN: { return false; } break; // // Stack ops // case OP_TOALTSTACK: { if (stack.size() < 1) return false; altstack.push_back(stacktop(-1)); popstack(stack); } break; case OP_FROMALTSTACK: { if (altstack.size() < 1) return false; stack.push_back(altstacktop(-1)); popstack(altstack); } break; case OP_2DROP: { // (x1 x2 -- ) if (stack.size() < 2) return false; popstack(stack); popstack(stack); } break; case OP_2DUP: { // (x1 x2 -- x1 x2 x1 x2) if (stack.size() < 2) return false; valtype vch1 = stacktop(-2); valtype vch2 = stacktop(-1); stack.push_back(vch1); stack.push_back(vch2); } break; case OP_3DUP: { // (x1 x2 x3 -- x1 x2 x3 x1 x2 x3) if (stack.size() < 3) return false; valtype vch1 = stacktop(-3); valtype vch2 = stacktop(-2); valtype vch3 = stacktop(-1); stack.push_back(vch1); stack.push_back(vch2); stack.push_back(vch3); } break; case OP_2OVER: { // (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2) if (stack.size() < 4) return false; valtype vch1 = stacktop(-4); valtype vch2 = stacktop(-3); stack.push_back(vch1); stack.push_back(vch2); } break; case OP_2ROT: { // (x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2) if (stack.size() < 6) return false; valtype vch1 = stacktop(-6); valtype vch2 = stacktop(-5); stack.erase(stack.end()-6, stack.end()-4); stack.push_back(vch1); stack.push_back(vch2); } break; case OP_2SWAP: { // (x1 x2 x3 x4 -- x3 x4 x1 x2) if (stack.size() < 4) return false; swap(stacktop(-4), stacktop(-2)); swap(stacktop(-3), stacktop(-1)); } break; case OP_IFDUP: { // (x - 0 | x x) if (stack.size() < 1) return false; valtype vch = stacktop(-1); if (CastToBool(vch)) stack.push_back(vch); } break; case OP_DEPTH: { // -- stacksize CBigNum bn(stack.size()); stack.push_back(bn.getvch()); } break; case OP_DROP: { // (x -- ) if (stack.size() < 1) return false; popstack(stack); } break; case OP_DUP: { // (x -- x x) if (stack.size() < 1) return false; valtype vch = stacktop(-1); stack.push_back(vch); } break; case OP_NIP: { // (x1 x2 -- x2) if (stack.size() < 2) return false; stack.erase(stack.end() - 2); } break; case OP_OVER: { // (x1 x2 -- x1 x2 x1) if (stack.size() < 2) return false; valtype vch = stacktop(-2); stack.push_back(vch); } break; case OP_PICK: case OP_ROLL: { // (xn ... x2 x1 x0 n - xn ... x2 x1 x0 xn) // (xn ... x2 x1 x0 n - ... x2 x1 x0 xn) if (stack.size() < 2) return false; int n = CastToBigNum(stacktop(-1)).getint(); popstack(stack); if (n < 0 || n >= stack.size()) return false; valtype vch = stacktop(-n-1); if (opcode == OP_ROLL) stack.erase(stack.end()-n-1); stack.push_back(vch); } break; case OP_ROT: { // (x1 x2 x3 -- x2 x3 x1) // x2 x1 x3 after first swap // x2 x3 x1 after second swap if (stack.size() < 3) return false; swap(stacktop(-3), stacktop(-2)); swap(stacktop(-2), stacktop(-1)); } break; case OP_SWAP: { // (x1 x2 -- x2 x1) if (stack.size() < 2) return false; swap(stacktop(-2), stacktop(-1)); } break; case OP_TUCK: { // (x1 x2 -- x2 x1 x2) if (stack.size() < 2) return false; valtype vch = stacktop(-1); stack.insert(stack.end()-2, vch); } break; // // Splice ops // case OP_CAT: { // (x1 x2 -- out) if (stack.size() < 2) return false; valtype& vch1 = stacktop(-2); valtype& vch2 = stacktop(-1); vch1.insert(vch1.end(), vch2.begin(), vch2.end()); popstack(stack); if (stacktop(-1).size() > 520) return false; } break; case OP_SUBSTR: { // (in begin size -- out) if (stack.size() < 3) return false; valtype& vch = stacktop(-3); int nBegin = CastToBigNum(stacktop(-2)).getint(); int nEnd = nBegin + CastToBigNum(stacktop(-1)).getint(); if (nBegin < 0 || nEnd < nBegin) return false; if (nBegin > vch.size()) nBegin = vch.size(); if (nEnd > vch.size()) nEnd = vch.size(); vch.erase(vch.begin() + nEnd, vch.end()); vch.erase(vch.begin(), vch.begin() + nBegin); popstack(stack); popstack(stack); } break; case OP_LEFT: case OP_RIGHT: { // (in size -- out) if (stack.size() < 2) return false; valtype& vch = stacktop(-2); int nSize = CastToBigNum(stacktop(-1)).getint(); if (nSize < 0) return false; if (nSize > vch.size()) nSize = vch.size(); if (opcode == OP_LEFT) vch.erase(vch.begin() + nSize, vch.end()); else vch.erase(vch.begin(), vch.end() - nSize); popstack(stack); } break; case OP_SIZE: { // (in -- in size) if (stack.size() < 1) return false; CBigNum bn(stacktop(-1).size()); stack.push_back(bn.getvch()); } break; // // Bitwise logic // case OP_INVERT: { // (in - out) if (stack.size() < 1) return false; valtype& vch = stacktop(-1); for (int i = 0; i < vch.size(); i++) vch[i] = ~vch[i]; } break; case OP_AND: case OP_OR: case OP_XOR: { // (x1 x2 - out) if (stack.size() < 2) return false; valtype& vch1 = stacktop(-2); valtype& vch2 = stacktop(-1); MakeSameSize(vch1, vch2); if (opcode == OP_AND) { for (int i = 0; i < vch1.size(); i++) vch1[i] &= vch2[i]; } else if (opcode == OP_OR) { for (int i = 0; i < vch1.size(); i++) vch1[i] |= vch2[i]; } else if (opcode == OP_XOR) { for (int i = 0; i < vch1.size(); i++) vch1[i] ^= vch2[i]; } popstack(stack); } break; case OP_EQUAL: case OP_EQUALVERIFY: //case OP_NOTEQUAL: // use OP_NUMNOTEQUAL { // (x1 x2 - bool) if (stack.size() < 2) return false; valtype& vch1 = stacktop(-2); valtype& vch2 = stacktop(-1); bool fEqual = (vch1 == vch2); // OP_NOTEQUAL is disabled because it would be too easy to say // something like n != 1 and have some wiseguy pass in 1 with extra // zero bytes after it (numerically, 0x01 == 0x0001 == 0x000001) //if (opcode == OP_NOTEQUAL) // fEqual = !fEqual; popstack(stack); popstack(stack); stack.push_back(fEqual ? vchTrue : vchFalse); if (opcode == OP_EQUALVERIFY) { if (fEqual) popstack(stack); else return false; } } break; // // Numeric // case OP_1ADD: case OP_1SUB: case OP_2MUL: case OP_2DIV: case OP_NEGATE: case OP_ABS: case OP_NOT: case OP_0NOTEQUAL: { // (in -- out) if (stack.size() < 1) return false; CBigNum bn = CastToBigNum(stacktop(-1)); switch (opcode) { case OP_1ADD: bn += bnOne; break; case OP_1SUB: bn -= bnOne; break; case OP_2MUL: bn <<= 1; break; case OP_2DIV: bn >>= 1; break; case OP_NEGATE: bn = -bn; break; case OP_ABS: if (bn < bnZero) bn = -bn; break; case OP_NOT: bn = (bn == bnZero); break; case OP_0NOTEQUAL: bn = (bn != bnZero); break; default: assert(!"invalid opcode"); break; } popstack(stack); stack.push_back(bn.getvch()); } break; case OP_ADD: case OP_SUB: case OP_MUL: case OP_DIV: case OP_MOD: case OP_LSHIFT: case OP_RSHIFT: case OP_BOOLAND: case OP_BOOLOR: case OP_NUMEQUAL: case OP_NUMEQUALVERIFY: case OP_NUMNOTEQUAL: case OP_LESSTHAN: case OP_GREATERTHAN: case OP_LESSTHANOREQUAL: case OP_GREATERTHANOREQUAL: case OP_MIN: case OP_MAX: { // (x1 x2 -- out) if (stack.size() < 2) return false; CBigNum bn1 = CastToBigNum(stacktop(-2)); CBigNum bn2 = CastToBigNum(stacktop(-1)); CBigNum bn; switch (opcode) { case OP_ADD: bn = bn1 + bn2; break; case OP_SUB: bn = bn1 - bn2; break; case OP_MUL: if (!BN_mul(&bn, &bn1, &bn2, pctx)) return false; break; case OP_DIV: if (!BN_div(&bn, NULL, &bn1, &bn2, pctx)) return false; break; case OP_MOD: if (!BN_mod(&bn, &bn1, &bn2, pctx)) return false; break; case OP_LSHIFT: if (bn2 < bnZero || bn2 > CBigNum(2048)) return false; bn = bn1 << bn2.getulong(); break; case OP_RSHIFT: if (bn2 < bnZero || bn2 > CBigNum(2048)) return false; bn = bn1 >> bn2.getulong(); break; case OP_BOOLAND: bn = (bn1 != bnZero && bn2 != bnZero); break; case OP_BOOLOR: bn = (bn1 != bnZero || bn2 != bnZero); break; case OP_NUMEQUAL: bn = (bn1 == bn2); break; case OP_NUMEQUALVERIFY: bn = (bn1 == bn2); break; case OP_NUMNOTEQUAL: bn = (bn1 != bn2); break; case OP_LESSTHAN: bn = (bn1 < bn2); break; case OP_GREATERTHAN: bn = (bn1 > bn2); break; case OP_LESSTHANOREQUAL: bn = (bn1 <= bn2); break; case OP_GREATERTHANOREQUAL: bn = (bn1 >= bn2); break; case OP_MIN: bn = (bn1 < bn2 ? bn1 : bn2); break; case OP_MAX: bn = (bn1 > bn2 ? bn1 : bn2); break; default: assert(!"invalid opcode"); break; } popstack(stack); popstack(stack); stack.push_back(bn.getvch()); if (opcode == OP_NUMEQUALVERIFY) { if (CastToBool(stacktop(-1))) popstack(stack); else return false; } } break; case OP_WITHIN: { // (x min max -- out) if (stack.size() < 3) return false; CBigNum bn1 = CastToBigNum(stacktop(-3)); CBigNum bn2 = CastToBigNum(stacktop(-2)); CBigNum bn3 = CastToBigNum(stacktop(-1)); bool fValue = (bn2 <= bn1 && bn1 < bn3); popstack(stack); popstack(stack); popstack(stack); stack.push_back(fValue ? vchTrue : vchFalse); } break; // // Crypto // case OP_RIPEMD160: case OP_SHA1: case OP_SHA256: case OP_HASH160: case OP_HASH256: { // (in -- hash) if (stack.size() < 1) return false; valtype& vch = stacktop(-1); valtype vchHash((opcode == OP_RIPEMD160 || opcode == OP_SHA1 || opcode == OP_HASH160) ? 20 : 32); if (opcode == OP_RIPEMD160) RIPEMD160(&vch[0], vch.size(), &vchHash[0]); else if (opcode == OP_SHA1) SHA1(&vch[0], vch.size(), &vchHash[0]); else if (opcode == OP_SHA256) SHA256(&vch[0], vch.size(), &vchHash[0]); else if (opcode == OP_HASH160) { uint160 hash160 = Hash160(vch); memcpy(&vchHash[0], &hash160, sizeof(hash160)); } else if (opcode == OP_HASH256) { uint256 hash = Hash(vch.begin(), vch.end()); memcpy(&vchHash[0], &hash, sizeof(hash)); } popstack(stack); stack.push_back(vchHash); } break; case OP_CODESEPARATOR: { // Hash starts after the code separator pbegincodehash = pc; } break; case OP_CHECKSIG: case OP_CHECKSIGVERIFY: { // (sig pubkey -- bool) if (stack.size() < 2) return false; valtype& vchSig = stacktop(-2); valtype& vchPubKey = stacktop(-1); ////// debug print //PrintHex(vchSig.begin(), vchSig.end(), "sig: %s\n"); //PrintHex(vchPubKey.begin(), vchPubKey.end(), "pubkey: %s\n"); // Subset of script starting at the most recent codeseparator CScript scriptCode(pbegincodehash, pend); // Drop the signature, since there's no way for a signature to sign itself scriptCode.FindAndDelete(CScript(vchSig)); bool fSuccess = CheckSig(vchSig, vchPubKey, scriptCode, txTo, nIn, nHashType); popstack(stack); popstack(stack); stack.push_back(fSuccess ? vchTrue : vchFalse); if (opcode == OP_CHECKSIGVERIFY) { if (fSuccess) popstack(stack); else return false; } } break; case OP_CHECKMULTISIG: case OP_CHECKMULTISIGVERIFY: { // ([sig ...] num_of_signatures [pubkey ...] num_of_pubkeys -- bool) int i = 1; if (stack.size() < i) return false; int nKeysCount = CastToBigNum(stacktop(-i)).getint(); if (nKeysCount < 0 || nKeysCount > 20) return false; nOpCount += nKeysCount; if (nOpCount > 201) return false; int ikey = ++i; i += nKeysCount; if (stack.size() < i) return false; int nSigsCount = CastToBigNum(stacktop(-i)).getint(); if (nSigsCount < 0 || nSigsCount > nKeysCount) return false; int isig = ++i; i += nSigsCount; if (stack.size() < i) return false; // Subset of script starting at the most recent codeseparator CScript scriptCode(pbegincodehash, pend); // Drop the signatures, since there's no way for a signature to sign itself for (int k = 0; k < nSigsCount; k++) { valtype& vchSig = stacktop(-isig-k); scriptCode.FindAndDelete(CScript(vchSig)); } bool fSuccess = true; while (fSuccess && nSigsCount > 0) { valtype& vchSig = stacktop(-isig); valtype& vchPubKey = stacktop(-ikey); // Check signature if (CheckSig(vchSig, vchPubKey, scriptCode, txTo, nIn, nHashType)) { isig++; nSigsCount--; } ikey++; nKeysCount--; // If there are more signatures left than keys left, // then too many signatures have failed if (nSigsCount > nKeysCount) fSuccess = false; } while (i-- > 0) popstack(stack); stack.push_back(fSuccess ? vchTrue : vchFalse); if (opcode == OP_CHECKMULTISIGVERIFY) { if (fSuccess) popstack(stack); else return false; } } break; default: return false; } // Size limits if (stack.size() + altstack.size() > 1000) return false; } } catch (...) { return false; } if (!vfExec.empty()) return false; return true; } uint256 SignatureHash(CScript scriptCode, const CTransaction& txTo, unsigned int nIn, int nHashType) { if (nIn >= txTo.vin.size()) { printf("ERROR: SignatureHash() : nIn=%d out of range\n", nIn); return 1; } CTransaction txTmp(txTo); // In case concatenating two scripts ends up with two codeseparators, // or an extra one at the end, this prevents all those possible incompatibilities. scriptCode.FindAndDelete(CScript(OP_CODESEPARATOR)); // Blank out other inputs' signatures for (int i = 0; i < txTmp.vin.size(); i++) txTmp.vin[i].scriptSig = CScript(); txTmp.vin[nIn].scriptSig = scriptCode; // Blank out some of the outputs if ((nHashType & 0x1f) == SIGHASH_NONE) { // Wildcard payee txTmp.vout.clear(); // Let the others update at will for (int i = 0; i < txTmp.vin.size(); i++) if (i != nIn) txTmp.vin[i].nSequence = 0; } else if ((nHashType & 0x1f) == SIGHASH_SINGLE) { // Only lockin the txout payee at same index as txin unsigned int nOut = nIn; if (nOut >= txTmp.vout.size()) { printf("ERROR: SignatureHash() : nOut=%d out of range\n", nOut); return 1; } txTmp.vout.resize(nOut+1); for (int i = 0; i < nOut; i++) txTmp.vout[i].SetNull(); // Let the others update at will for (int i = 0; i < txTmp.vin.size(); i++) if (i != nIn) txTmp.vin[i].nSequence = 0; } // Blank out other inputs completely, not recommended for open transactions if (nHashType & SIGHASH_ANYONECANPAY) { txTmp.vin[0] = txTmp.vin[nIn]; txTmp.vin.resize(1); } // Serialize and hash CDataStream ss(SER_GETHASH); ss.reserve(10000); ss << txTmp << nHashType; return Hash(ss.begin(), ss.end()); } bool CheckSig(vector vchSig, vector vchPubKey, CScript scriptCode, const CTransaction& txTo, unsigned int nIn, int nHashType) { CKey key; if (!key.SetPubKey(vchPubKey)) return false; // Hash type is one byte tacked on to the end of the signature if (vchSig.empty()) return false; if (nHashType == 0) nHashType = vchSig.back(); else if (nHashType != vchSig.back()) return false; vchSig.pop_back(); return key.Verify(SignatureHash(scriptCode, txTo, nIn, nHashType), vchSig); } bool Solver(const CScript& scriptPubKey, vector >& vSolutionRet) { // Templates static vector vTemplates; if (vTemplates.empty()) { // Standard tx, sender provides pubkey, receiver adds signature vTemplates.push_back(CScript() << OP_PUBKEY << OP_CHECKSIG); // Bitcoin address tx, sender provides hash of pubkey, receiver provides signature and pubkey vTemplates.push_back(CScript() << OP_DUP << OP_HASH160 << OP_PUBKEYHASH << OP_EQUALVERIFY << OP_CHECKSIG); } // Scan templates const CScript& script1 = scriptPubKey; BOOST_FOREACH(const CScript& script2, vTemplates) { vSolutionRet.clear(); opcodetype opcode1, opcode2; vector vch1, vch2; // Compare CScript::const_iterator pc1 = script1.begin(); CScript::const_iterator pc2 = script2.begin(); loop { if (pc1 == script1.end() && pc2 == script2.end()) { // Found a match reverse(vSolutionRet.begin(), vSolutionRet.end()); return true; } if (!script1.GetOp(pc1, opcode1, vch1)) break; if (!script2.GetOp(pc2, opcode2, vch2)) break; if (opcode2 == OP_PUBKEY) { if (vch1.size() < 33 || vch1.size() > 120) break; vSolutionRet.push_back(make_pair(opcode2, vch1)); } else if (opcode2 == OP_PUBKEYHASH) { if (vch1.size() != sizeof(uint160)) break; vSolutionRet.push_back(make_pair(opcode2, vch1)); } else if (opcode1 != opcode2 || vch1 != vch2) { break; } } } vSolutionRet.clear(); return false; } bool Solver(const CKeyStore& keystore, const CScript& scriptPubKey, uint256 hash, int nHashType, CScript& scriptSigRet) { scriptSigRet.clear(); vector > vSolution; if (!Solver(scriptPubKey, vSolution)) return false; // Compile solution BOOST_FOREACH(PAIRTYPE(opcodetype, valtype)& item, vSolution) { if (item.first == OP_PUBKEY) { // Sign const valtype& vchPubKey = item.second; CKey key; if (!keystore.GetKey(Hash160(vchPubKey), key)) return false; if (key.GetPubKey() != vchPubKey) return false; if (hash != 0) { vector vchSig; if (!key.Sign(hash, vchSig)) return false; vchSig.push_back((unsigned char)nHashType); scriptSigRet << vchSig; } } else if (item.first == OP_PUBKEYHASH) { // Sign and give pubkey CKey key; if (!keystore.GetKey(uint160(item.second), key)) return false; if (hash != 0) { vector vchSig; if (!key.Sign(hash, vchSig)) return false; vchSig.push_back((unsigned char)nHashType); scriptSigRet << vchSig << key.GetPubKey(); } } else { return false; } } return true; } bool IsStandard(const CScript& scriptPubKey) { vector > vSolution; return Solver(scriptPubKey, vSolution); } bool IsMine(const CKeyStore &keystore, const CScript& scriptPubKey) { vector > vSolution; if (!Solver(scriptPubKey, vSolution)) return false; // Compile solution BOOST_FOREACH(PAIRTYPE(opcodetype, valtype)& item, vSolution) { if (item.first == OP_PUBKEY) { const valtype& vchPubKey = item.second; vector vchPubKeyFound; if (!keystore.GetPubKey(Hash160(vchPubKey), vchPubKeyFound)) return false; if (vchPubKeyFound != vchPubKey) return false; } else if (item.first == OP_PUBKEYHASH) { if (!keystore.HaveKey(uint160(item.second))) return false; } else { return false; } } return true; } bool ExtractAddress(const CScript& scriptPubKey, const CKeyStore* keystore, CBitcoinAddress& addressRet) { vector > vSolution; if (!Solver(scriptPubKey, vSolution)) return false; BOOST_FOREACH(PAIRTYPE(opcodetype, valtype)& item, vSolution) { if (item.first == OP_PUBKEY) addressRet.SetPubKey(item.second); else if (item.first == OP_PUBKEYHASH) addressRet.SetHash160((uint160)item.second); if (keystore == NULL || keystore->HaveKey(addressRet)) return true; } return false; } bool VerifyScript(const CScript& scriptSig, const CScript& scriptPubKey, const CTransaction& txTo, unsigned int nIn, int nHashType) { vector > stack; if (!EvalScript(stack, scriptSig, txTo, nIn, nHashType)) return false; if (!EvalScript(stack, scriptPubKey, txTo, nIn, nHashType)) return false; if (stack.empty()) return false; return CastToBool(stack.back()); } bool SignSignature(const CKeyStore &keystore, const CTransaction& txFrom, CTransaction& txTo, unsigned int nIn, int nHashType, CScript scriptPrereq) { assert(nIn < txTo.vin.size()); CTxIn& txin = txTo.vin[nIn]; assert(txin.prevout.n < txFrom.vout.size()); const CTxOut& txout = txFrom.vout[txin.prevout.n]; // Leave out the signature from the hash, since a signature can't sign itself. // The checksig op will also drop the signatures from its hash. uint256 hash = SignatureHash(scriptPrereq + txout.scriptPubKey, txTo, nIn, nHashType); if (!Solver(keystore, txout.scriptPubKey, hash, nHashType, txin.scriptSig)) return false; txin.scriptSig = scriptPrereq + txin.scriptSig; // Test solution if (scriptPrereq.empty()) if (!VerifyScript(txin.scriptSig, txout.scriptPubKey, txTo, nIn, 0)) return false; return true; } bool VerifySignature(const CTransaction& txFrom, const CTransaction& txTo, unsigned int nIn, int nHashType) { assert(nIn < txTo.vin.size()); const CTxIn& txin = txTo.vin[nIn]; if (txin.prevout.n >= txFrom.vout.size()) return false; const CTxOut& txout = txFrom.vout[txin.prevout.n]; if (txin.prevout.hash != txFrom.GetHash()) return false; if (!VerifyScript(txin.scriptSig, txout.scriptPubKey, txTo, nIn, nHashType)) return false; return true; }