#!/usr/bin/env python3 # Copyright (c) 2014-2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test BIP68 implementation.""" import time from test_framework.blocktools import create_block, create_coinbase, add_witness_commitment from test_framework.messages import COIN, COutPoint, CTransaction, CTxIn, CTxOut, FromHex, ToHex from test_framework.script import CScript from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, assert_greater_than, assert_raises_rpc_error, satoshi_round, softfork_active, ) SEQUENCE_LOCKTIME_DISABLE_FLAG = (1<<31) SEQUENCE_LOCKTIME_TYPE_FLAG = (1<<22) # this means use time (0 means height) SEQUENCE_LOCKTIME_GRANULARITY = 9 # this is a bit-shift SEQUENCE_LOCKTIME_MASK = 0x0000ffff # RPC error for non-BIP68 final transactions NOT_FINAL_ERROR = "non-BIP68-final (code 64)" class BIP68Test(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 2 self.extra_args = [ ["-acceptnonstdtxn=1"], ["-acceptnonstdtxn=0"], ] def skip_test_if_missing_module(self): self.skip_if_no_wallet() def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): self.relayfee = self.nodes[0].getnetworkinfo()["relayfee"] # Generate some coins self.nodes[0].generate(110) self.log.info("Running test disable flag") self.test_disable_flag() self.log.info("Running test sequence-lock-confirmed-inputs") self.test_sequence_lock_confirmed_inputs() self.log.info("Running test sequence-lock-unconfirmed-inputs") self.test_sequence_lock_unconfirmed_inputs() self.log.info("Running test BIP68 not consensus before activation") self.test_bip68_not_consensus() self.log.info("Activating BIP68 (and 112/113)") self.activateCSV() self.log.info("Verifying nVersion=2 transactions are standard.") self.log.info("Note that nVersion=2 transactions are always standard (independent of BIP68 activation status).") self.test_version2_relay() self.log.info("Passed") # Test that BIP68 is not in effect if tx version is 1, or if # the first sequence bit is set. def test_disable_flag(self): # Create some unconfirmed inputs new_addr = self.nodes[0].getnewaddress() self.nodes[0].sendtoaddress(new_addr, 2) # send 2 BTC utxos = self.nodes[0].listunspent(0, 0) assert len(utxos) > 0 utxo = utxos[0] tx1 = CTransaction() value = int(satoshi_round(utxo["amount"] - self.relayfee)*COIN) # Check that the disable flag disables relative locktime. # If sequence locks were used, this would require 1 block for the # input to mature. sequence_value = SEQUENCE_LOCKTIME_DISABLE_FLAG | 1 tx1.vin = [CTxIn(COutPoint(int(utxo["txid"], 16), utxo["vout"]), nSequence=sequence_value)] tx1.vout = [CTxOut(value, CScript([b'a']))] tx1_signed = self.nodes[0].signrawtransactionwithwallet(ToHex(tx1))["hex"] tx1_id = self.nodes[0].sendrawtransaction(tx1_signed) tx1_id = int(tx1_id, 16) # This transaction will enable sequence-locks, so this transaction should # fail tx2 = CTransaction() tx2.nVersion = 2 sequence_value = sequence_value & 0x7fffffff tx2.vin = [CTxIn(COutPoint(tx1_id, 0), nSequence=sequence_value)] tx2.vout = [CTxOut(int(value - self.relayfee * COIN), CScript([b'a' * 35]))] tx2.rehash() assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, ToHex(tx2)) # Setting the version back down to 1 should disable the sequence lock, # so this should be accepted. tx2.nVersion = 1 self.nodes[0].sendrawtransaction(ToHex(tx2)) # Calculate the median time past of a prior block ("confirmations" before # the current tip). def get_median_time_past(self, confirmations): block_hash = self.nodes[0].getblockhash(self.nodes[0].getblockcount()-confirmations) return self.nodes[0].getblockheader(block_hash)["mediantime"] # Test that sequence locks are respected for transactions spending confirmed inputs. def test_sequence_lock_confirmed_inputs(self): # Create lots of confirmed utxos, and use them to generate lots of random # transactions. max_outputs = 50 addresses = [] while len(addresses) < max_outputs: addresses.append(self.nodes[0].getnewaddress()) while len(self.nodes[0].listunspent()) < 200: import random random.shuffle(addresses) num_outputs = random.randint(1, max_outputs) outputs = {} for i in range(num_outputs): outputs[addresses[i]] = random.randint(1, 20)*0.01 self.nodes[0].sendmany("", outputs) self.nodes[0].generate(1) utxos = self.nodes[0].listunspent() # Try creating a lot of random transactions. # Each time, choose a random number of inputs, and randomly set # some of those inputs to be sequence locked (and randomly choose # between height/time locking). Small random chance of making the locks # all pass. for i in range(400): # Randomly choose up to 10 inputs num_inputs = random.randint(1, 10) random.shuffle(utxos) # Track whether any sequence locks used should fail should_pass = True # Track whether this transaction was built with sequence locks using_sequence_locks = False tx = CTransaction() tx.nVersion = 2 value = 0 for j in range(num_inputs): sequence_value = 0xfffffffe # this disables sequence locks # 50% chance we enable sequence locks if random.randint(0,1): using_sequence_locks = True # 10% of the time, make the input sequence value pass input_will_pass = (random.randint(1,10) == 1) sequence_value = utxos[j]["confirmations"] if not input_will_pass: sequence_value += 1 should_pass = False # Figure out what the median-time-past was for the confirmed input # Note that if an input has N confirmations, we're going back N blocks # from the tip so that we're looking up MTP of the block # PRIOR to the one the input appears in, as per the BIP68 spec. orig_time = self.get_median_time_past(utxos[j]["confirmations"]) cur_time = self.get_median_time_past(0) # MTP of the tip # can only timelock this input if it's not too old -- otherwise use height can_time_lock = True if ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY) >= SEQUENCE_LOCKTIME_MASK: can_time_lock = False # if time-lockable, then 50% chance we make this a time lock if random.randint(0,1) and can_time_lock: # Find first time-lock value that fails, or latest one that succeeds time_delta = sequence_value << SEQUENCE_LOCKTIME_GRANULARITY if input_will_pass and time_delta > cur_time - orig_time: sequence_value = ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY) elif (not input_will_pass and time_delta <= cur_time - orig_time): sequence_value = ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY)+1 sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG tx.vin.append(CTxIn(COutPoint(int(utxos[j]["txid"], 16), utxos[j]["vout"]), nSequence=sequence_value)) value += utxos[j]["amount"]*COIN # Overestimate the size of the tx - signatures should be less than 120 bytes, and leave 50 for the output tx_size = len(ToHex(tx))//2 + 120*num_inputs + 50 tx.vout.append(CTxOut(int(value-self.relayfee*tx_size*COIN/1000), CScript([b'a']))) rawtx = self.nodes[0].signrawtransactionwithwallet(ToHex(tx))["hex"] if (using_sequence_locks and not should_pass): # This transaction should be rejected assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, rawtx) else: # This raw transaction should be accepted self.nodes[0].sendrawtransaction(rawtx) utxos = self.nodes[0].listunspent() # Test that sequence locks on unconfirmed inputs must have nSequence # height or time of 0 to be accepted. # Then test that BIP68-invalid transactions are removed from the mempool # after a reorg. def test_sequence_lock_unconfirmed_inputs(self): # Store height so we can easily reset the chain at the end of the test cur_height = self.nodes[0].getblockcount() # Create a mempool tx. txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 2) tx1 = FromHex(CTransaction(), self.nodes[0].getrawtransaction(txid)) tx1.rehash() # Anyone-can-spend mempool tx. # Sequence lock of 0 should pass. tx2 = CTransaction() tx2.nVersion = 2 tx2.vin = [CTxIn(COutPoint(tx1.sha256, 0), nSequence=0)] tx2.vout = [CTxOut(int(tx1.vout[0].nValue - self.relayfee*COIN), CScript([b'a']))] tx2_raw = self.nodes[0].signrawtransactionwithwallet(ToHex(tx2))["hex"] tx2 = FromHex(tx2, tx2_raw) tx2.rehash() self.nodes[0].sendrawtransaction(tx2_raw) # Create a spend of the 0th output of orig_tx with a sequence lock # of 1, and test what happens when submitting. # orig_tx.vout[0] must be an anyone-can-spend output def test_nonzero_locks(orig_tx, node, relayfee, use_height_lock): sequence_value = 1 if not use_height_lock: sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG tx = CTransaction() tx.nVersion = 2 tx.vin = [CTxIn(COutPoint(orig_tx.sha256, 0), nSequence=sequence_value)] tx.vout = [CTxOut(int(orig_tx.vout[0].nValue - relayfee * COIN), CScript([b'a' * 35]))] tx.rehash() if (orig_tx.hash in node.getrawmempool()): # sendrawtransaction should fail if the tx is in the mempool assert_raises_rpc_error(-26, NOT_FINAL_ERROR, node.sendrawtransaction, ToHex(tx)) else: # sendrawtransaction should succeed if the tx is not in the mempool node.sendrawtransaction(ToHex(tx)) return tx test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=True) test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False) # Now mine some blocks, but make sure tx2 doesn't get mined. # Use prioritisetransaction to lower the effective feerate to 0 self.nodes[0].prioritisetransaction(txid=tx2.hash, fee_delta=int(-self.relayfee*COIN)) cur_time = int(time.time()) for i in range(10): self.nodes[0].setmocktime(cur_time + 600) self.nodes[0].generate(1) cur_time += 600 assert tx2.hash in self.nodes[0].getrawmempool() test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=True) test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False) # Mine tx2, and then try again self.nodes[0].prioritisetransaction(txid=tx2.hash, fee_delta=int(self.relayfee*COIN)) # Advance the time on the node so that we can test timelocks self.nodes[0].setmocktime(cur_time+600) self.nodes[0].generate(1) assert tx2.hash not in self.nodes[0].getrawmempool() # Now that tx2 is not in the mempool, a sequence locked spend should # succeed tx3 = test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False) assert tx3.hash in self.nodes[0].getrawmempool() self.nodes[0].generate(1) assert tx3.hash not in self.nodes[0].getrawmempool() # One more test, this time using height locks tx4 = test_nonzero_locks(tx3, self.nodes[0], self.relayfee, use_height_lock=True) assert tx4.hash in self.nodes[0].getrawmempool() # Now try combining confirmed and unconfirmed inputs tx5 = test_nonzero_locks(tx4, self.nodes[0], self.relayfee, use_height_lock=True) assert tx5.hash not in self.nodes[0].getrawmempool() utxos = self.nodes[0].listunspent() tx5.vin.append(CTxIn(COutPoint(int(utxos[0]["txid"], 16), utxos[0]["vout"]), nSequence=1)) tx5.vout[0].nValue += int(utxos[0]["amount"]*COIN) raw_tx5 = self.nodes[0].signrawtransactionwithwallet(ToHex(tx5))["hex"] assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, raw_tx5) # Test mempool-BIP68 consistency after reorg # # State of the transactions in the last blocks: # ... -> [ tx2 ] -> [ tx3 ] # tip-1 tip # And currently tx4 is in the mempool. # # If we invalidate the tip, tx3 should get added to the mempool, causing # tx4 to be removed (fails sequence-lock). self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) assert tx4.hash not in self.nodes[0].getrawmempool() assert tx3.hash in self.nodes[0].getrawmempool() # Now mine 2 empty blocks to reorg out the current tip (labeled tip-1 in # diagram above). # This would cause tx2 to be added back to the mempool, which in turn causes # tx3 to be removed. tip = int(self.nodes[0].getblockhash(self.nodes[0].getblockcount()-1), 16) height = self.nodes[0].getblockcount() for i in range(2): block = create_block(tip, create_coinbase(height), cur_time) block.nVersion = 3 block.rehash() block.solve() tip = block.sha256 height += 1 self.nodes[0].submitblock(ToHex(block)) cur_time += 1 mempool = self.nodes[0].getrawmempool() assert tx3.hash not in mempool assert tx2.hash in mempool # Reset the chain and get rid of the mocktimed-blocks self.nodes[0].setmocktime(0) self.nodes[0].invalidateblock(self.nodes[0].getblockhash(cur_height+1)) self.nodes[0].generate(10) # Make sure that BIP68 isn't being used to validate blocks prior to # activation height. If more blocks are mined prior to this test # being run, then it's possible the test has activated the soft fork, and # this test should be moved to run earlier, or deleted. def test_bip68_not_consensus(self): # NOTE csv is always active # assert not softfork_active(self.nodes[0], 'csv') txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 2) tx1 = FromHex(CTransaction(), self.nodes[0].getrawtransaction(txid)) tx1.rehash() # Make an anyone-can-spend transaction tx2 = CTransaction() tx2.nVersion = 1 tx2.vin = [CTxIn(COutPoint(tx1.sha256, 0), nSequence=0)] tx2.vout = [CTxOut(int(tx1.vout[0].nValue - self.relayfee*COIN), CScript([b'a']))] # sign tx2 tx2_raw = self.nodes[0].signrawtransactionwithwallet(ToHex(tx2))["hex"] tx2 = FromHex(tx2, tx2_raw) tx2.rehash() self.nodes[0].sendrawtransaction(ToHex(tx2)) # Now make an invalid spend of tx2 according to BIP68 sequence_value = 100 # 100 block relative locktime tx3 = CTransaction() tx3.nVersion = 2 tx3.vin = [CTxIn(COutPoint(tx2.sha256, 0), nSequence=sequence_value)] tx3.vout = [CTxOut(int(tx2.vout[0].nValue - self.relayfee * COIN), CScript([b'a' * 35]))] tx3.rehash() assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, ToHex(tx3)) # make a block that violates bip68; ensure that the tip updates tip = int(self.nodes[0].getbestblockhash(), 16) block = create_block(tip, create_coinbase(self.nodes[0].getblockcount()+1)) block.nVersion = 3 block.vtx.extend([tx1, tx2, tx3]) block.hashMerkleRoot = block.calc_merkle_root() block.rehash() add_witness_commitment(block) block.solve() self.nodes[0].submitblock(block.serialize().hex()) # NOTE csv is always active # assert_equal(self.nodes[0].getbestblockhash(), block.hash) def activateCSV(self): # activation should happen at block height 432 (3 periods) # getblockchaininfo will show CSV as active at block 431 (144 * 3 -1) since it's returning whether CSV is active for the next block. min_activation_height = 432 height = self.nodes[0].getblockcount() assert_greater_than(min_activation_height - height, 2) self.nodes[0].generate(min_activation_height - height - 2) # NOTE csv is always active # assert not softfork_active(self.nodes[0], 'csv') self.nodes[0].generate(1) assert softfork_active(self.nodes[0], 'csv') self.sync_blocks() # Use self.nodes[1] to test that version 2 transactions are standard. def test_version2_relay(self): inputs = [ ] outputs = { self.nodes[1].getnewaddress() : 1.0 } rawtx = self.nodes[1].createrawtransaction(inputs, outputs) rawtxfund = self.nodes[1].fundrawtransaction(rawtx)['hex'] tx = FromHex(CTransaction(), rawtxfund) tx.nVersion = 2 tx_signed = self.nodes[1].signrawtransactionwithwallet(ToHex(tx))["hex"] self.nodes[1].sendrawtransaction(tx_signed) if __name__ == '__main__': BIP68Test().main()