// Copyright (c) 2018 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include <mutex> #include <sstream> #include <blockfilter.h> #include <crypto/siphash.h> #include <hash.h> #include <primitives/transaction.h> #include <script/script.h> #include <streams.h> /// SerType used to serialize parameters in GCS filter encoding. static constexpr int GCS_SER_TYPE = SER_NETWORK; /// Protocol version used to serialize parameters in GCS filter encoding. static constexpr int GCS_SER_VERSION = 0; static const std::map<BlockFilterType, std::string> g_filter_types = { {BlockFilterType::BASIC, "basic"}, }; template <typename OStream> static void GolombRiceEncode(BitStreamWriter<OStream>& bitwriter, uint8_t P, uint64_t x) { // Write quotient as unary-encoded: q 1's followed by one 0. uint64_t q = x >> P; while (q > 0) { int nbits = q <= 64 ? static_cast<int>(q) : 64; bitwriter.Write(~0ULL, nbits); q -= nbits; } bitwriter.Write(0, 1); // Write the remainder in P bits. Since the remainder is just the bottom // P bits of x, there is no need to mask first. bitwriter.Write(x, P); } template <typename IStream> static uint64_t GolombRiceDecode(BitStreamReader<IStream>& bitreader, uint8_t P) { // Read unary-encoded quotient: q 1's followed by one 0. uint64_t q = 0; while (bitreader.Read(1) == 1) { ++q; } uint64_t r = bitreader.Read(P); return (q << P) + r; } // Map a value x that is uniformly distributed in the range [0, 2^64) to a // value uniformly distributed in [0, n) by returning the upper 64 bits of // x * n. // // See: https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/ static uint64_t MapIntoRange(uint64_t x, uint64_t n) { #ifdef __SIZEOF_INT128__ return (static_cast<unsigned __int128>(x) * static_cast<unsigned __int128>(n)) >> 64; #else // To perform the calculation on 64-bit numbers without losing the // result to overflow, split the numbers into the most significant and // least significant 32 bits and perform multiplication piece-wise. // // See: https://stackoverflow.com/a/26855440 uint64_t x_hi = x >> 32; uint64_t x_lo = x & 0xFFFFFFFF; uint64_t n_hi = n >> 32; uint64_t n_lo = n & 0xFFFFFFFF; uint64_t ac = x_hi * n_hi; uint64_t ad = x_hi * n_lo; uint64_t bc = x_lo * n_hi; uint64_t bd = x_lo * n_lo; uint64_t mid34 = (bd >> 32) + (bc & 0xFFFFFFFF) + (ad & 0xFFFFFFFF); uint64_t upper64 = ac + (bc >> 32) + (ad >> 32) + (mid34 >> 32); return upper64; #endif } uint64_t GCSFilter::HashToRange(const Element& element) const { uint64_t hash = CSipHasher(m_params.m_siphash_k0, m_params.m_siphash_k1) .Write(element.data(), element.size()) .Finalize(); return MapIntoRange(hash, m_F); } std::vector<uint64_t> GCSFilter::BuildHashedSet(const ElementSet& elements) const { std::vector<uint64_t> hashed_elements; hashed_elements.reserve(elements.size()); for (const Element& element : elements) { hashed_elements.push_back(HashToRange(element)); } std::sort(hashed_elements.begin(), hashed_elements.end()); return hashed_elements; } GCSFilter::GCSFilter(const Params& params) : m_params(params), m_N(0), m_F(0), m_encoded{0} {} GCSFilter::GCSFilter(const Params& params, std::vector<unsigned char> encoded_filter) : m_params(params), m_encoded(std::move(encoded_filter)) { VectorReader stream(GCS_SER_TYPE, GCS_SER_VERSION, m_encoded, 0); uint64_t N = ReadCompactSize(stream); m_N = static_cast<uint32_t>(N); if (m_N != N) { throw std::ios_base::failure("N must be <2^32"); } m_F = static_cast<uint64_t>(m_N) * static_cast<uint64_t>(m_params.m_M); // Verify that the encoded filter contains exactly N elements. If it has too much or too little // data, a std::ios_base::failure exception will be raised. BitStreamReader<VectorReader> bitreader(stream); for (uint64_t i = 0; i < m_N; ++i) { GolombRiceDecode(bitreader, m_params.m_P); } if (!stream.empty()) { throw std::ios_base::failure("encoded_filter contains excess data"); } } GCSFilter::GCSFilter(const Params& params, const ElementSet& elements) : m_params(params) { size_t N = elements.size(); m_N = static_cast<uint32_t>(N); if (m_N != N) { throw std::invalid_argument("N must be <2^32"); } m_F = static_cast<uint64_t>(m_N) * static_cast<uint64_t>(m_params.m_M); CVectorWriter stream(GCS_SER_TYPE, GCS_SER_VERSION, m_encoded, 0); WriteCompactSize(stream, m_N); if (elements.empty()) { return; } BitStreamWriter<CVectorWriter> bitwriter(stream); uint64_t last_value = 0; for (uint64_t value : BuildHashedSet(elements)) { uint64_t delta = value - last_value; GolombRiceEncode(bitwriter, m_params.m_P, delta); last_value = value; } bitwriter.Flush(); } bool GCSFilter::MatchInternal(const uint64_t* element_hashes, size_t size) const { VectorReader stream(GCS_SER_TYPE, GCS_SER_VERSION, m_encoded, 0); // Seek forward by size of N uint64_t N = ReadCompactSize(stream); assert(N == m_N); BitStreamReader<VectorReader> bitreader(stream); uint64_t value = 0; size_t hashes_index = 0; for (uint32_t i = 0; i < m_N; ++i) { uint64_t delta = GolombRiceDecode(bitreader, m_params.m_P); value += delta; while (true) { if (hashes_index == size) { return false; } else if (element_hashes[hashes_index] == value) { return true; } else if (element_hashes[hashes_index] > value) { break; } hashes_index++; } } return false; } bool GCSFilter::Match(const Element& element) const { uint64_t query = HashToRange(element); return MatchInternal(&query, 1); } bool GCSFilter::MatchAny(const ElementSet& elements) const { const std::vector<uint64_t> queries = BuildHashedSet(elements); return MatchInternal(queries.data(), queries.size()); } const std::string& BlockFilterTypeName(BlockFilterType filter_type) { static std::string unknown_retval = ""; auto it = g_filter_types.find(filter_type); return it != g_filter_types.end() ? it->second : unknown_retval; } bool BlockFilterTypeByName(const std::string& name, BlockFilterType& filter_type) { for (const auto& entry : g_filter_types) { if (entry.second == name) { filter_type = entry.first; return true; } } return false; } const std::vector<BlockFilterType>& AllBlockFilterTypes() { static std::vector<BlockFilterType> types; static std::once_flag flag; std::call_once(flag, []() { types.reserve(g_filter_types.size()); for (auto entry : g_filter_types) { types.push_back(entry.first); } }); return types; } const std::string& ListBlockFilterTypes() { static std::string type_list; static std::once_flag flag; std::call_once(flag, []() { std::stringstream ret; bool first = true; for (auto entry : g_filter_types) { if (!first) ret << ", "; ret << entry.second; first = false; } type_list = ret.str(); }); return type_list; } static GCSFilter::ElementSet BasicFilterElements(const CBlock& block, const CBlockUndo& block_undo) { GCSFilter::ElementSet elements; for (const CTransactionRef& tx : block.vtx) { for (const CTxOut& txout : tx->vout) { const CScript& script = txout.scriptPubKey; if (script.empty() || script[0] == OP_RETURN) continue; elements.emplace(script.begin(), script.end()); } } for (const CTxUndo& tx_undo : block_undo.vtxundo) { for (const Coin& prevout : tx_undo.vprevout) { const CScript& script = prevout.out.scriptPubKey; if (script.empty()) continue; elements.emplace(script.begin(), script.end()); } } return elements; } BlockFilter::BlockFilter(BlockFilterType filter_type, const uint256& block_hash, std::vector<unsigned char> filter) : m_filter_type(filter_type), m_block_hash(block_hash) { GCSFilter::Params params; if (!BuildParams(params)) { throw std::invalid_argument("unknown filter_type"); } m_filter = GCSFilter(params, std::move(filter)); } BlockFilter::BlockFilter(BlockFilterType filter_type, const CBlock& block, const CBlockUndo& block_undo) : m_filter_type(filter_type), m_block_hash(block.GetHash()) { GCSFilter::Params params; if (!BuildParams(params)) { throw std::invalid_argument("unknown filter_type"); } m_filter = GCSFilter(params, BasicFilterElements(block, block_undo)); } bool BlockFilter::BuildParams(GCSFilter::Params& params) const { switch (m_filter_type) { case BlockFilterType::BASIC: params.m_siphash_k0 = m_block_hash.GetUint64(0); params.m_siphash_k1 = m_block_hash.GetUint64(1); params.m_P = BASIC_FILTER_P; params.m_M = BASIC_FILTER_M; return true; case BlockFilterType::INVALID: return false; } return false; } uint256 BlockFilter::GetHash() const { const std::vector<unsigned char>& data = GetEncodedFilter(); uint256 result; CHash256().Write(data.data(), data.size()).Finalize(result.begin()); return result; } uint256 BlockFilter::ComputeHeader(const uint256& prev_header) const { const uint256& filter_hash = GetHash(); uint256 result; CHash256() .Write(filter_hash.begin(), filter_hash.size()) .Write(prev_header.begin(), prev_header.size()) .Finalize(result.begin()); return result; }