// Copyright (c) 2014-2015 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "chain.h" #include "random.h" #include "versionbits.h" #include "test/test_bitcoin.h" #include "chainparams.h" #include "main.h" #include "consensus/params.h" #include /* Define a virtual block time, one block per 10 minutes after Nov 14 2014, 0:55:36am */ int32_t TestTime(int nHeight) { return 1415926536 + 600 * nHeight; } static const Consensus::Params paramsDummy = Consensus::Params(); class TestConditionChecker : public AbstractThresholdConditionChecker { private: mutable ThresholdConditionCache cache; public: int64_t BeginTime(const Consensus::Params& params) const { return TestTime(10000); } int64_t EndTime(const Consensus::Params& params) const { return TestTime(20000); } int Period(const Consensus::Params& params) const { return 1000; } int Threshold(const Consensus::Params& params) const { return 900; } bool Condition(const CBlockIndex* pindex, const Consensus::Params& params) const { return (pindex->nVersion & 0x100); } ThresholdState GetStateFor(const CBlockIndex* pindexPrev) const { return AbstractThresholdConditionChecker::GetStateFor(pindexPrev, paramsDummy, cache); } }; #define CHECKERS 6 class VersionBitsTester { // A fake blockchain std::vector vpblock; // 6 independent checkers for the same bit. // The first one performs all checks, the second only 50%, the third only 25%, etc... // This is to test whether lack of cached information leads to the same results. TestConditionChecker checker[CHECKERS]; // Test counter (to identify failures) int num; public: VersionBitsTester() : num(0) {} VersionBitsTester& Reset() { for (unsigned int i = 0; i < vpblock.size(); i++) { delete vpblock[i]; } for (unsigned int i = 0; i < CHECKERS; i++) { checker[i] = TestConditionChecker(); } vpblock.clear(); return *this; } ~VersionBitsTester() { Reset(); } VersionBitsTester& Mine(unsigned int height, int32_t nTime, int32_t nVersion) { while (vpblock.size() < height) { CBlockIndex* pindex = new CBlockIndex(); pindex->nHeight = vpblock.size(); pindex->pprev = vpblock.size() > 0 ? vpblock.back() : NULL; pindex->nTime = nTime; pindex->nVersion = nVersion; pindex->BuildSkip(); vpblock.push_back(pindex); } return *this; } VersionBitsTester& TestDefined() { for (int i = 0; i < CHECKERS; i++) { if ((insecure_rand() & ((1 << i) - 1)) == 0) { BOOST_CHECK_MESSAGE(checker[i].GetStateFor(vpblock.empty() ? NULL : vpblock.back()) == THRESHOLD_DEFINED, strprintf("Test %i for DEFINED", num)); } } num++; return *this; } VersionBitsTester& TestStarted() { for (int i = 0; i < CHECKERS; i++) { if ((insecure_rand() & ((1 << i) - 1)) == 0) { BOOST_CHECK_MESSAGE(checker[i].GetStateFor(vpblock.empty() ? NULL : vpblock.back()) == THRESHOLD_STARTED, strprintf("Test %i for STARTED", num)); } } num++; return *this; } VersionBitsTester& TestLockedIn() { for (int i = 0; i < CHECKERS; i++) { if ((insecure_rand() & ((1 << i) - 1)) == 0) { BOOST_CHECK_MESSAGE(checker[i].GetStateFor(vpblock.empty() ? NULL : vpblock.back()) == THRESHOLD_LOCKED_IN, strprintf("Test %i for LOCKED_IN", num)); } } num++; return *this; } VersionBitsTester& TestActive() { for (int i = 0; i < CHECKERS; i++) { if ((insecure_rand() & ((1 << i) - 1)) == 0) { BOOST_CHECK_MESSAGE(checker[i].GetStateFor(vpblock.empty() ? NULL : vpblock.back()) == THRESHOLD_ACTIVE, strprintf("Test %i for ACTIVE", num)); } } num++; return *this; } VersionBitsTester& TestFailed() { for (int i = 0; i < CHECKERS; i++) { if ((insecure_rand() & ((1 << i) - 1)) == 0) { BOOST_CHECK_MESSAGE(checker[i].GetStateFor(vpblock.empty() ? NULL : vpblock.back()) == THRESHOLD_FAILED, strprintf("Test %i for FAILED", num)); } } num++; return *this; } CBlockIndex * Tip() { return vpblock.size() ? vpblock.back() : NULL; } }; BOOST_FIXTURE_TEST_SUITE(versionbits_tests, TestingSetup) BOOST_AUTO_TEST_CASE(versionbits_test) { for (int i = 0; i < 64; i++) { // DEFINED -> FAILED VersionBitsTester().TestDefined() .Mine(1, TestTime(1), 0x100).TestDefined() .Mine(11, TestTime(11), 0x100).TestDefined() .Mine(989, TestTime(989), 0x100).TestDefined() .Mine(999, TestTime(20000), 0x100).TestDefined() .Mine(1000, TestTime(20000), 0x100).TestFailed() .Mine(1999, TestTime(30001), 0x100).TestFailed() .Mine(2000, TestTime(30002), 0x100).TestFailed() .Mine(2001, TestTime(30003), 0x100).TestFailed() .Mine(2999, TestTime(30004), 0x100).TestFailed() .Mine(3000, TestTime(30005), 0x100).TestFailed() // DEFINED -> STARTED -> FAILED .Reset().TestDefined() .Mine(1, TestTime(1), 0).TestDefined() .Mine(1000, TestTime(10000) - 1, 0x100).TestDefined() // One second more and it would be defined .Mine(2000, TestTime(10000), 0x100).TestStarted() // So that's what happens the next period .Mine(2051, TestTime(10010), 0).TestStarted() // 51 old blocks .Mine(2950, TestTime(10020), 0x100).TestStarted() // 899 new blocks .Mine(3000, TestTime(20000), 0).TestFailed() // 50 old blocks (so 899 out of the past 1000) .Mine(4000, TestTime(20010), 0x100).TestFailed() // DEFINED -> STARTED -> FAILED while threshold reached .Reset().TestDefined() .Mine(1, TestTime(1), 0).TestDefined() .Mine(1000, TestTime(10000) - 1, 0x101).TestDefined() // One second more and it would be defined .Mine(2000, TestTime(10000), 0x101).TestStarted() // So that's what happens the next period .Mine(2999, TestTime(30000), 0x100).TestStarted() // 999 new blocks .Mine(3000, TestTime(30000), 0x100).TestFailed() // 1 new block (so 1000 out of the past 1000 are new) .Mine(3999, TestTime(30001), 0).TestFailed() .Mine(4000, TestTime(30002), 0).TestFailed() .Mine(14333, TestTime(30003), 0).TestFailed() .Mine(24000, TestTime(40000), 0).TestFailed() // DEFINED -> STARTED -> LOCKEDIN at the last minute -> ACTIVE .Reset().TestDefined() .Mine(1, TestTime(1), 0).TestDefined() .Mine(1000, TestTime(10000) - 1, 0x101).TestDefined() // One second more and it would be defined .Mine(2000, TestTime(10000), 0x101).TestStarted() // So that's what happens the next period .Mine(2050, TestTime(10010), 0x200).TestStarted() // 50 old blocks .Mine(2950, TestTime(10020), 0x100).TestStarted() // 900 new blocks .Mine(2999, TestTime(19999), 0x200).TestStarted() // 49 old blocks .Mine(3000, TestTime(29999), 0x200).TestLockedIn() // 1 old block (so 900 out of the past 1000) .Mine(3999, TestTime(30001), 0).TestLockedIn() .Mine(4000, TestTime(30002), 0).TestActive() .Mine(14333, TestTime(30003), 0).TestActive() .Mine(24000, TestTime(40000), 0).TestActive(); } } BOOST_AUTO_TEST_CASE(versionbits_computeblockversion) { // Check that ComputeBlockVersion will set the appropriate bit correctly // on mainnet. const Consensus::Params &mainnetParams = Params(CBaseChainParams::MAIN).GetConsensus(); // Use the TESTDUMMY deployment for testing purposes. int64_t bit = mainnetParams.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].bit; int64_t nStartTime = mainnetParams.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].nStartTime; int64_t nTimeout = mainnetParams.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].nTimeout; assert(nStartTime < nTimeout); // In the first chain, test that the bit is set by CBV until it has failed. // In the second chain, test the bit is set by CBV while STARTED and // LOCKED-IN, and then no longer set while ACTIVE. VersionBitsTester firstChain, secondChain; // Start generating blocks before nStartTime int64_t nTime = nStartTime - 1; // Before MedianTimePast of the chain has crossed nStartTime, the bit // should not be set. CBlockIndex *lastBlock = NULL; lastBlock = firstChain.Mine(2016, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip(); BOOST_CHECK_EQUAL(ComputeBlockVersion(lastBlock, mainnetParams) & (1< 0) { lastBlock = firstChain.Mine(nHeight+1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip(); BOOST_CHECK((ComputeBlockVersion(lastBlock, mainnetParams) & (1<