# mininode.py - Bitcoin P2P network half-a-node # # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # This python code was modified from ArtForz' public domain half-a-node, as # found in the mini-node branch of http://github.com/jgarzik/pynode. # # NodeConn: an object which manages p2p connectivity to a bitcoin node # NodeConnCB: a base class that describes the interface for receiving # callbacks with network messages from a NodeConn # CBlock, CTransaction, CBlockHeader, CTxIn, CTxOut, etc....: # data structures that should map to corresponding structures in # bitcoin/primitives # msg_block, msg_tx, msg_headers, etc.: # data structures that represent network messages # ser_*, deser_*: functions that handle serialization/deserialization import struct import socket import asyncore import binascii import time import sys import random import cStringIO import hashlib from threading import RLock from threading import Thread import logging import copy BIP0031_VERSION = 60000 MY_VERSION = 60001 # past bip-31 for ping/pong MY_SUBVERSION = "/python-mininode-tester:0.0.1/" MAX_INV_SZ = 50000 MAX_BLOCK_SIZE = 1000000 # Keep our own socket map for asyncore, so that we can track disconnects # ourselves (to workaround an issue with closing an asyncore socket when # using select) mininode_socket_map = dict() # One lock for synchronizing all data access between the networking thread (see # NetworkThread below) and the thread running the test logic. For simplicity, # NodeConn acquires this lock whenever delivering a message to to a NodeConnCB, # and whenever adding anything to the send buffer (in send_message()). This # lock should be acquired in the thread running the test logic to synchronize # access to any data shared with the NodeConnCB or NodeConn. mininode_lock = RLock() # Serialization/deserialization tools def sha256(s): return hashlib.new('sha256', s).digest() def hash256(s): return sha256(sha256(s)) def deser_string(f): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] return f.read(nit) def ser_string(s): if len(s) < 253: return chr(len(s)) + s elif len(s) < 0x10000: return chr(253) + struct.pack("<H", len(s)) + s elif len(s) < 0x100000000L: return chr(254) + struct.pack("<I", len(s)) + s return chr(255) + struct.pack("<Q", len(s)) + s def deser_uint256(f): r = 0L for i in xrange(8): t = struct.unpack("<I", f.read(4))[0] r += t << (i * 32) return r def ser_uint256(u): rs = "" for i in xrange(8): rs += struct.pack("<I", u & 0xFFFFFFFFL) u >>= 32 return rs def uint256_from_str(s): r = 0L t = struct.unpack("<IIIIIIII", s[:32]) for i in xrange(8): r += t[i] << (i * 32) return r def uint256_from_compact(c): nbytes = (c >> 24) & 0xFF v = (c & 0xFFFFFFL) << (8 * (nbytes - 3)) return v def deser_vector(f, c): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] r = [] for i in xrange(nit): t = c() t.deserialize(f) r.append(t) return r def ser_vector(l): r = "" if len(l) < 253: r = chr(len(l)) elif len(l) < 0x10000: r = chr(253) + struct.pack("<H", len(l)) elif len(l) < 0x100000000L: r = chr(254) + struct.pack("<I", len(l)) else: r = chr(255) + struct.pack("<Q", len(l)) for i in l: r += i.serialize() return r def deser_uint256_vector(f): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] r = [] for i in xrange(nit): t = deser_uint256(f) r.append(t) return r def ser_uint256_vector(l): r = "" if len(l) < 253: r = chr(len(l)) elif len(l) < 0x10000: r = chr(253) + struct.pack("<H", len(l)) elif len(l) < 0x100000000L: r = chr(254) + struct.pack("<I", len(l)) else: r = chr(255) + struct.pack("<Q", len(l)) for i in l: r += ser_uint256(i) return r def deser_string_vector(f): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] r = [] for i in xrange(nit): t = deser_string(f) r.append(t) return r def ser_string_vector(l): r = "" if len(l) < 253: r = chr(len(l)) elif len(l) < 0x10000: r = chr(253) + struct.pack("<H", len(l)) elif len(l) < 0x100000000L: r = chr(254) + struct.pack("<I", len(l)) else: r = chr(255) + struct.pack("<Q", len(l)) for sv in l: r += ser_string(sv) return r def deser_int_vector(f): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] r = [] for i in xrange(nit): t = struct.unpack("<i", f.read(4))[0] r.append(t) return r def ser_int_vector(l): r = "" if len(l) < 253: r = chr(len(l)) elif len(l) < 0x10000: r = chr(253) + struct.pack("<H", len(l)) elif len(l) < 0x100000000L: r = chr(254) + struct.pack("<I", len(l)) else: r = chr(255) + struct.pack("<Q", len(l)) for i in l: r += struct.pack("<i", i) return r # Objects that map to bitcoind objects, which can be serialized/deserialized class CAddress(object): def __init__(self): self.nServices = 1 self.pchReserved = "\x00" * 10 + "\xff" * 2 self.ip = "0.0.0.0" self.port = 0 def deserialize(self, f): self.nServices = struct.unpack("<Q", f.read(8))[0] self.pchReserved = f.read(12) self.ip = socket.inet_ntoa(f.read(4)) self.port = struct.unpack(">H", f.read(2))[0] def serialize(self): r = "" r += struct.pack("<Q", self.nServices) r += self.pchReserved r += socket.inet_aton(self.ip) r += struct.pack(">H", self.port) return r def __repr__(self): return "CAddress(nServices=%i ip=%s port=%i)" % (self.nServices, self.ip, self.port) class CInv(object): typemap = { 0: "Error", 1: "TX", 2: "Block"} def __init__(self, t=0, h=0L): self.type = t self.hash = h def deserialize(self, f): self.type = struct.unpack("<i", f.read(4))[0] self.hash = deser_uint256(f) def serialize(self): r = "" r += struct.pack("<i", self.type) r += ser_uint256(self.hash) return r def __repr__(self): return "CInv(type=%s hash=%064x)" \ % (self.typemap[self.type], self.hash) class CBlockLocator(object): def __init__(self): self.nVersion = MY_VERSION self.vHave = [] def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.vHave = deser_uint256_vector(f) def serialize(self): r = "" r += struct.pack("<i", self.nVersion) r += ser_uint256_vector(self.vHave) return r def __repr__(self): return "CBlockLocator(nVersion=%i vHave=%s)" \ % (self.nVersion, repr(self.vHave)) class COutPoint(object): def __init__(self, hash=0, n=0): self.hash = hash self.n = n def deserialize(self, f): self.hash = deser_uint256(f) self.n = struct.unpack("<I", f.read(4))[0] def serialize(self): r = "" r += ser_uint256(self.hash) r += struct.pack("<I", self.n) return r def __repr__(self): return "COutPoint(hash=%064x n=%i)" % (self.hash, self.n) class CTxIn(object): def __init__(self, outpoint=None, scriptSig="", nSequence=0): if outpoint is None: self.prevout = COutPoint() else: self.prevout = outpoint self.scriptSig = scriptSig self.nSequence = nSequence def deserialize(self, f): self.prevout = COutPoint() self.prevout.deserialize(f) self.scriptSig = deser_string(f) self.nSequence = struct.unpack("<I", f.read(4))[0] def serialize(self): r = "" r += self.prevout.serialize() r += ser_string(self.scriptSig) r += struct.pack("<I", self.nSequence) return r def __repr__(self): return "CTxIn(prevout=%s scriptSig=%s nSequence=%i)" \ % (repr(self.prevout), binascii.hexlify(self.scriptSig), self.nSequence) class CTxOut(object): def __init__(self, nValue=0, scriptPubKey=""): self.nValue = nValue self.scriptPubKey = scriptPubKey def deserialize(self, f): self.nValue = struct.unpack("<q", f.read(8))[0] self.scriptPubKey = deser_string(f) def serialize(self): r = "" r += struct.pack("<q", self.nValue) r += ser_string(self.scriptPubKey) return r def __repr__(self): return "CTxOut(nValue=%i.%08i scriptPubKey=%s)" \ % (self.nValue // 100000000, self.nValue % 100000000, binascii.hexlify(self.scriptPubKey)) class CTransaction(object): def __init__(self, tx=None): if tx is None: self.nVersion = 1 self.vin = [] self.vout = [] self.nLockTime = 0 self.sha256 = None self.hash = None else: self.nVersion = tx.nVersion self.vin = copy.deepcopy(tx.vin) self.vout = copy.deepcopy(tx.vout) self.nLockTime = tx.nLockTime self.sha256 = None self.hash = None def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.vin = deser_vector(f, CTxIn) self.vout = deser_vector(f, CTxOut) self.nLockTime = struct.unpack("<I", f.read(4))[0] self.sha256 = None self.hash = None def serialize(self): r = "" r += struct.pack("<i", self.nVersion) r += ser_vector(self.vin) r += ser_vector(self.vout) r += struct.pack("<I", self.nLockTime) return r def rehash(self): self.sha256 = None self.calc_sha256() def calc_sha256(self): if self.sha256 is None: self.sha256 = uint256_from_str(hash256(self.serialize())) self.hash = hash256(self.serialize())[::-1].encode('hex_codec') def is_valid(self): self.calc_sha256() for tout in self.vout: if tout.nValue < 0 or tout.nValue > 21000000L * 100000000L: return False return True def __repr__(self): return "CTransaction(nVersion=%i vin=%s vout=%s nLockTime=%i)" \ % (self.nVersion, repr(self.vin), repr(self.vout), self.nLockTime) class CBlockHeader(object): def __init__(self, header=None): if header is None: self.set_null() else: self.nVersion = header.nVersion self.hashPrevBlock = header.hashPrevBlock self.hashMerkleRoot = header.hashMerkleRoot self.nTime = header.nTime self.nBits = header.nBits self.nNonce = header.nNonce self.sha256 = header.sha256 self.hash = header.hash self.calc_sha256() def set_null(self): self.nVersion = 1 self.hashPrevBlock = 0 self.hashMerkleRoot = 0 self.nTime = 0 self.nBits = 0 self.nNonce = 0 self.sha256 = None self.hash = None def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.hashPrevBlock = deser_uint256(f) self.hashMerkleRoot = deser_uint256(f) self.nTime = struct.unpack("<I", f.read(4))[0] self.nBits = struct.unpack("<I", f.read(4))[0] self.nNonce = struct.unpack("<I", f.read(4))[0] self.sha256 = None self.hash = None def serialize(self): r = "" r += struct.pack("<i", self.nVersion) r += ser_uint256(self.hashPrevBlock) r += ser_uint256(self.hashMerkleRoot) r += struct.pack("<I", self.nTime) r += struct.pack("<I", self.nBits) r += struct.pack("<I", self.nNonce) return r def calc_sha256(self): if self.sha256 is None: r = "" r += struct.pack("<i", self.nVersion) r += ser_uint256(self.hashPrevBlock) r += ser_uint256(self.hashMerkleRoot) r += struct.pack("<I", self.nTime) r += struct.pack("<I", self.nBits) r += struct.pack("<I", self.nNonce) self.sha256 = uint256_from_str(hash256(r)) self.hash = hash256(r)[::-1].encode('hex_codec') def rehash(self): self.sha256 = None self.calc_sha256() return self.sha256 def __repr__(self): return "CBlockHeader(nVersion=%i hashPrevBlock=%064x hashMerkleRoot=%064x nTime=%s nBits=%08x nNonce=%08x)" \ % (self.nVersion, self.hashPrevBlock, self.hashMerkleRoot, time.ctime(self.nTime), self.nBits, self.nNonce) class CBlock(CBlockHeader): def __init__(self, header=None): super(CBlock, self).__init__(header) self.vtx = [] def deserialize(self, f): super(CBlock, self).deserialize(f) self.vtx = deser_vector(f, CTransaction) def serialize(self): r = "" r += super(CBlock, self).serialize() r += ser_vector(self.vtx) return r def calc_merkle_root(self): hashes = [] for tx in self.vtx: tx.calc_sha256() hashes.append(ser_uint256(tx.sha256)) while len(hashes) > 1: newhashes = [] for i in xrange(0, len(hashes), 2): i2 = min(i+1, len(hashes)-1) newhashes.append(hash256(hashes[i] + hashes[i2])) hashes = newhashes return uint256_from_str(hashes[0]) def is_valid(self): self.calc_sha256() target = uint256_from_compact(self.nBits) if self.sha256 > target: return False for tx in self.vtx: if not tx.is_valid(): return False if self.calc_merkle_root() != self.hashMerkleRoot: return False return True def solve(self): self.calc_sha256() target = uint256_from_compact(self.nBits) while self.sha256 > target: self.nNonce += 1 self.rehash() def __repr__(self): return "CBlock(nVersion=%i hashPrevBlock=%064x hashMerkleRoot=%064x nTime=%s nBits=%08x nNonce=%08x vtx=%s)" \ % (self.nVersion, self.hashPrevBlock, self.hashMerkleRoot, time.ctime(self.nTime), self.nBits, self.nNonce, repr(self.vtx)) class CUnsignedAlert(object): def __init__(self): self.nVersion = 1 self.nRelayUntil = 0 self.nExpiration = 0 self.nID = 0 self.nCancel = 0 self.setCancel = [] self.nMinVer = 0 self.nMaxVer = 0 self.setSubVer = [] self.nPriority = 0 self.strComment = "" self.strStatusBar = "" self.strReserved = "" def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.nRelayUntil = struct.unpack("<q", f.read(8))[0] self.nExpiration = struct.unpack("<q", f.read(8))[0] self.nID = struct.unpack("<i", f.read(4))[0] self.nCancel = struct.unpack("<i", f.read(4))[0] self.setCancel = deser_int_vector(f) self.nMinVer = struct.unpack("<i", f.read(4))[0] self.nMaxVer = struct.unpack("<i", f.read(4))[0] self.setSubVer = deser_string_vector(f) self.nPriority = struct.unpack("<i", f.read(4))[0] self.strComment = deser_string(f) self.strStatusBar = deser_string(f) self.strReserved = deser_string(f) def serialize(self): r = "" r += struct.pack("<i", self.nVersion) r += struct.pack("<q", self.nRelayUntil) r += struct.pack("<q", self.nExpiration) r += struct.pack("<i", self.nID) r += struct.pack("<i", self.nCancel) r += ser_int_vector(self.setCancel) r += struct.pack("<i", self.nMinVer) r += struct.pack("<i", self.nMaxVer) r += ser_string_vector(self.setSubVer) r += struct.pack("<i", self.nPriority) r += ser_string(self.strComment) r += ser_string(self.strStatusBar) r += ser_string(self.strReserved) return r def __repr__(self): return "CUnsignedAlert(nVersion %d, nRelayUntil %d, nExpiration %d, nID %d, nCancel %d, nMinVer %d, nMaxVer %d, nPriority %d, strComment %s, strStatusBar %s, strReserved %s)" \ % (self.nVersion, self.nRelayUntil, self.nExpiration, self.nID, self.nCancel, self.nMinVer, self.nMaxVer, self.nPriority, self.strComment, self.strStatusBar, self.strReserved) class CAlert(object): def __init__(self): self.vchMsg = "" self.vchSig = "" def deserialize(self, f): self.vchMsg = deser_string(f) self.vchSig = deser_string(f) def serialize(self): r = "" r += ser_string(self.vchMsg) r += ser_string(self.vchSig) return r def __repr__(self): return "CAlert(vchMsg.sz %d, vchSig.sz %d)" \ % (len(self.vchMsg), len(self.vchSig)) # Objects that correspond to messages on the wire class msg_version(object): command = "version" def __init__(self): self.nVersion = MY_VERSION self.nServices = 1 self.nTime = time.time() self.addrTo = CAddress() self.addrFrom = CAddress() self.nNonce = random.getrandbits(64) self.strSubVer = MY_SUBVERSION self.nStartingHeight = -1 def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] if self.nVersion == 10300: self.nVersion = 300 self.nServices = struct.unpack("<Q", f.read(8))[0] self.nTime = struct.unpack("<q", f.read(8))[0] self.addrTo = CAddress() self.addrTo.deserialize(f) if self.nVersion >= 106: self.addrFrom = CAddress() self.addrFrom.deserialize(f) self.nNonce = struct.unpack("<Q", f.read(8))[0] self.strSubVer = deser_string(f) if self.nVersion >= 209: self.nStartingHeight = struct.unpack("<i", f.read(4))[0] else: self.nStartingHeight = None else: self.addrFrom = None self.nNonce = None self.strSubVer = None self.nStartingHeight = None def serialize(self): r = "" r += struct.pack("<i", self.nVersion) r += struct.pack("<Q", self.nServices) r += struct.pack("<q", self.nTime) r += self.addrTo.serialize() r += self.addrFrom.serialize() r += struct.pack("<Q", self.nNonce) r += ser_string(self.strSubVer) r += struct.pack("<i", self.nStartingHeight) return r def __repr__(self): return 'msg_version(nVersion=%i nServices=%i nTime=%s addrTo=%s addrFrom=%s nNonce=0x%016X strSubVer=%s nStartingHeight=%i)' \ % (self.nVersion, self.nServices, time.ctime(self.nTime), repr(self.addrTo), repr(self.addrFrom), self.nNonce, self.strSubVer, self.nStartingHeight) class msg_verack(object): command = "verack" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return "" def __repr__(self): return "msg_verack()" class msg_addr(object): command = "addr" def __init__(self): self.addrs = [] def deserialize(self, f): self.addrs = deser_vector(f, CAddress) def serialize(self): return ser_vector(self.addrs) def __repr__(self): return "msg_addr(addrs=%s)" % (repr(self.addrs)) class msg_alert(object): command = "alert" def __init__(self): self.alert = CAlert() def deserialize(self, f): self.alert = CAlert() self.alert.deserialize(f) def serialize(self): r = "" r += self.alert.serialize() return r def __repr__(self): return "msg_alert(alert=%s)" % (repr(self.alert), ) class msg_inv(object): command = "inv" def __init__(self, inv=None): if inv is None: self.inv = [] else: self.inv = inv def deserialize(self, f): self.inv = deser_vector(f, CInv) def serialize(self): return ser_vector(self.inv) def __repr__(self): return "msg_inv(inv=%s)" % (repr(self.inv)) class msg_getdata(object): command = "getdata" def __init__(self, inv=None): self.inv = inv if inv != None else [] def deserialize(self, f): self.inv = deser_vector(f, CInv) def serialize(self): return ser_vector(self.inv) def __repr__(self): return "msg_getdata(inv=%s)" % (repr(self.inv)) class msg_getblocks(object): command = "getblocks" def __init__(self): self.locator = CBlockLocator() self.hashstop = 0L def deserialize(self, f): self.locator = CBlockLocator() self.locator.deserialize(f) self.hashstop = deser_uint256(f) def serialize(self): r = "" r += self.locator.serialize() r += ser_uint256(self.hashstop) return r def __repr__(self): return "msg_getblocks(locator=%s hashstop=%064x)" \ % (repr(self.locator), self.hashstop) class msg_tx(object): command = "tx" def __init__(self, tx=CTransaction()): self.tx = tx def deserialize(self, f): self.tx.deserialize(f) def serialize(self): return self.tx.serialize() def __repr__(self): return "msg_tx(tx=%s)" % (repr(self.tx)) class msg_block(object): command = "block" def __init__(self, block=None): if block is None: self.block = CBlock() else: self.block = block def deserialize(self, f): self.block.deserialize(f) def serialize(self): return self.block.serialize() def __repr__(self): return "msg_block(block=%s)" % (repr(self.block)) class msg_getaddr(object): command = "getaddr" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return "" def __repr__(self): return "msg_getaddr()" class msg_ping_prebip31(object): command = "ping" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return "" def __repr__(self): return "msg_ping() (pre-bip31)" class msg_ping(object): command = "ping" def __init__(self, nonce=0L): self.nonce = nonce def deserialize(self, f): self.nonce = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = "" r += struct.pack("<Q", self.nonce) return r def __repr__(self): return "msg_ping(nonce=%08x)" % self.nonce class msg_pong(object): command = "pong" def __init__(self, nonce=0L): self.nonce = nonce def deserialize(self, f): self.nonce = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = "" r += struct.pack("<Q", self.nonce) return r def __repr__(self): return "msg_pong(nonce=%08x)" % self.nonce class msg_mempool(object): command = "mempool" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return "" def __repr__(self): return "msg_mempool()" class msg_sendheaders(object): command = "sendheaders" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return "" def __repr__(self): return "msg_sendheaders()" # getheaders message has # number of entries # vector of hashes # hash_stop (hash of last desired block header, 0 to get as many as possible) class msg_getheaders(object): command = "getheaders" def __init__(self): self.locator = CBlockLocator() self.hashstop = 0L def deserialize(self, f): self.locator = CBlockLocator() self.locator.deserialize(f) self.hashstop = deser_uint256(f) def serialize(self): r = "" r += self.locator.serialize() r += ser_uint256(self.hashstop) return r def __repr__(self): return "msg_getheaders(locator=%s, stop=%064x)" \ % (repr(self.locator), self.hashstop) # headers message has # <count> <vector of block headers> class msg_headers(object): command = "headers" def __init__(self): self.headers = [] def deserialize(self, f): # comment in bitcoind indicates these should be deserialized as blocks blocks = deser_vector(f, CBlock) for x in blocks: self.headers.append(CBlockHeader(x)) def serialize(self): blocks = [CBlock(x) for x in self.headers] return ser_vector(blocks) def __repr__(self): return "msg_headers(headers=%s)" % repr(self.headers) class msg_reject(object): command = "reject" def __init__(self): self.message = "" self.code = "" self.reason = "" self.data = 0L def deserialize(self, f): self.message = deser_string(f) self.code = struct.unpack("<B", f.read(1))[0] self.reason = deser_string(f) if (self.message == "block" or self.message == "tx"): self.data = deser_uint256(f) def serialize(self): r = ser_string(self.message) r += struct.pack("<B", self.code) r += ser_string(self.reason) if (self.message == "block" or self.message == "tx"): r += ser_uint256(self.data) return r def __repr__(self): return "msg_reject: %s %d %s [%064x]" \ % (self.message, self.code, self.reason, self.data) # This is what a callback should look like for NodeConn # Reimplement the on_* functions to provide handling for events class NodeConnCB(object): def __init__(self): self.verack_received = False # Spin until verack message is received from the node. # Tests may want to use this as a signal that the test can begin. # This can be called from the testing thread, so it needs to acquire the # global lock. def wait_for_verack(self): while True: with mininode_lock: if self.verack_received: return time.sleep(0.05) def deliver(self, conn, message): with mininode_lock: try: getattr(self, 'on_' + message.command)(conn, message) except: print "ERROR delivering %s (%s)" % (repr(message), sys.exc_info()[0]) def on_version(self, conn, message): if message.nVersion >= 209: conn.send_message(msg_verack()) conn.ver_send = min(MY_VERSION, message.nVersion) if message.nVersion < 209: conn.ver_recv = conn.ver_send def on_verack(self, conn, message): conn.ver_recv = conn.ver_send self.verack_received = True def on_inv(self, conn, message): want = msg_getdata() for i in message.inv: if i.type != 0: want.inv.append(i) if len(want.inv): conn.send_message(want) def on_addr(self, conn, message): pass def on_alert(self, conn, message): pass def on_getdata(self, conn, message): pass def on_getblocks(self, conn, message): pass def on_tx(self, conn, message): pass def on_block(self, conn, message): pass def on_getaddr(self, conn, message): pass def on_headers(self, conn, message): pass def on_getheaders(self, conn, message): pass def on_ping(self, conn, message): if conn.ver_send > BIP0031_VERSION: conn.send_message(msg_pong(message.nonce)) def on_reject(self, conn, message): pass def on_close(self, conn): pass def on_mempool(self, conn): pass def on_pong(self, conn, message): pass # The actual NodeConn class # This class provides an interface for a p2p connection to a specified node class NodeConn(asyncore.dispatcher): messagemap = { "version": msg_version, "verack": msg_verack, "addr": msg_addr, "alert": msg_alert, "inv": msg_inv, "getdata": msg_getdata, "getblocks": msg_getblocks, "tx": msg_tx, "block": msg_block, "getaddr": msg_getaddr, "ping": msg_ping, "pong": msg_pong, "headers": msg_headers, "getheaders": msg_getheaders, "reject": msg_reject, "mempool": msg_mempool } MAGIC_BYTES = { "mainnet": "\xf9\xbe\xb4\xd9", # mainnet "testnet3": "\x0b\x11\x09\x07", # testnet3 "regtest": "\xfa\xbf\xb5\xda" # regtest } def __init__(self, dstaddr, dstport, rpc, callback, net="regtest", services=1): asyncore.dispatcher.__init__(self, map=mininode_socket_map) self.log = logging.getLogger("NodeConn(%s:%d)" % (dstaddr, dstport)) self.dstaddr = dstaddr self.dstport = dstport self.create_socket(socket.AF_INET, socket.SOCK_STREAM) self.sendbuf = "" self.recvbuf = "" self.ver_send = 209 self.ver_recv = 209 self.last_sent = 0 self.state = "connecting" self.network = net self.cb = callback self.disconnect = False # stuff version msg into sendbuf vt = msg_version() vt.nServices = services vt.addrTo.ip = self.dstaddr vt.addrTo.port = self.dstport vt.addrFrom.ip = "0.0.0.0" vt.addrFrom.port = 0 self.send_message(vt, True) print 'MiniNode: Connecting to Bitcoin Node IP # ' + dstaddr + ':' \ + str(dstport) try: self.connect((dstaddr, dstport)) except: self.handle_close() self.rpc = rpc def show_debug_msg(self, msg): self.log.debug(msg) def handle_connect(self): self.show_debug_msg("MiniNode: Connected & Listening: \n") self.state = "connected" def handle_close(self): self.show_debug_msg("MiniNode: Closing Connection to %s:%d... " % (self.dstaddr, self.dstport)) self.state = "closed" self.recvbuf = "" self.sendbuf = "" try: self.close() except: pass self.cb.on_close(self) def handle_read(self): try: t = self.recv(8192) if len(t) > 0: self.recvbuf += t self.got_data() except: pass def readable(self): return True def writable(self): with mininode_lock: length = len(self.sendbuf) return (length > 0) def handle_write(self): with mininode_lock: try: sent = self.send(self.sendbuf) except: self.handle_close() return self.sendbuf = self.sendbuf[sent:] def got_data(self): while True: if len(self.recvbuf) < 4: return if self.recvbuf[:4] != self.MAGIC_BYTES[self.network]: raise ValueError("got garbage %s" % repr(self.recvbuf)) if self.ver_recv < 209: if len(self.recvbuf) < 4 + 12 + 4: return command = self.recvbuf[4:4+12].split("\x00", 1)[0] msglen = struct.unpack("<i", self.recvbuf[4+12:4+12+4])[0] checksum = None if len(self.recvbuf) < 4 + 12 + 4 + msglen: return msg = self.recvbuf[4+12+4:4+12+4+msglen] self.recvbuf = self.recvbuf[4+12+4+msglen:] else: if len(self.recvbuf) < 4 + 12 + 4 + 4: return command = self.recvbuf[4:4+12].split("\x00", 1)[0] msglen = struct.unpack("<i", self.recvbuf[4+12:4+12+4])[0] checksum = self.recvbuf[4+12+4:4+12+4+4] if len(self.recvbuf) < 4 + 12 + 4 + 4 + msglen: return msg = self.recvbuf[4+12+4+4:4+12+4+4+msglen] th = sha256(msg) h = sha256(th) if checksum != h[:4]: raise ValueError("got bad checksum " + repr(self.recvbuf)) self.recvbuf = self.recvbuf[4+12+4+4+msglen:] if command in self.messagemap: f = cStringIO.StringIO(msg) t = self.messagemap[command]() t.deserialize(f) self.got_message(t) else: self.show_debug_msg("Unknown command: '" + command + "' " + repr(msg)) def send_message(self, message, pushbuf=False): if self.state != "connected" and not pushbuf: return self.show_debug_msg("Send %s" % repr(message)) command = message.command data = message.serialize() tmsg = self.MAGIC_BYTES[self.network] tmsg += command tmsg += "\x00" * (12 - len(command)) tmsg += struct.pack("<I", len(data)) if self.ver_send >= 209: th = sha256(data) h = sha256(th) tmsg += h[:4] tmsg += data with mininode_lock: self.sendbuf += tmsg self.last_sent = time.time() def got_message(self, message): if message.command == "version": if message.nVersion <= BIP0031_VERSION: self.messagemap['ping'] = msg_ping_prebip31 if self.last_sent + 30 * 60 < time.time(): self.send_message(self.messagemap['ping']()) self.show_debug_msg("Recv %s" % repr(message)) self.cb.deliver(self, message) def disconnect_node(self): self.disconnect = True class NetworkThread(Thread): def run(self): while mininode_socket_map: # We check for whether to disconnect outside of the asyncore # loop to workaround the behavior of asyncore when using # select disconnected = [] for fd, obj in mininode_socket_map.items(): if obj.disconnect: disconnected.append(obj) [ obj.handle_close() for obj in disconnected ] asyncore.loop(0.1, use_poll=True, map=mininode_socket_map, count=1) # An exception we can raise if we detect a potential disconnect # (p2p or rpc) before the test is complete class EarlyDisconnectError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value)