// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "wallet/wallet.h" #include "base58.h" #include "checkpoints.h" #include "chain.h" #include "wallet/coincontrol.h" #include "consensus/consensus.h" #include "consensus/validation.h" #include "fs.h" #include "init.h" #include "key.h" #include "keystore.h" #include "validation.h" #include "net.h" #include "policy/fees.h" #include "policy/policy.h" #include "policy/rbf.h" #include "primitives/block.h" #include "primitives/transaction.h" #include "script/script.h" #include "script/sign.h" #include "scheduler.h" #include "timedata.h" #include "txmempool.h" #include "util.h" #include "ui_interface.h" #include "utilmoneystr.h" #include "wallet/fees.h" #include #include #include #include std::vector vpwallets; /** Transaction fee set by the user */ CFeeRate payTxFee(DEFAULT_TRANSACTION_FEE); unsigned int nTxConfirmTarget = DEFAULT_TX_CONFIRM_TARGET; bool bSpendZeroConfChange = DEFAULT_SPEND_ZEROCONF_CHANGE; bool fWalletRbf = DEFAULT_WALLET_RBF; const char * DEFAULT_WALLET_DAT = "wallet.dat"; const uint32_t BIP32_HARDENED_KEY_LIMIT = 0x80000000; /** * Fees smaller than this (in satoshi) are considered zero fee (for transaction creation) * Override with -mintxfee */ CFeeRate CWallet::minTxFee = CFeeRate(DEFAULT_TRANSACTION_MINFEE); /** * If fee estimation does not have enough data to provide estimates, use this fee instead. * Has no effect if not using fee estimation * Override with -fallbackfee */ CFeeRate CWallet::fallbackFee = CFeeRate(DEFAULT_FALLBACK_FEE); CFeeRate CWallet::m_discard_rate = CFeeRate(DEFAULT_DISCARD_FEE); const uint256 CMerkleTx::ABANDON_HASH(uint256S("0000000000000000000000000000000000000000000000000000000000000001")); /** @defgroup mapWallet * * @{ */ struct CompareValueOnly { bool operator()(const CInputCoin& t1, const CInputCoin& t2) const { return t1.txout.nValue < t2.txout.nValue; } }; std::string COutput::ToString() const { return strprintf("COutput(%s, %d, %d) [%s]", tx->GetHash().ToString(), i, nDepth, FormatMoney(tx->tx->vout[i].nValue)); } class CAffectedKeysVisitor : public boost::static_visitor { private: const CKeyStore &keystore; std::vector &vKeys; public: CAffectedKeysVisitor(const CKeyStore &keystoreIn, std::vector &vKeysIn) : keystore(keystoreIn), vKeys(vKeysIn) {} void Process(const CScript &script) { txnouttype type; std::vector vDest; int nRequired; if (ExtractDestinations(script, type, vDest, nRequired)) { for (const CTxDestination &dest : vDest) boost::apply_visitor(*this, dest); } } void operator()(const CKeyID &keyId) { if (keystore.HaveKey(keyId)) vKeys.push_back(keyId); } void operator()(const CScriptID &scriptId) { CScript script; if (keystore.GetCScript(scriptId, script)) Process(script); } void operator()(const WitnessV0ScriptHash& scriptID) { CScriptID id; CRIPEMD160().Write(scriptID.begin(), 32).Finalize(id.begin()); CScript script; if (keystore.GetCScript(id, script)) { Process(script); } } void operator()(const WitnessV0KeyHash& keyid) { CKeyID id(keyid); if (keystore.HaveKey(id)) { vKeys.push_back(id); } } template void operator()(const X &none) {} }; const CWalletTx* CWallet::GetWalletTx(const uint256& hash) const { LOCK(cs_wallet); std::map::const_iterator it = mapWallet.find(hash); if (it == mapWallet.end()) return nullptr; return &(it->second); } CPubKey CWallet::GenerateNewKey(CWalletDB &walletdb, bool internal) { AssertLockHeld(cs_wallet); // mapKeyMetadata bool fCompressed = CanSupportFeature(FEATURE_COMPRPUBKEY); // default to compressed public keys if we want 0.6.0 wallets CKey secret; // Create new metadata int64_t nCreationTime = GetTime(); CKeyMetadata metadata(nCreationTime); // use HD key derivation if HD was enabled during wallet creation if (IsHDEnabled()) { DeriveNewChildKey(walletdb, metadata, secret, (CanSupportFeature(FEATURE_HD_SPLIT) ? internal : false)); } else { secret.MakeNewKey(fCompressed); } // Compressed public keys were introduced in version 0.6.0 if (fCompressed) { SetMinVersion(FEATURE_COMPRPUBKEY); } CPubKey pubkey = secret.GetPubKey(); assert(secret.VerifyPubKey(pubkey)); mapKeyMetadata[pubkey.GetID()] = metadata; UpdateTimeFirstKey(nCreationTime); if (!AddKeyPubKeyWithDB(walletdb, secret, pubkey)) { throw std::runtime_error(std::string(__func__) + ": AddKey failed"); } return pubkey; } void CWallet::DeriveNewChildKey(CWalletDB &walletdb, CKeyMetadata& metadata, CKey& secret, bool internal) { // for now we use a fixed keypath scheme of m/0'/0'/k CKey key; //master key seed (256bit) CExtKey masterKey; //hd master key CExtKey accountKey; //key at m/0' CExtKey chainChildKey; //key at m/0'/0' (external) or m/0'/1' (internal) CExtKey childKey; //key at m/0'/0'/' // try to get the master key if (!GetKey(hdChain.masterKeyID, key)) throw std::runtime_error(std::string(__func__) + ": Master key not found"); masterKey.SetMaster(key.begin(), key.size()); // derive m/0' // use hardened derivation (child keys >= 0x80000000 are hardened after bip32) masterKey.Derive(accountKey, BIP32_HARDENED_KEY_LIMIT); // derive m/0'/0' (external chain) OR m/0'/1' (internal chain) assert(internal ? CanSupportFeature(FEATURE_HD_SPLIT) : true); accountKey.Derive(chainChildKey, BIP32_HARDENED_KEY_LIMIT+(internal ? 1 : 0)); // derive child key at next index, skip keys already known to the wallet do { // always derive hardened keys // childIndex | BIP32_HARDENED_KEY_LIMIT = derive childIndex in hardened child-index-range // example: 1 | BIP32_HARDENED_KEY_LIMIT == 0x80000001 == 2147483649 if (internal) { chainChildKey.Derive(childKey, hdChain.nInternalChainCounter | BIP32_HARDENED_KEY_LIMIT); metadata.hdKeypath = "m/0'/1'/" + std::to_string(hdChain.nInternalChainCounter) + "'"; hdChain.nInternalChainCounter++; } else { chainChildKey.Derive(childKey, hdChain.nExternalChainCounter | BIP32_HARDENED_KEY_LIMIT); metadata.hdKeypath = "m/0'/0'/" + std::to_string(hdChain.nExternalChainCounter) + "'"; hdChain.nExternalChainCounter++; } } while (HaveKey(childKey.key.GetPubKey().GetID())); secret = childKey.key; metadata.hdMasterKeyID = hdChain.masterKeyID; // update the chain model in the database if (!walletdb.WriteHDChain(hdChain)) throw std::runtime_error(std::string(__func__) + ": Writing HD chain model failed"); } bool CWallet::AddKeyPubKeyWithDB(CWalletDB &walletdb, const CKey& secret, const CPubKey &pubkey) { AssertLockHeld(cs_wallet); // mapKeyMetadata // CCryptoKeyStore has no concept of wallet databases, but calls AddCryptedKey // which is overridden below. To avoid flushes, the database handle is // tunneled through to it. bool needsDB = !pwalletdbEncryption; if (needsDB) { pwalletdbEncryption = &walletdb; } if (!CCryptoKeyStore::AddKeyPubKey(secret, pubkey)) { if (needsDB) pwalletdbEncryption = nullptr; return false; } if (needsDB) pwalletdbEncryption = nullptr; // check if we need to remove from watch-only CScript script; script = GetScriptForDestination(pubkey.GetID()); if (HaveWatchOnly(script)) { RemoveWatchOnly(script); } script = GetScriptForRawPubKey(pubkey); if (HaveWatchOnly(script)) { RemoveWatchOnly(script); } if (!IsCrypted()) { return walletdb.WriteKey(pubkey, secret.GetPrivKey(), mapKeyMetadata[pubkey.GetID()]); } return true; } bool CWallet::AddKeyPubKey(const CKey& secret, const CPubKey &pubkey) { CWalletDB walletdb(*dbw); return CWallet::AddKeyPubKeyWithDB(walletdb, secret, pubkey); } bool CWallet::AddCryptedKey(const CPubKey &vchPubKey, const std::vector &vchCryptedSecret) { if (!CCryptoKeyStore::AddCryptedKey(vchPubKey, vchCryptedSecret)) return false; { LOCK(cs_wallet); if (pwalletdbEncryption) return pwalletdbEncryption->WriteCryptedKey(vchPubKey, vchCryptedSecret, mapKeyMetadata[vchPubKey.GetID()]); else return CWalletDB(*dbw).WriteCryptedKey(vchPubKey, vchCryptedSecret, mapKeyMetadata[vchPubKey.GetID()]); } } bool CWallet::LoadKeyMetadata(const CTxDestination& keyID, const CKeyMetadata &meta) { AssertLockHeld(cs_wallet); // mapKeyMetadata UpdateTimeFirstKey(meta.nCreateTime); mapKeyMetadata[keyID] = meta; return true; } bool CWallet::LoadCryptedKey(const CPubKey &vchPubKey, const std::vector &vchCryptedSecret) { return CCryptoKeyStore::AddCryptedKey(vchPubKey, vchCryptedSecret); } /** * Update wallet first key creation time. This should be called whenever keys * are added to the wallet, with the oldest key creation time. */ void CWallet::UpdateTimeFirstKey(int64_t nCreateTime) { AssertLockHeld(cs_wallet); if (nCreateTime <= 1) { // Cannot determine birthday information, so set the wallet birthday to // the beginning of time. nTimeFirstKey = 1; } else if (!nTimeFirstKey || nCreateTime < nTimeFirstKey) { nTimeFirstKey = nCreateTime; } } bool CWallet::AddCScript(const CScript& redeemScript) { if (!CCryptoKeyStore::AddCScript(redeemScript)) return false; return CWalletDB(*dbw).WriteCScript(Hash160(redeemScript), redeemScript); } bool CWallet::LoadCScript(const CScript& redeemScript) { /* A sanity check was added in pull #3843 to avoid adding redeemScripts * that never can be redeemed. However, old wallets may still contain * these. Do not add them to the wallet and warn. */ if (redeemScript.size() > MAX_SCRIPT_ELEMENT_SIZE) { std::string strAddr = EncodeDestination(CScriptID(redeemScript)); LogPrintf("%s: Warning: This wallet contains a redeemScript of size %i which exceeds maximum size %i thus can never be redeemed. Do not use address %s.\n", __func__, redeemScript.size(), MAX_SCRIPT_ELEMENT_SIZE, strAddr); return true; } return CCryptoKeyStore::AddCScript(redeemScript); } bool CWallet::AddWatchOnly(const CScript& dest) { if (!CCryptoKeyStore::AddWatchOnly(dest)) return false; const CKeyMetadata& meta = mapKeyMetadata[CScriptID(dest)]; UpdateTimeFirstKey(meta.nCreateTime); NotifyWatchonlyChanged(true); return CWalletDB(*dbw).WriteWatchOnly(dest, meta); } bool CWallet::AddWatchOnly(const CScript& dest, int64_t nCreateTime) { mapKeyMetadata[CScriptID(dest)].nCreateTime = nCreateTime; return AddWatchOnly(dest); } bool CWallet::RemoveWatchOnly(const CScript &dest) { AssertLockHeld(cs_wallet); if (!CCryptoKeyStore::RemoveWatchOnly(dest)) return false; if (!HaveWatchOnly()) NotifyWatchonlyChanged(false); if (!CWalletDB(*dbw).EraseWatchOnly(dest)) return false; return true; } bool CWallet::LoadWatchOnly(const CScript &dest) { return CCryptoKeyStore::AddWatchOnly(dest); } bool CWallet::Unlock(const SecureString& strWalletPassphrase) { CCrypter crypter; CKeyingMaterial _vMasterKey; { LOCK(cs_wallet); for (const MasterKeyMap::value_type& pMasterKey : mapMasterKeys) { if(!crypter.SetKeyFromPassphrase(strWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod)) return false; if (!crypter.Decrypt(pMasterKey.second.vchCryptedKey, _vMasterKey)) continue; // try another master key if (CCryptoKeyStore::Unlock(_vMasterKey)) return true; } } return false; } bool CWallet::ChangeWalletPassphrase(const SecureString& strOldWalletPassphrase, const SecureString& strNewWalletPassphrase) { bool fWasLocked = IsLocked(); { LOCK(cs_wallet); Lock(); CCrypter crypter; CKeyingMaterial _vMasterKey; for (MasterKeyMap::value_type& pMasterKey : mapMasterKeys) { if(!crypter.SetKeyFromPassphrase(strOldWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod)) return false; if (!crypter.Decrypt(pMasterKey.second.vchCryptedKey, _vMasterKey)) return false; if (CCryptoKeyStore::Unlock(_vMasterKey)) { int64_t nStartTime = GetTimeMillis(); crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod); pMasterKey.second.nDeriveIterations = static_cast(pMasterKey.second.nDeriveIterations * (100 / ((double)(GetTimeMillis() - nStartTime)))); nStartTime = GetTimeMillis(); crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod); pMasterKey.second.nDeriveIterations = (pMasterKey.second.nDeriveIterations + static_cast(pMasterKey.second.nDeriveIterations * 100 / ((double)(GetTimeMillis() - nStartTime)))) / 2; if (pMasterKey.second.nDeriveIterations < 25000) pMasterKey.second.nDeriveIterations = 25000; LogPrintf("Wallet passphrase changed to an nDeriveIterations of %i\n", pMasterKey.second.nDeriveIterations); if (!crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod)) return false; if (!crypter.Encrypt(_vMasterKey, pMasterKey.second.vchCryptedKey)) return false; CWalletDB(*dbw).WriteMasterKey(pMasterKey.first, pMasterKey.second); if (fWasLocked) Lock(); return true; } } } return false; } void CWallet::SetBestChain(const CBlockLocator& loc) { CWalletDB walletdb(*dbw); walletdb.WriteBestBlock(loc); } bool CWallet::SetMinVersion(enum WalletFeature nVersion, CWalletDB* pwalletdbIn, bool fExplicit) { LOCK(cs_wallet); // nWalletVersion if (nWalletVersion >= nVersion) return true; // when doing an explicit upgrade, if we pass the max version permitted, upgrade all the way if (fExplicit && nVersion > nWalletMaxVersion) nVersion = FEATURE_LATEST; nWalletVersion = nVersion; if (nVersion > nWalletMaxVersion) nWalletMaxVersion = nVersion; { CWalletDB* pwalletdb = pwalletdbIn ? pwalletdbIn : new CWalletDB(*dbw); if (nWalletVersion > 40000) pwalletdb->WriteMinVersion(nWalletVersion); if (!pwalletdbIn) delete pwalletdb; } return true; } bool CWallet::SetMaxVersion(int nVersion) { LOCK(cs_wallet); // nWalletVersion, nWalletMaxVersion // cannot downgrade below current version if (nWalletVersion > nVersion) return false; nWalletMaxVersion = nVersion; return true; } std::set CWallet::GetConflicts(const uint256& txid) const { std::set result; AssertLockHeld(cs_wallet); std::map::const_iterator it = mapWallet.find(txid); if (it == mapWallet.end()) return result; const CWalletTx& wtx = it->second; std::pair range; for (const CTxIn& txin : wtx.tx->vin) { if (mapTxSpends.count(txin.prevout) <= 1) continue; // No conflict if zero or one spends range = mapTxSpends.equal_range(txin.prevout); for (TxSpends::const_iterator _it = range.first; _it != range.second; ++_it) result.insert(_it->second); } return result; } bool CWallet::HasWalletSpend(const uint256& txid) const { AssertLockHeld(cs_wallet); auto iter = mapTxSpends.lower_bound(COutPoint(txid, 0)); return (iter != mapTxSpends.end() && iter->first.hash == txid); } void CWallet::Flush(bool shutdown) { dbw->Flush(shutdown); } void CWallet::SyncMetaData(std::pair range) { // We want all the wallet transactions in range to have the same metadata as // the oldest (smallest nOrderPos). // So: find smallest nOrderPos: int nMinOrderPos = std::numeric_limits::max(); const CWalletTx* copyFrom = nullptr; for (TxSpends::iterator it = range.first; it != range.second; ++it) { const uint256& hash = it->second; int n = mapWallet[hash].nOrderPos; if (n < nMinOrderPos) { nMinOrderPos = n; copyFrom = &mapWallet[hash]; } } // Now copy data from copyFrom to rest: for (TxSpends::iterator it = range.first; it != range.second; ++it) { const uint256& hash = it->second; CWalletTx* copyTo = &mapWallet[hash]; if (copyFrom == copyTo) continue; assert(copyFrom && "Oldest wallet transaction in range assumed to have been found."); if (!copyFrom->IsEquivalentTo(*copyTo)) continue; copyTo->mapValue = copyFrom->mapValue; copyTo->vOrderForm = copyFrom->vOrderForm; // fTimeReceivedIsTxTime not copied on purpose // nTimeReceived not copied on purpose copyTo->nTimeSmart = copyFrom->nTimeSmart; copyTo->fFromMe = copyFrom->fFromMe; copyTo->strFromAccount = copyFrom->strFromAccount; // nOrderPos not copied on purpose // cached members not copied on purpose } } /** * Outpoint is spent if any non-conflicted transaction * spends it: */ bool CWallet::IsSpent(const uint256& hash, unsigned int n) const { const COutPoint outpoint(hash, n); std::pair range; range = mapTxSpends.equal_range(outpoint); for (TxSpends::const_iterator it = range.first; it != range.second; ++it) { const uint256& wtxid = it->second; std::map::const_iterator mit = mapWallet.find(wtxid); if (mit != mapWallet.end()) { int depth = mit->second.GetDepthInMainChain(); if (depth > 0 || (depth == 0 && !mit->second.isAbandoned())) return true; // Spent } } return false; } void CWallet::AddToSpends(const COutPoint& outpoint, const uint256& wtxid) { mapTxSpends.insert(std::make_pair(outpoint, wtxid)); std::pair range; range = mapTxSpends.equal_range(outpoint); SyncMetaData(range); } void CWallet::AddToSpends(const uint256& wtxid) { auto it = mapWallet.find(wtxid); assert(it != mapWallet.end()); CWalletTx& thisTx = it->second; if (thisTx.IsCoinBase()) // Coinbases don't spend anything! return; for (const CTxIn& txin : thisTx.tx->vin) AddToSpends(txin.prevout, wtxid); } bool CWallet::EncryptWallet(const SecureString& strWalletPassphrase) { if (IsCrypted()) return false; CKeyingMaterial _vMasterKey; _vMasterKey.resize(WALLET_CRYPTO_KEY_SIZE); GetStrongRandBytes(&_vMasterKey[0], WALLET_CRYPTO_KEY_SIZE); CMasterKey kMasterKey; kMasterKey.vchSalt.resize(WALLET_CRYPTO_SALT_SIZE); GetStrongRandBytes(&kMasterKey.vchSalt[0], WALLET_CRYPTO_SALT_SIZE); CCrypter crypter; int64_t nStartTime = GetTimeMillis(); crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, 25000, kMasterKey.nDerivationMethod); kMasterKey.nDeriveIterations = static_cast(2500000 / ((double)(GetTimeMillis() - nStartTime))); nStartTime = GetTimeMillis(); crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, kMasterKey.nDeriveIterations, kMasterKey.nDerivationMethod); kMasterKey.nDeriveIterations = (kMasterKey.nDeriveIterations + static_cast(kMasterKey.nDeriveIterations * 100 / ((double)(GetTimeMillis() - nStartTime)))) / 2; if (kMasterKey.nDeriveIterations < 25000) kMasterKey.nDeriveIterations = 25000; LogPrintf("Encrypting Wallet with an nDeriveIterations of %i\n", kMasterKey.nDeriveIterations); if (!crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, kMasterKey.nDeriveIterations, kMasterKey.nDerivationMethod)) return false; if (!crypter.Encrypt(_vMasterKey, kMasterKey.vchCryptedKey)) return false; { LOCK(cs_wallet); mapMasterKeys[++nMasterKeyMaxID] = kMasterKey; assert(!pwalletdbEncryption); pwalletdbEncryption = new CWalletDB(*dbw); if (!pwalletdbEncryption->TxnBegin()) { delete pwalletdbEncryption; pwalletdbEncryption = nullptr; return false; } pwalletdbEncryption->WriteMasterKey(nMasterKeyMaxID, kMasterKey); if (!EncryptKeys(_vMasterKey)) { pwalletdbEncryption->TxnAbort(); delete pwalletdbEncryption; // We now probably have half of our keys encrypted in memory, and half not... // die and let the user reload the unencrypted wallet. assert(false); } // Encryption was introduced in version 0.4.0 SetMinVersion(FEATURE_WALLETCRYPT, pwalletdbEncryption, true); if (!pwalletdbEncryption->TxnCommit()) { delete pwalletdbEncryption; // We now have keys encrypted in memory, but not on disk... // die to avoid confusion and let the user reload the unencrypted wallet. assert(false); } delete pwalletdbEncryption; pwalletdbEncryption = nullptr; Lock(); Unlock(strWalletPassphrase); // if we are using HD, replace the HD master key (seed) with a new one if (IsHDEnabled()) { if (!SetHDMasterKey(GenerateNewHDMasterKey())) { return false; } } NewKeyPool(); Lock(); // Need to completely rewrite the wallet file; if we don't, bdb might keep // bits of the unencrypted private key in slack space in the database file. dbw->Rewrite(); } NotifyStatusChanged(this); return true; } DBErrors CWallet::ReorderTransactions() { LOCK(cs_wallet); CWalletDB walletdb(*dbw); // Old wallets didn't have any defined order for transactions // Probably a bad idea to change the output of this // First: get all CWalletTx and CAccountingEntry into a sorted-by-time multimap. typedef std::pair TxPair; typedef std::multimap TxItems; TxItems txByTime; for (std::map::iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { CWalletTx* wtx = &((*it).second); txByTime.insert(std::make_pair(wtx->nTimeReceived, TxPair(wtx, nullptr))); } std::list acentries; walletdb.ListAccountCreditDebit("", acentries); for (CAccountingEntry& entry : acentries) { txByTime.insert(std::make_pair(entry.nTime, TxPair(nullptr, &entry))); } nOrderPosNext = 0; std::vector nOrderPosOffsets; for (TxItems::iterator it = txByTime.begin(); it != txByTime.end(); ++it) { CWalletTx *const pwtx = (*it).second.first; CAccountingEntry *const pacentry = (*it).second.second; int64_t& nOrderPos = (pwtx != nullptr) ? pwtx->nOrderPos : pacentry->nOrderPos; if (nOrderPos == -1) { nOrderPos = nOrderPosNext++; nOrderPosOffsets.push_back(nOrderPos); if (pwtx) { if (!walletdb.WriteTx(*pwtx)) return DB_LOAD_FAIL; } else if (!walletdb.WriteAccountingEntry(pacentry->nEntryNo, *pacentry)) return DB_LOAD_FAIL; } else { int64_t nOrderPosOff = 0; for (const int64_t& nOffsetStart : nOrderPosOffsets) { if (nOrderPos >= nOffsetStart) ++nOrderPosOff; } nOrderPos += nOrderPosOff; nOrderPosNext = std::max(nOrderPosNext, nOrderPos + 1); if (!nOrderPosOff) continue; // Since we're changing the order, write it back if (pwtx) { if (!walletdb.WriteTx(*pwtx)) return DB_LOAD_FAIL; } else if (!walletdb.WriteAccountingEntry(pacentry->nEntryNo, *pacentry)) return DB_LOAD_FAIL; } } walletdb.WriteOrderPosNext(nOrderPosNext); return DB_LOAD_OK; } int64_t CWallet::IncOrderPosNext(CWalletDB *pwalletdb) { AssertLockHeld(cs_wallet); // nOrderPosNext int64_t nRet = nOrderPosNext++; if (pwalletdb) { pwalletdb->WriteOrderPosNext(nOrderPosNext); } else { CWalletDB(*dbw).WriteOrderPosNext(nOrderPosNext); } return nRet; } bool CWallet::AccountMove(std::string strFrom, std::string strTo, CAmount nAmount, std::string strComment) { CWalletDB walletdb(*dbw); if (!walletdb.TxnBegin()) return false; int64_t nNow = GetAdjustedTime(); // Debit CAccountingEntry debit; debit.nOrderPos = IncOrderPosNext(&walletdb); debit.strAccount = strFrom; debit.nCreditDebit = -nAmount; debit.nTime = nNow; debit.strOtherAccount = strTo; debit.strComment = strComment; AddAccountingEntry(debit, &walletdb); // Credit CAccountingEntry credit; credit.nOrderPos = IncOrderPosNext(&walletdb); credit.strAccount = strTo; credit.nCreditDebit = nAmount; credit.nTime = nNow; credit.strOtherAccount = strFrom; credit.strComment = strComment; AddAccountingEntry(credit, &walletdb); if (!walletdb.TxnCommit()) return false; return true; } bool CWallet::GetAccountPubkey(CPubKey &pubKey, std::string strAccount, bool bForceNew) { CWalletDB walletdb(*dbw); CAccount account; walletdb.ReadAccount(strAccount, account); if (!bForceNew) { if (!account.vchPubKey.IsValid()) bForceNew = true; else { // Check if the current key has been used CScript scriptPubKey = GetScriptForDestination(account.vchPubKey.GetID()); for (std::map::iterator it = mapWallet.begin(); it != mapWallet.end() && account.vchPubKey.IsValid(); ++it) for (const CTxOut& txout : (*it).second.tx->vout) if (txout.scriptPubKey == scriptPubKey) { bForceNew = true; break; } } } // Generate a new key if (bForceNew) { if (!GetKeyFromPool(account.vchPubKey, false)) return false; SetAddressBook(account.vchPubKey.GetID(), strAccount, "receive"); walletdb.WriteAccount(strAccount, account); } pubKey = account.vchPubKey; return true; } void CWallet::MarkDirty() { { LOCK(cs_wallet); for (std::pair& item : mapWallet) item.second.MarkDirty(); } } bool CWallet::MarkReplaced(const uint256& originalHash, const uint256& newHash) { LOCK(cs_wallet); auto mi = mapWallet.find(originalHash); // There is a bug if MarkReplaced is not called on an existing wallet transaction. assert(mi != mapWallet.end()); CWalletTx& wtx = (*mi).second; // Ensure for now that we're not overwriting data assert(wtx.mapValue.count("replaced_by_txid") == 0); wtx.mapValue["replaced_by_txid"] = newHash.ToString(); CWalletDB walletdb(*dbw, "r+"); bool success = true; if (!walletdb.WriteTx(wtx)) { LogPrintf("%s: Updating walletdb tx %s failed", __func__, wtx.GetHash().ToString()); success = false; } NotifyTransactionChanged(this, originalHash, CT_UPDATED); return success; } bool CWallet::AddToWallet(const CWalletTx& wtxIn, bool fFlushOnClose) { LOCK(cs_wallet); CWalletDB walletdb(*dbw, "r+", fFlushOnClose); uint256 hash = wtxIn.GetHash(); // Inserts only if not already there, returns tx inserted or tx found std::pair::iterator, bool> ret = mapWallet.insert(std::make_pair(hash, wtxIn)); CWalletTx& wtx = (*ret.first).second; wtx.BindWallet(this); bool fInsertedNew = ret.second; if (fInsertedNew) { wtx.nTimeReceived = GetAdjustedTime(); wtx.nOrderPos = IncOrderPosNext(&walletdb); wtxOrdered.insert(std::make_pair(wtx.nOrderPos, TxPair(&wtx, nullptr))); wtx.nTimeSmart = ComputeTimeSmart(wtx); AddToSpends(hash); } bool fUpdated = false; if (!fInsertedNew) { // Merge if (!wtxIn.hashUnset() && wtxIn.hashBlock != wtx.hashBlock) { wtx.hashBlock = wtxIn.hashBlock; fUpdated = true; } // If no longer abandoned, update if (wtxIn.hashBlock.IsNull() && wtx.isAbandoned()) { wtx.hashBlock = wtxIn.hashBlock; fUpdated = true; } if (wtxIn.nIndex != -1 && (wtxIn.nIndex != wtx.nIndex)) { wtx.nIndex = wtxIn.nIndex; fUpdated = true; } if (wtxIn.fFromMe && wtxIn.fFromMe != wtx.fFromMe) { wtx.fFromMe = wtxIn.fFromMe; fUpdated = true; } // If we have a witness-stripped version of this transaction, and we // see a new version with a witness, then we must be upgrading a pre-segwit // wallet. Store the new version of the transaction with the witness, // as the stripped-version must be invalid. // TODO: Store all versions of the transaction, instead of just one. if (wtxIn.tx->HasWitness() && !wtx.tx->HasWitness()) { wtx.SetTx(wtxIn.tx); fUpdated = true; } } //// debug print LogPrintf("AddToWallet %s %s%s\n", wtxIn.GetHash().ToString(), (fInsertedNew ? "new" : ""), (fUpdated ? "update" : "")); // Write to disk if (fInsertedNew || fUpdated) if (!walletdb.WriteTx(wtx)) return false; // Break debit/credit balance caches: wtx.MarkDirty(); // Notify UI of new or updated transaction NotifyTransactionChanged(this, hash, fInsertedNew ? CT_NEW : CT_UPDATED); // notify an external script when a wallet transaction comes in or is updated std::string strCmd = gArgs.GetArg("-walletnotify", ""); if (!strCmd.empty()) { boost::replace_all(strCmd, "%s", wtxIn.GetHash().GetHex()); boost::thread t(runCommand, strCmd); // thread runs free } return true; } bool CWallet::LoadToWallet(const CWalletTx& wtxIn) { uint256 hash = wtxIn.GetHash(); mapWallet[hash] = wtxIn; CWalletTx& wtx = mapWallet[hash]; wtx.BindWallet(this); wtxOrdered.insert(std::make_pair(wtx.nOrderPos, TxPair(&wtx, nullptr))); AddToSpends(hash); for (const CTxIn& txin : wtx.tx->vin) { auto it = mapWallet.find(txin.prevout.hash); if (it != mapWallet.end()) { CWalletTx& prevtx = it->second; if (prevtx.nIndex == -1 && !prevtx.hashUnset()) { MarkConflicted(prevtx.hashBlock, wtx.GetHash()); } } } return true; } /** * Add a transaction to the wallet, or update it. pIndex and posInBlock should * be set when the transaction was known to be included in a block. When * pIndex == nullptr, then wallet state is not updated in AddToWallet, but * notifications happen and cached balances are marked dirty. * * If fUpdate is true, existing transactions will be updated. * TODO: One exception to this is that the abandoned state is cleared under the * assumption that any further notification of a transaction that was considered * abandoned is an indication that it is not safe to be considered abandoned. * Abandoned state should probably be more carefully tracked via different * posInBlock signals or by checking mempool presence when necessary. */ bool CWallet::AddToWalletIfInvolvingMe(const CTransactionRef& ptx, const CBlockIndex* pIndex, int posInBlock, bool fUpdate) { const CTransaction& tx = *ptx; { AssertLockHeld(cs_wallet); if (pIndex != nullptr) { for (const CTxIn& txin : tx.vin) { std::pair range = mapTxSpends.equal_range(txin.prevout); while (range.first != range.second) { if (range.first->second != tx.GetHash()) { LogPrintf("Transaction %s (in block %s) conflicts with wallet transaction %s (both spend %s:%i)\n", tx.GetHash().ToString(), pIndex->GetBlockHash().ToString(), range.first->second.ToString(), range.first->first.hash.ToString(), range.first->first.n); MarkConflicted(pIndex->GetBlockHash(), range.first->second); } range.first++; } } } bool fExisted = mapWallet.count(tx.GetHash()) != 0; if (fExisted && !fUpdate) return false; if (fExisted || IsMine(tx) || IsFromMe(tx)) { /* Check if any keys in the wallet keypool that were supposed to be unused * have appeared in a new transaction. If so, remove those keys from the keypool. * This can happen when restoring an old wallet backup that does not contain * the mostly recently created transactions from newer versions of the wallet. */ // loop though all outputs for (const CTxOut& txout: tx.vout) { // extract addresses and check if they match with an unused keypool key std::vector vAffected; CAffectedKeysVisitor(*this, vAffected).Process(txout.scriptPubKey); for (const CKeyID &keyid : vAffected) { std::map::const_iterator mi = m_pool_key_to_index.find(keyid); if (mi != m_pool_key_to_index.end()) { LogPrintf("%s: Detected a used keypool key, mark all keypool key up to this key as used\n", __func__); MarkReserveKeysAsUsed(mi->second); if (!TopUpKeyPool()) { LogPrintf("%s: Topping up keypool failed (locked wallet)\n", __func__); } } } } CWalletTx wtx(this, ptx); // Get merkle branch if transaction was found in a block if (pIndex != nullptr) wtx.SetMerkleBranch(pIndex, posInBlock); return AddToWallet(wtx, false); } } return false; } bool CWallet::TransactionCanBeAbandoned(const uint256& hashTx) const { LOCK2(cs_main, cs_wallet); const CWalletTx* wtx = GetWalletTx(hashTx); return wtx && !wtx->isAbandoned() && wtx->GetDepthInMainChain() <= 0 && !wtx->InMempool(); } bool CWallet::AbandonTransaction(const uint256& hashTx) { LOCK2(cs_main, cs_wallet); CWalletDB walletdb(*dbw, "r+"); std::set todo; std::set done; // Can't mark abandoned if confirmed or in mempool auto it = mapWallet.find(hashTx); assert(it != mapWallet.end()); CWalletTx& origtx = it->second; if (origtx.GetDepthInMainChain() > 0 || origtx.InMempool()) { return false; } todo.insert(hashTx); while (!todo.empty()) { uint256 now = *todo.begin(); todo.erase(now); done.insert(now); auto it = mapWallet.find(now); assert(it != mapWallet.end()); CWalletTx& wtx = it->second; int currentconfirm = wtx.GetDepthInMainChain(); // If the orig tx was not in block, none of its spends can be assert(currentconfirm <= 0); // if (currentconfirm < 0) {Tx and spends are already conflicted, no need to abandon} if (currentconfirm == 0 && !wtx.isAbandoned()) { // If the orig tx was not in block/mempool, none of its spends can be in mempool assert(!wtx.InMempool()); wtx.nIndex = -1; wtx.setAbandoned(); wtx.MarkDirty(); walletdb.WriteTx(wtx); NotifyTransactionChanged(this, wtx.GetHash(), CT_UPDATED); // Iterate over all its outputs, and mark transactions in the wallet that spend them abandoned too TxSpends::const_iterator iter = mapTxSpends.lower_bound(COutPoint(hashTx, 0)); while (iter != mapTxSpends.end() && iter->first.hash == now) { if (!done.count(iter->second)) { todo.insert(iter->second); } iter++; } // If a transaction changes 'conflicted' state, that changes the balance // available of the outputs it spends. So force those to be recomputed for (const CTxIn& txin : wtx.tx->vin) { auto it = mapWallet.find(txin.prevout.hash); if (it != mapWallet.end()) { it->second.MarkDirty(); } } } } return true; } void CWallet::MarkConflicted(const uint256& hashBlock, const uint256& hashTx) { LOCK2(cs_main, cs_wallet); int conflictconfirms = 0; if (mapBlockIndex.count(hashBlock)) { CBlockIndex* pindex = mapBlockIndex[hashBlock]; if (chainActive.Contains(pindex)) { conflictconfirms = -(chainActive.Height() - pindex->nHeight + 1); } } // If number of conflict confirms cannot be determined, this means // that the block is still unknown or not yet part of the main chain, // for example when loading the wallet during a reindex. Do nothing in that // case. if (conflictconfirms >= 0) return; // Do not flush the wallet here for performance reasons CWalletDB walletdb(*dbw, "r+", false); std::set todo; std::set done; todo.insert(hashTx); while (!todo.empty()) { uint256 now = *todo.begin(); todo.erase(now); done.insert(now); auto it = mapWallet.find(now); assert(it != mapWallet.end()); CWalletTx& wtx = it->second; int currentconfirm = wtx.GetDepthInMainChain(); if (conflictconfirms < currentconfirm) { // Block is 'more conflicted' than current confirm; update. // Mark transaction as conflicted with this block. wtx.nIndex = -1; wtx.hashBlock = hashBlock; wtx.MarkDirty(); walletdb.WriteTx(wtx); // Iterate over all its outputs, and mark transactions in the wallet that spend them conflicted too TxSpends::const_iterator iter = mapTxSpends.lower_bound(COutPoint(now, 0)); while (iter != mapTxSpends.end() && iter->first.hash == now) { if (!done.count(iter->second)) { todo.insert(iter->second); } iter++; } // If a transaction changes 'conflicted' state, that changes the balance // available of the outputs it spends. So force those to be recomputed for (const CTxIn& txin : wtx.tx->vin) { auto it = mapWallet.find(txin.prevout.hash); if (it != mapWallet.end()) { it->second.MarkDirty(); } } } } } void CWallet::SyncTransaction(const CTransactionRef& ptx, const CBlockIndex *pindex, int posInBlock) { const CTransaction& tx = *ptx; if (!AddToWalletIfInvolvingMe(ptx, pindex, posInBlock, true)) return; // Not one of ours // If a transaction changes 'conflicted' state, that changes the balance // available of the outputs it spends. So force those to be // recomputed, also: for (const CTxIn& txin : tx.vin) { auto it = mapWallet.find(txin.prevout.hash); if (it != mapWallet.end()) { it->second.MarkDirty(); } } } void CWallet::TransactionAddedToMempool(const CTransactionRef& ptx) { LOCK2(cs_main, cs_wallet); SyncTransaction(ptx); } void CWallet::BlockConnected(const std::shared_ptr& pblock, const CBlockIndex *pindex, const std::vector& vtxConflicted) { LOCK2(cs_main, cs_wallet); // TODO: Temporarily ensure that mempool removals are notified before // connected transactions. This shouldn't matter, but the abandoned // state of transactions in our wallet is currently cleared when we // receive another notification and there is a race condition where // notification of a connected conflict might cause an outside process // to abandon a transaction and then have it inadvertently cleared by // the notification that the conflicted transaction was evicted. for (const CTransactionRef& ptx : vtxConflicted) { SyncTransaction(ptx); } for (size_t i = 0; i < pblock->vtx.size(); i++) { SyncTransaction(pblock->vtx[i], pindex, i); } m_last_block_processed = pindex; } void CWallet::BlockDisconnected(const std::shared_ptr& pblock) { LOCK2(cs_main, cs_wallet); for (const CTransactionRef& ptx : pblock->vtx) { SyncTransaction(ptx); } } void CWallet::BlockUntilSyncedToCurrentChain() { AssertLockNotHeld(cs_main); AssertLockNotHeld(cs_wallet); { // Skip the queue-draining stuff if we know we're caught up with // chainActive.Tip()... // We could also take cs_wallet here, and call m_last_block_processed // protected by cs_wallet instead of cs_main, but as long as we need // cs_main here anyway, its easier to just call it cs_main-protected. LOCK(cs_main); const CBlockIndex* initialChainTip = chainActive.Tip(); if (m_last_block_processed->GetAncestor(initialChainTip->nHeight) == initialChainTip) { return; } } // ...otherwise put a callback in the validation interface queue and wait // for the queue to drain enough to execute it (indicating we are caught up // at least with the time we entered this function). std::promise promise; CallFunctionInValidationInterfaceQueue([&promise] { promise.set_value(); }); promise.get_future().wait(); } isminetype CWallet::IsMine(const CTxIn &txin) const { { LOCK(cs_wallet); std::map::const_iterator mi = mapWallet.find(txin.prevout.hash); if (mi != mapWallet.end()) { const CWalletTx& prev = (*mi).second; if (txin.prevout.n < prev.tx->vout.size()) return IsMine(prev.tx->vout[txin.prevout.n]); } } return ISMINE_NO; } // Note that this function doesn't distinguish between a 0-valued input, // and a not-"is mine" (according to the filter) input. CAmount CWallet::GetDebit(const CTxIn &txin, const isminefilter& filter) const { { LOCK(cs_wallet); std::map::const_iterator mi = mapWallet.find(txin.prevout.hash); if (mi != mapWallet.end()) { const CWalletTx& prev = (*mi).second; if (txin.prevout.n < prev.tx->vout.size()) if (IsMine(prev.tx->vout[txin.prevout.n]) & filter) return prev.tx->vout[txin.prevout.n].nValue; } } return 0; } isminetype CWallet::IsMine(const CTxOut& txout) const { return ::IsMine(*this, txout.scriptPubKey); } CAmount CWallet::GetCredit(const CTxOut& txout, const isminefilter& filter) const { if (!MoneyRange(txout.nValue)) throw std::runtime_error(std::string(__func__) + ": value out of range"); return ((IsMine(txout) & filter) ? txout.nValue : 0); } bool CWallet::IsChange(const CTxOut& txout) const { // TODO: fix handling of 'change' outputs. The assumption is that any // payment to a script that is ours, but is not in the address book // is change. That assumption is likely to break when we implement multisignature // wallets that return change back into a multi-signature-protected address; // a better way of identifying which outputs are 'the send' and which are // 'the change' will need to be implemented (maybe extend CWalletTx to remember // which output, if any, was change). if (::IsMine(*this, txout.scriptPubKey)) { CTxDestination address; if (!ExtractDestination(txout.scriptPubKey, address)) return true; LOCK(cs_wallet); if (!mapAddressBook.count(address)) return true; } return false; } CAmount CWallet::GetChange(const CTxOut& txout) const { if (!MoneyRange(txout.nValue)) throw std::runtime_error(std::string(__func__) + ": value out of range"); return (IsChange(txout) ? txout.nValue : 0); } bool CWallet::IsMine(const CTransaction& tx) const { for (const CTxOut& txout : tx.vout) if (IsMine(txout)) return true; return false; } bool CWallet::IsFromMe(const CTransaction& tx) const { return (GetDebit(tx, ISMINE_ALL) > 0); } CAmount CWallet::GetDebit(const CTransaction& tx, const isminefilter& filter) const { CAmount nDebit = 0; for (const CTxIn& txin : tx.vin) { nDebit += GetDebit(txin, filter); if (!MoneyRange(nDebit)) throw std::runtime_error(std::string(__func__) + ": value out of range"); } return nDebit; } bool CWallet::IsAllFromMe(const CTransaction& tx, const isminefilter& filter) const { LOCK(cs_wallet); for (const CTxIn& txin : tx.vin) { auto mi = mapWallet.find(txin.prevout.hash); if (mi == mapWallet.end()) return false; // any unknown inputs can't be from us const CWalletTx& prev = (*mi).second; if (txin.prevout.n >= prev.tx->vout.size()) return false; // invalid input! if (!(IsMine(prev.tx->vout[txin.prevout.n]) & filter)) return false; } return true; } CAmount CWallet::GetCredit(const CTransaction& tx, const isminefilter& filter) const { CAmount nCredit = 0; for (const CTxOut& txout : tx.vout) { nCredit += GetCredit(txout, filter); if (!MoneyRange(nCredit)) throw std::runtime_error(std::string(__func__) + ": value out of range"); } return nCredit; } CAmount CWallet::GetChange(const CTransaction& tx) const { CAmount nChange = 0; for (const CTxOut& txout : tx.vout) { nChange += GetChange(txout); if (!MoneyRange(nChange)) throw std::runtime_error(std::string(__func__) + ": value out of range"); } return nChange; } CPubKey CWallet::GenerateNewHDMasterKey() { CKey key; key.MakeNewKey(true); int64_t nCreationTime = GetTime(); CKeyMetadata metadata(nCreationTime); // calculate the pubkey CPubKey pubkey = key.GetPubKey(); assert(key.VerifyPubKey(pubkey)); // set the hd keypath to "m" -> Master, refers the masterkeyid to itself metadata.hdKeypath = "m"; metadata.hdMasterKeyID = pubkey.GetID(); { LOCK(cs_wallet); // mem store the metadata mapKeyMetadata[pubkey.GetID()] = metadata; // write the key&metadata to the database if (!AddKeyPubKey(key, pubkey)) throw std::runtime_error(std::string(__func__) + ": AddKeyPubKey failed"); } return pubkey; } bool CWallet::SetHDMasterKey(const CPubKey& pubkey) { LOCK(cs_wallet); // store the keyid (hash160) together with // the child index counter in the database // as a hdchain object CHDChain newHdChain; newHdChain.nVersion = CanSupportFeature(FEATURE_HD_SPLIT) ? CHDChain::VERSION_HD_CHAIN_SPLIT : CHDChain::VERSION_HD_BASE; newHdChain.masterKeyID = pubkey.GetID(); SetHDChain(newHdChain, false); return true; } bool CWallet::SetHDChain(const CHDChain& chain, bool memonly) { LOCK(cs_wallet); if (!memonly && !CWalletDB(*dbw).WriteHDChain(chain)) throw std::runtime_error(std::string(__func__) + ": writing chain failed"); hdChain = chain; return true; } bool CWallet::IsHDEnabled() const { return !hdChain.masterKeyID.IsNull(); } int64_t CWalletTx::GetTxTime() const { int64_t n = nTimeSmart; return n ? n : nTimeReceived; } int CWalletTx::GetRequestCount() const { // Returns -1 if it wasn't being tracked int nRequests = -1; { LOCK(pwallet->cs_wallet); if (IsCoinBase()) { // Generated block if (!hashUnset()) { std::map::const_iterator mi = pwallet->mapRequestCount.find(hashBlock); if (mi != pwallet->mapRequestCount.end()) nRequests = (*mi).second; } } else { // Did anyone request this transaction? std::map::const_iterator mi = pwallet->mapRequestCount.find(GetHash()); if (mi != pwallet->mapRequestCount.end()) { nRequests = (*mi).second; // How about the block it's in? if (nRequests == 0 && !hashUnset()) { std::map::const_iterator _mi = pwallet->mapRequestCount.find(hashBlock); if (_mi != pwallet->mapRequestCount.end()) nRequests = (*_mi).second; else nRequests = 1; // If it's in someone else's block it must have got out } } } } return nRequests; } void CWalletTx::GetAmounts(std::list& listReceived, std::list& listSent, CAmount& nFee, std::string& strSentAccount, const isminefilter& filter) const { nFee = 0; listReceived.clear(); listSent.clear(); strSentAccount = strFromAccount; // Compute fee: CAmount nDebit = GetDebit(filter); if (nDebit > 0) // debit>0 means we signed/sent this transaction { CAmount nValueOut = tx->GetValueOut(); nFee = nDebit - nValueOut; } // Sent/received. for (unsigned int i = 0; i < tx->vout.size(); ++i) { const CTxOut& txout = tx->vout[i]; isminetype fIsMine = pwallet->IsMine(txout); // Only need to handle txouts if AT LEAST one of these is true: // 1) they debit from us (sent) // 2) the output is to us (received) if (nDebit > 0) { // Don't report 'change' txouts if (pwallet->IsChange(txout)) continue; } else if (!(fIsMine & filter)) continue; // In either case, we need to get the destination address CTxDestination address; if (!ExtractDestination(txout.scriptPubKey, address) && !txout.scriptPubKey.IsUnspendable()) { LogPrintf("CWalletTx::GetAmounts: Unknown transaction type found, txid %s\n", this->GetHash().ToString()); address = CNoDestination(); } COutputEntry output = {address, txout.nValue, (int)i}; // If we are debited by the transaction, add the output as a "sent" entry if (nDebit > 0) listSent.push_back(output); // If we are receiving the output, add it as a "received" entry if (fIsMine & filter) listReceived.push_back(output); } } /** * Scan active chain for relevant transactions after importing keys. This should * be called whenever new keys are added to the wallet, with the oldest key * creation time. * * @return Earliest timestamp that could be successfully scanned from. Timestamp * returned will be higher than startTime if relevant blocks could not be read. */ int64_t CWallet::RescanFromTime(int64_t startTime, bool update) { AssertLockHeld(cs_main); AssertLockHeld(cs_wallet); // Find starting block. May be null if nCreateTime is greater than the // highest blockchain timestamp, in which case there is nothing that needs // to be scanned. CBlockIndex* const startBlock = chainActive.FindEarliestAtLeast(startTime - TIMESTAMP_WINDOW); LogPrintf("%s: Rescanning last %i blocks\n", __func__, startBlock ? chainActive.Height() - startBlock->nHeight + 1 : 0); if (startBlock) { const CBlockIndex* const failedBlock = ScanForWalletTransactions(startBlock, nullptr, update); if (failedBlock) { return failedBlock->GetBlockTimeMax() + TIMESTAMP_WINDOW + 1; } } return startTime; } /** * Scan the block chain (starting in pindexStart) for transactions * from or to us. If fUpdate is true, found transactions that already * exist in the wallet will be updated. * * Returns null if scan was successful. Otherwise, if a complete rescan was not * possible (due to pruning or corruption), returns pointer to the most recent * block that could not be scanned. * * If pindexStop is not a nullptr, the scan will stop at the block-index * defined by pindexStop */ CBlockIndex* CWallet::ScanForWalletTransactions(CBlockIndex* pindexStart, CBlockIndex* pindexStop, bool fUpdate) { int64_t nNow = GetTime(); const CChainParams& chainParams = Params(); if (pindexStop) { assert(pindexStop->nHeight >= pindexStart->nHeight); } CBlockIndex* pindex = pindexStart; CBlockIndex* ret = nullptr; { LOCK2(cs_main, cs_wallet); fAbortRescan = false; fScanningWallet = true; ShowProgress(_("Rescanning..."), 0); // show rescan progress in GUI as dialog or on splashscreen, if -rescan on startup double dProgressStart = GuessVerificationProgress(chainParams.TxData(), pindex); double dProgressTip = GuessVerificationProgress(chainParams.TxData(), chainActive.Tip()); while (pindex && !fAbortRescan) { if (pindex->nHeight % 100 == 0 && dProgressTip - dProgressStart > 0.0) ShowProgress(_("Rescanning..."), std::max(1, std::min(99, (int)((GuessVerificationProgress(chainParams.TxData(), pindex) - dProgressStart) / (dProgressTip - dProgressStart) * 100)))); if (GetTime() >= nNow + 60) { nNow = GetTime(); LogPrintf("Still rescanning. At block %d. Progress=%f\n", pindex->nHeight, GuessVerificationProgress(chainParams.TxData(), pindex)); } CBlock block; if (ReadBlockFromDisk(block, pindex, Params().GetConsensus())) { for (size_t posInBlock = 0; posInBlock < block.vtx.size(); ++posInBlock) { AddToWalletIfInvolvingMe(block.vtx[posInBlock], pindex, posInBlock, fUpdate); } } else { ret = pindex; } if (pindex == pindexStop) { break; } pindex = chainActive.Next(pindex); } if (pindex && fAbortRescan) { LogPrintf("Rescan aborted at block %d. Progress=%f\n", pindex->nHeight, GuessVerificationProgress(chainParams.TxData(), pindex)); } ShowProgress(_("Rescanning..."), 100); // hide progress dialog in GUI fScanningWallet = false; } return ret; } void CWallet::ReacceptWalletTransactions() { // If transactions aren't being broadcasted, don't let them into local mempool either if (!fBroadcastTransactions) return; LOCK2(cs_main, cs_wallet); std::map mapSorted; // Sort pending wallet transactions based on their initial wallet insertion order for (std::pair& item : mapWallet) { const uint256& wtxid = item.first; CWalletTx& wtx = item.second; assert(wtx.GetHash() == wtxid); int nDepth = wtx.GetDepthInMainChain(); if (!wtx.IsCoinBase() && (nDepth == 0 && !wtx.isAbandoned())) { mapSorted.insert(std::make_pair(wtx.nOrderPos, &wtx)); } } // Try to add wallet transactions to memory pool for (std::pair& item : mapSorted) { CWalletTx& wtx = *(item.second); LOCK(mempool.cs); CValidationState state; wtx.AcceptToMemoryPool(maxTxFee, state); } } bool CWalletTx::RelayWalletTransaction(CConnman* connman) { assert(pwallet->GetBroadcastTransactions()); if (!IsCoinBase() && !isAbandoned() && GetDepthInMainChain() == 0) { CValidationState state; /* GetDepthInMainChain already catches known conflicts. */ if (InMempool() || AcceptToMemoryPool(maxTxFee, state)) { LogPrintf("Relaying wtx %s\n", GetHash().ToString()); if (connman) { CInv inv(MSG_TX, GetHash()); connman->ForEachNode([&inv](CNode* pnode) { pnode->PushInventory(inv); }); return true; } } } return false; } std::set CWalletTx::GetConflicts() const { std::set result; if (pwallet != nullptr) { uint256 myHash = GetHash(); result = pwallet->GetConflicts(myHash); result.erase(myHash); } return result; } CAmount CWalletTx::GetDebit(const isminefilter& filter) const { if (tx->vin.empty()) return 0; CAmount debit = 0; if(filter & ISMINE_SPENDABLE) { if (fDebitCached) debit += nDebitCached; else { nDebitCached = pwallet->GetDebit(*this, ISMINE_SPENDABLE); fDebitCached = true; debit += nDebitCached; } } if(filter & ISMINE_WATCH_ONLY) { if(fWatchDebitCached) debit += nWatchDebitCached; else { nWatchDebitCached = pwallet->GetDebit(*this, ISMINE_WATCH_ONLY); fWatchDebitCached = true; debit += nWatchDebitCached; } } return debit; } CAmount CWalletTx::GetCredit(const isminefilter& filter) const { // Must wait until coinbase is safely deep enough in the chain before valuing it if (IsCoinBase() && GetBlocksToMaturity() > 0) return 0; CAmount credit = 0; if (filter & ISMINE_SPENDABLE) { // GetBalance can assume transactions in mapWallet won't change if (fCreditCached) credit += nCreditCached; else { nCreditCached = pwallet->GetCredit(*this, ISMINE_SPENDABLE); fCreditCached = true; credit += nCreditCached; } } if (filter & ISMINE_WATCH_ONLY) { if (fWatchCreditCached) credit += nWatchCreditCached; else { nWatchCreditCached = pwallet->GetCredit(*this, ISMINE_WATCH_ONLY); fWatchCreditCached = true; credit += nWatchCreditCached; } } return credit; } CAmount CWalletTx::GetImmatureCredit(bool fUseCache) const { if (IsCoinBase() && GetBlocksToMaturity() > 0 && IsInMainChain()) { if (fUseCache && fImmatureCreditCached) return nImmatureCreditCached; nImmatureCreditCached = pwallet->GetCredit(*this, ISMINE_SPENDABLE); fImmatureCreditCached = true; return nImmatureCreditCached; } return 0; } CAmount CWalletTx::GetAvailableCredit(bool fUseCache) const { if (pwallet == nullptr) return 0; // Must wait until coinbase is safely deep enough in the chain before valuing it if (IsCoinBase() && GetBlocksToMaturity() > 0) return 0; if (fUseCache && fAvailableCreditCached) return nAvailableCreditCached; CAmount nCredit = 0; uint256 hashTx = GetHash(); for (unsigned int i = 0; i < tx->vout.size(); i++) { if (!pwallet->IsSpent(hashTx, i)) { const CTxOut &txout = tx->vout[i]; nCredit += pwallet->GetCredit(txout, ISMINE_SPENDABLE); if (!MoneyRange(nCredit)) throw std::runtime_error(std::string(__func__) + " : value out of range"); } } nAvailableCreditCached = nCredit; fAvailableCreditCached = true; return nCredit; } CAmount CWalletTx::GetImmatureWatchOnlyCredit(const bool& fUseCache) const { if (IsCoinBase() && GetBlocksToMaturity() > 0 && IsInMainChain()) { if (fUseCache && fImmatureWatchCreditCached) return nImmatureWatchCreditCached; nImmatureWatchCreditCached = pwallet->GetCredit(*this, ISMINE_WATCH_ONLY); fImmatureWatchCreditCached = true; return nImmatureWatchCreditCached; } return 0; } CAmount CWalletTx::GetAvailableWatchOnlyCredit(const bool& fUseCache) const { if (pwallet == nullptr) return 0; // Must wait until coinbase is safely deep enough in the chain before valuing it if (IsCoinBase() && GetBlocksToMaturity() > 0) return 0; if (fUseCache && fAvailableWatchCreditCached) return nAvailableWatchCreditCached; CAmount nCredit = 0; for (unsigned int i = 0; i < tx->vout.size(); i++) { if (!pwallet->IsSpent(GetHash(), i)) { const CTxOut &txout = tx->vout[i]; nCredit += pwallet->GetCredit(txout, ISMINE_WATCH_ONLY); if (!MoneyRange(nCredit)) throw std::runtime_error(std::string(__func__) + ": value out of range"); } } nAvailableWatchCreditCached = nCredit; fAvailableWatchCreditCached = true; return nCredit; } CAmount CWalletTx::GetChange() const { if (fChangeCached) return nChangeCached; nChangeCached = pwallet->GetChange(*this); fChangeCached = true; return nChangeCached; } bool CWalletTx::InMempool() const { LOCK(mempool.cs); return mempool.exists(GetHash()); } bool CWalletTx::IsTrusted() const { // Quick answer in most cases if (!CheckFinalTx(*this)) return false; int nDepth = GetDepthInMainChain(); if (nDepth >= 1) return true; if (nDepth < 0) return false; if (!bSpendZeroConfChange || !IsFromMe(ISMINE_ALL)) // using wtx's cached debit return false; // Don't trust unconfirmed transactions from us unless they are in the mempool. if (!InMempool()) return false; // Trusted if all inputs are from us and are in the mempool: for (const CTxIn& txin : tx->vin) { // Transactions not sent by us: not trusted const CWalletTx* parent = pwallet->GetWalletTx(txin.prevout.hash); if (parent == nullptr) return false; const CTxOut& parentOut = parent->tx->vout[txin.prevout.n]; if (pwallet->IsMine(parentOut) != ISMINE_SPENDABLE) return false; } return true; } bool CWalletTx::IsEquivalentTo(const CWalletTx& _tx) const { CMutableTransaction tx1 = *this->tx; CMutableTransaction tx2 = *_tx.tx; for (auto& txin : tx1.vin) txin.scriptSig = CScript(); for (auto& txin : tx2.vin) txin.scriptSig = CScript(); return CTransaction(tx1) == CTransaction(tx2); } std::vector CWallet::ResendWalletTransactionsBefore(int64_t nTime, CConnman* connman) { std::vector result; LOCK(cs_wallet); // Sort them in chronological order std::multimap mapSorted; for (std::pair& item : mapWallet) { CWalletTx& wtx = item.second; // Don't rebroadcast if newer than nTime: if (wtx.nTimeReceived > nTime) continue; mapSorted.insert(std::make_pair(wtx.nTimeReceived, &wtx)); } for (std::pair& item : mapSorted) { CWalletTx& wtx = *item.second; if (wtx.RelayWalletTransaction(connman)) result.push_back(wtx.GetHash()); } return result; } void CWallet::ResendWalletTransactions(int64_t nBestBlockTime, CConnman* connman) { // Do this infrequently and randomly to avoid giving away // that these are our transactions. if (GetTime() < nNextResend || !fBroadcastTransactions) return; bool fFirst = (nNextResend == 0); nNextResend = GetTime() + GetRand(30 * 60); if (fFirst) return; // Only do it if there's been a new block since last time if (nBestBlockTime < nLastResend) return; nLastResend = GetTime(); // Rebroadcast unconfirmed txes older than 5 minutes before the last // block was found: std::vector relayed = ResendWalletTransactionsBefore(nBestBlockTime-5*60, connman); if (!relayed.empty()) LogPrintf("%s: rebroadcast %u unconfirmed transactions\n", __func__, relayed.size()); } /** @} */ // end of mapWallet /** @defgroup Actions * * @{ */ CAmount CWallet::GetBalance() const { CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (std::map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; if (pcoin->IsTrusted()) nTotal += pcoin->GetAvailableCredit(); } } return nTotal; } CAmount CWallet::GetUnconfirmedBalance() const { CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (std::map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; if (!pcoin->IsTrusted() && pcoin->GetDepthInMainChain() == 0 && pcoin->InMempool()) nTotal += pcoin->GetAvailableCredit(); } } return nTotal; } CAmount CWallet::GetImmatureBalance() const { CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (std::map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; nTotal += pcoin->GetImmatureCredit(); } } return nTotal; } CAmount CWallet::GetWatchOnlyBalance() const { CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (std::map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; if (pcoin->IsTrusted()) nTotal += pcoin->GetAvailableWatchOnlyCredit(); } } return nTotal; } CAmount CWallet::GetUnconfirmedWatchOnlyBalance() const { CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (std::map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; if (!pcoin->IsTrusted() && pcoin->GetDepthInMainChain() == 0 && pcoin->InMempool()) nTotal += pcoin->GetAvailableWatchOnlyCredit(); } } return nTotal; } CAmount CWallet::GetImmatureWatchOnlyBalance() const { CAmount nTotal = 0; { LOCK2(cs_main, cs_wallet); for (std::map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const CWalletTx* pcoin = &(*it).second; nTotal += pcoin->GetImmatureWatchOnlyCredit(); } } return nTotal; } // Calculate total balance in a different way from GetBalance. The biggest // difference is that GetBalance sums up all unspent TxOuts paying to the // wallet, while this sums up both spent and unspent TxOuts paying to the // wallet, and then subtracts the values of TxIns spending from the wallet. This // also has fewer restrictions on which unconfirmed transactions are considered // trusted. CAmount CWallet::GetLegacyBalance(const isminefilter& filter, int minDepth, const std::string* account) const { LOCK2(cs_main, cs_wallet); CAmount balance = 0; for (const auto& entry : mapWallet) { const CWalletTx& wtx = entry.second; const int depth = wtx.GetDepthInMainChain(); if (depth < 0 || !CheckFinalTx(*wtx.tx) || wtx.GetBlocksToMaturity() > 0) { continue; } // Loop through tx outputs and add incoming payments. For outgoing txs, // treat change outputs specially, as part of the amount debited. CAmount debit = wtx.GetDebit(filter); const bool outgoing = debit > 0; for (const CTxOut& out : wtx.tx->vout) { if (outgoing && IsChange(out)) { debit -= out.nValue; } else if (IsMine(out) & filter && depth >= minDepth && (!account || *account == GetAccountName(out.scriptPubKey))) { balance += out.nValue; } } // For outgoing txs, subtract amount debited. if (outgoing && (!account || *account == wtx.strFromAccount)) { balance -= debit; } } if (account) { balance += CWalletDB(*dbw).GetAccountCreditDebit(*account); } return balance; } CAmount CWallet::GetAvailableBalance(const CCoinControl* coinControl) const { LOCK2(cs_main, cs_wallet); CAmount balance = 0; std::vector vCoins; AvailableCoins(vCoins, true, coinControl); for (const COutput& out : vCoins) { if (out.fSpendable) { balance += out.tx->tx->vout[out.i].nValue; } } return balance; } void CWallet::AvailableCoins(std::vector &vCoins, bool fOnlySafe, const CCoinControl *coinControl, const CAmount &nMinimumAmount, const CAmount &nMaximumAmount, const CAmount &nMinimumSumAmount, const uint64_t &nMaximumCount, const int &nMinDepth, const int &nMaxDepth) const { vCoins.clear(); { LOCK2(cs_main, cs_wallet); CAmount nTotal = 0; for (std::map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { const uint256& wtxid = it->first; const CWalletTx* pcoin = &(*it).second; if (!CheckFinalTx(*pcoin)) continue; if (pcoin->IsCoinBase() && pcoin->GetBlocksToMaturity() > 0) continue; int nDepth = pcoin->GetDepthInMainChain(); if (nDepth < 0) continue; // We should not consider coins which aren't at least in our mempool // It's possible for these to be conflicted via ancestors which we may never be able to detect if (nDepth == 0 && !pcoin->InMempool()) continue; bool safeTx = pcoin->IsTrusted(); // We should not consider coins from transactions that are replacing // other transactions. // // Example: There is a transaction A which is replaced by bumpfee // transaction B. In this case, we want to prevent creation of // a transaction B' which spends an output of B. // // Reason: If transaction A were initially confirmed, transactions B // and B' would no longer be valid, so the user would have to create // a new transaction C to replace B'. However, in the case of a // one-block reorg, transactions B' and C might BOTH be accepted, // when the user only wanted one of them. Specifically, there could // be a 1-block reorg away from the chain where transactions A and C // were accepted to another chain where B, B', and C were all // accepted. if (nDepth == 0 && pcoin->mapValue.count("replaces_txid")) { safeTx = false; } // Similarly, we should not consider coins from transactions that // have been replaced. In the example above, we would want to prevent // creation of a transaction A' spending an output of A, because if // transaction B were initially confirmed, conflicting with A and // A', we wouldn't want to the user to create a transaction D // intending to replace A', but potentially resulting in a scenario // where A, A', and D could all be accepted (instead of just B and // D, or just A and A' like the user would want). if (nDepth == 0 && pcoin->mapValue.count("replaced_by_txid")) { safeTx = false; } if (fOnlySafe && !safeTx) { continue; } if (nDepth < nMinDepth || nDepth > nMaxDepth) continue; for (unsigned int i = 0; i < pcoin->tx->vout.size(); i++) { if (pcoin->tx->vout[i].nValue < nMinimumAmount || pcoin->tx->vout[i].nValue > nMaximumAmount) continue; if (coinControl && coinControl->HasSelected() && !coinControl->fAllowOtherInputs && !coinControl->IsSelected(COutPoint((*it).first, i))) continue; if (IsLockedCoin((*it).first, i)) continue; if (IsSpent(wtxid, i)) continue; isminetype mine = IsMine(pcoin->tx->vout[i]); if (mine == ISMINE_NO) { continue; } bool fSpendableIn = ((mine & ISMINE_SPENDABLE) != ISMINE_NO) || (coinControl && coinControl->fAllowWatchOnly && (mine & ISMINE_WATCH_SOLVABLE) != ISMINE_NO); bool fSolvableIn = (mine & (ISMINE_SPENDABLE | ISMINE_WATCH_SOLVABLE)) != ISMINE_NO; vCoins.push_back(COutput(pcoin, i, nDepth, fSpendableIn, fSolvableIn, safeTx)); // Checks the sum amount of all UTXO's. if (nMinimumSumAmount != MAX_MONEY) { nTotal += pcoin->tx->vout[i].nValue; if (nTotal >= nMinimumSumAmount) { return; } } // Checks the maximum number of UTXO's. if (nMaximumCount > 0 && vCoins.size() >= nMaximumCount) { return; } } } } } std::map> CWallet::ListCoins() const { // TODO: Add AssertLockHeld(cs_wallet) here. // // Because the return value from this function contains pointers to // CWalletTx objects, callers to this function really should acquire the // cs_wallet lock before calling it. However, the current caller doesn't // acquire this lock yet. There was an attempt to add the missing lock in // https://github.com/bitcoin/bitcoin/pull/10340, but that change has been // postponed until after https://github.com/bitcoin/bitcoin/pull/10244 to // avoid adding some extra complexity to the Qt code. std::map> result; std::vector availableCoins; AvailableCoins(availableCoins); LOCK2(cs_main, cs_wallet); for (auto& coin : availableCoins) { CTxDestination address; if (coin.fSpendable && ExtractDestination(FindNonChangeParentOutput(*coin.tx->tx, coin.i).scriptPubKey, address)) { result[address].emplace_back(std::move(coin)); } } std::vector lockedCoins; ListLockedCoins(lockedCoins); for (const auto& output : lockedCoins) { auto it = mapWallet.find(output.hash); if (it != mapWallet.end()) { int depth = it->second.GetDepthInMainChain(); if (depth >= 0 && output.n < it->second.tx->vout.size() && IsMine(it->second.tx->vout[output.n]) == ISMINE_SPENDABLE) { CTxDestination address; if (ExtractDestination(FindNonChangeParentOutput(*it->second.tx, output.n).scriptPubKey, address)) { result[address].emplace_back( &it->second, output.n, depth, true /* spendable */, true /* solvable */, false /* safe */); } } } } return result; } const CTxOut& CWallet::FindNonChangeParentOutput(const CTransaction& tx, int output) const { const CTransaction* ptx = &tx; int n = output; while (IsChange(ptx->vout[n]) && ptx->vin.size() > 0) { const COutPoint& prevout = ptx->vin[0].prevout; auto it = mapWallet.find(prevout.hash); if (it == mapWallet.end() || it->second.tx->vout.size() <= prevout.n || !IsMine(it->second.tx->vout[prevout.n])) { break; } ptx = it->second.tx.get(); n = prevout.n; } return ptx->vout[n]; } static void ApproximateBestSubset(const std::vector& vValue, const CAmount& nTotalLower, const CAmount& nTargetValue, std::vector& vfBest, CAmount& nBest, int iterations = 1000) { std::vector vfIncluded; vfBest.assign(vValue.size(), true); nBest = nTotalLower; FastRandomContext insecure_rand; for (int nRep = 0; nRep < iterations && nBest != nTargetValue; nRep++) { vfIncluded.assign(vValue.size(), false); CAmount nTotal = 0; bool fReachedTarget = false; for (int nPass = 0; nPass < 2 && !fReachedTarget; nPass++) { for (unsigned int i = 0; i < vValue.size(); i++) { //The solver here uses a randomized algorithm, //the randomness serves no real security purpose but is just //needed to prevent degenerate behavior and it is important //that the rng is fast. We do not use a constant random sequence, //because there may be some privacy improvement by making //the selection random. if (nPass == 0 ? insecure_rand.randbool() : !vfIncluded[i]) { nTotal += vValue[i].txout.nValue; vfIncluded[i] = true; if (nTotal >= nTargetValue) { fReachedTarget = true; if (nTotal < nBest) { nBest = nTotal; vfBest = vfIncluded; } nTotal -= vValue[i].txout.nValue; vfIncluded[i] = false; } } } } } } bool CWallet::SelectCoinsMinConf(const CAmount& nTargetValue, const int nConfMine, const int nConfTheirs, const uint64_t nMaxAncestors, std::vector vCoins, std::set& setCoinsRet, CAmount& nValueRet) const { setCoinsRet.clear(); nValueRet = 0; // List of values less than target boost::optional coinLowestLarger; std::vector vValue; CAmount nTotalLower = 0; random_shuffle(vCoins.begin(), vCoins.end(), GetRandInt); for (const COutput &output : vCoins) { if (!output.fSpendable) continue; const CWalletTx *pcoin = output.tx; if (output.nDepth < (pcoin->IsFromMe(ISMINE_ALL) ? nConfMine : nConfTheirs)) continue; if (!mempool.TransactionWithinChainLimit(pcoin->GetHash(), nMaxAncestors)) continue; int i = output.i; CInputCoin coin = CInputCoin(pcoin, i); if (coin.txout.nValue == nTargetValue) { setCoinsRet.insert(coin); nValueRet += coin.txout.nValue; return true; } else if (coin.txout.nValue < nTargetValue + MIN_CHANGE) { vValue.push_back(coin); nTotalLower += coin.txout.nValue; } else if (!coinLowestLarger || coin.txout.nValue < coinLowestLarger->txout.nValue) { coinLowestLarger = coin; } } if (nTotalLower == nTargetValue) { for (const auto& input : vValue) { setCoinsRet.insert(input); nValueRet += input.txout.nValue; } return true; } if (nTotalLower < nTargetValue) { if (!coinLowestLarger) return false; setCoinsRet.insert(coinLowestLarger.get()); nValueRet += coinLowestLarger->txout.nValue; return true; } // Solve subset sum by stochastic approximation std::sort(vValue.begin(), vValue.end(), CompareValueOnly()); std::reverse(vValue.begin(), vValue.end()); std::vector vfBest; CAmount nBest; ApproximateBestSubset(vValue, nTotalLower, nTargetValue, vfBest, nBest); if (nBest != nTargetValue && nTotalLower >= nTargetValue + MIN_CHANGE) ApproximateBestSubset(vValue, nTotalLower, nTargetValue + MIN_CHANGE, vfBest, nBest); // If we have a bigger coin and (either the stochastic approximation didn't find a good solution, // or the next bigger coin is closer), return the bigger coin if (coinLowestLarger && ((nBest != nTargetValue && nBest < nTargetValue + MIN_CHANGE) || coinLowestLarger->txout.nValue <= nBest)) { setCoinsRet.insert(coinLowestLarger.get()); nValueRet += coinLowestLarger->txout.nValue; } else { for (unsigned int i = 0; i < vValue.size(); i++) if (vfBest[i]) { setCoinsRet.insert(vValue[i]); nValueRet += vValue[i].txout.nValue; } if (LogAcceptCategory(BCLog::SELECTCOINS)) { LogPrint(BCLog::SELECTCOINS, "SelectCoins() best subset: "); for (unsigned int i = 0; i < vValue.size(); i++) { if (vfBest[i]) { LogPrint(BCLog::SELECTCOINS, "%s ", FormatMoney(vValue[i].txout.nValue)); } } LogPrint(BCLog::SELECTCOINS, "total %s\n", FormatMoney(nBest)); } } return true; } bool CWallet::SelectCoins(const std::vector& vAvailableCoins, const CAmount& nTargetValue, std::set& setCoinsRet, CAmount& nValueRet, const CCoinControl* coinControl) const { std::vector vCoins(vAvailableCoins); // coin control -> return all selected outputs (we want all selected to go into the transaction for sure) if (coinControl && coinControl->HasSelected() && !coinControl->fAllowOtherInputs) { for (const COutput& out : vCoins) { if (!out.fSpendable) continue; nValueRet += out.tx->tx->vout[out.i].nValue; setCoinsRet.insert(CInputCoin(out.tx, out.i)); } return (nValueRet >= nTargetValue); } // calculate value from preset inputs and store them std::set setPresetCoins; CAmount nValueFromPresetInputs = 0; std::vector vPresetInputs; if (coinControl) coinControl->ListSelected(vPresetInputs); for (const COutPoint& outpoint : vPresetInputs) { std::map::const_iterator it = mapWallet.find(outpoint.hash); if (it != mapWallet.end()) { const CWalletTx* pcoin = &it->second; // Clearly invalid input, fail if (pcoin->tx->vout.size() <= outpoint.n) return false; nValueFromPresetInputs += pcoin->tx->vout[outpoint.n].nValue; setPresetCoins.insert(CInputCoin(pcoin, outpoint.n)); } else return false; // TODO: Allow non-wallet inputs } // remove preset inputs from vCoins for (std::vector::iterator it = vCoins.begin(); it != vCoins.end() && coinControl && coinControl->HasSelected();) { if (setPresetCoins.count(CInputCoin(it->tx, it->i))) it = vCoins.erase(it); else ++it; } size_t nMaxChainLength = std::min(gArgs.GetArg("-limitancestorcount", DEFAULT_ANCESTOR_LIMIT), gArgs.GetArg("-limitdescendantcount", DEFAULT_DESCENDANT_LIMIT)); bool fRejectLongChains = gArgs.GetBoolArg("-walletrejectlongchains", DEFAULT_WALLET_REJECT_LONG_CHAINS); bool res = nTargetValue <= nValueFromPresetInputs || SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, 1, 6, 0, vCoins, setCoinsRet, nValueRet) || SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, 1, 1, 0, vCoins, setCoinsRet, nValueRet) || (bSpendZeroConfChange && SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, 0, 1, 2, vCoins, setCoinsRet, nValueRet)) || (bSpendZeroConfChange && SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, 0, 1, std::min((size_t)4, nMaxChainLength/3), vCoins, setCoinsRet, nValueRet)) || (bSpendZeroConfChange && SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, 0, 1, nMaxChainLength/2, vCoins, setCoinsRet, nValueRet)) || (bSpendZeroConfChange && SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, 0, 1, nMaxChainLength, vCoins, setCoinsRet, nValueRet)) || (bSpendZeroConfChange && !fRejectLongChains && SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, 0, 1, std::numeric_limits::max(), vCoins, setCoinsRet, nValueRet)); // because SelectCoinsMinConf clears the setCoinsRet, we now add the possible inputs to the coinset setCoinsRet.insert(setPresetCoins.begin(), setPresetCoins.end()); // add preset inputs to the total value selected nValueRet += nValueFromPresetInputs; return res; } bool CWallet::SignTransaction(CMutableTransaction &tx) { AssertLockHeld(cs_wallet); // mapWallet // sign the new tx CTransaction txNewConst(tx); int nIn = 0; for (const auto& input : tx.vin) { std::map::const_iterator mi = mapWallet.find(input.prevout.hash); if(mi == mapWallet.end() || input.prevout.n >= mi->second.tx->vout.size()) { return false; } const CScript& scriptPubKey = mi->second.tx->vout[input.prevout.n].scriptPubKey; const CAmount& amount = mi->second.tx->vout[input.prevout.n].nValue; SignatureData sigdata; if (!ProduceSignature(TransactionSignatureCreator(this, &txNewConst, nIn, amount, SIGHASH_ALL), scriptPubKey, sigdata)) { return false; } UpdateTransaction(tx, nIn, sigdata); nIn++; } return true; } bool CWallet::FundTransaction(CMutableTransaction& tx, CAmount& nFeeRet, int& nChangePosInOut, std::string& strFailReason, bool lockUnspents, const std::set& setSubtractFeeFromOutputs, CCoinControl coinControl) { std::vector vecSend; // Turn the txout set into a CRecipient vector for (size_t idx = 0; idx < tx.vout.size(); idx++) { const CTxOut& txOut = tx.vout[idx]; CRecipient recipient = {txOut.scriptPubKey, txOut.nValue, setSubtractFeeFromOutputs.count(idx) == 1}; vecSend.push_back(recipient); } coinControl.fAllowOtherInputs = true; for (const CTxIn& txin : tx.vin) coinControl.Select(txin.prevout); CReserveKey reservekey(this); CWalletTx wtx; if (!CreateTransaction(vecSend, wtx, reservekey, nFeeRet, nChangePosInOut, strFailReason, coinControl, false)) { return false; } if (nChangePosInOut != -1) { tx.vout.insert(tx.vout.begin() + nChangePosInOut, wtx.tx->vout[nChangePosInOut]); // we don't have the normal Create/Commit cycle, and don't want to risk reusing change, // so just remove the key from the keypool here. reservekey.KeepKey(); } // Copy output sizes from new transaction; they may have had the fee subtracted from them for (unsigned int idx = 0; idx < tx.vout.size(); idx++) tx.vout[idx].nValue = wtx.tx->vout[idx].nValue; // Add new txins (keeping original txin scriptSig/order) for (const CTxIn& txin : wtx.tx->vin) { if (!coinControl.IsSelected(txin.prevout)) { tx.vin.push_back(txin); if (lockUnspents) { LOCK2(cs_main, cs_wallet); LockCoin(txin.prevout); } } } return true; } bool CWallet::CreateTransaction(const std::vector& vecSend, CWalletTx& wtxNew, CReserveKey& reservekey, CAmount& nFeeRet, int& nChangePosInOut, std::string& strFailReason, const CCoinControl& coin_control, bool sign) { CAmount nValue = 0; int nChangePosRequest = nChangePosInOut; unsigned int nSubtractFeeFromAmount = 0; for (const auto& recipient : vecSend) { if (nValue < 0 || recipient.nAmount < 0) { strFailReason = _("Transaction amounts must not be negative"); return false; } nValue += recipient.nAmount; if (recipient.fSubtractFeeFromAmount) nSubtractFeeFromAmount++; } if (vecSend.empty()) { strFailReason = _("Transaction must have at least one recipient"); return false; } wtxNew.fTimeReceivedIsTxTime = true; wtxNew.BindWallet(this); CMutableTransaction txNew; // Discourage fee sniping. // // For a large miner the value of the transactions in the best block and // the mempool can exceed the cost of deliberately attempting to mine two // blocks to orphan the current best block. By setting nLockTime such that // only the next block can include the transaction, we discourage this // practice as the height restricted and limited blocksize gives miners // considering fee sniping fewer options for pulling off this attack. // // A simple way to think about this is from the wallet's point of view we // always want the blockchain to move forward. By setting nLockTime this // way we're basically making the statement that we only want this // transaction to appear in the next block; we don't want to potentially // encourage reorgs by allowing transactions to appear at lower heights // than the next block in forks of the best chain. // // Of course, the subsidy is high enough, and transaction volume low // enough, that fee sniping isn't a problem yet, but by implementing a fix // now we ensure code won't be written that makes assumptions about // nLockTime that preclude a fix later. txNew.nLockTime = chainActive.Height(); // Secondly occasionally randomly pick a nLockTime even further back, so // that transactions that are delayed after signing for whatever reason, // e.g. high-latency mix networks and some CoinJoin implementations, have // better privacy. if (GetRandInt(10) == 0) txNew.nLockTime = std::max(0, (int)txNew.nLockTime - GetRandInt(100)); assert(txNew.nLockTime <= (unsigned int)chainActive.Height()); assert(txNew.nLockTime < LOCKTIME_THRESHOLD); FeeCalculation feeCalc; CAmount nFeeNeeded; unsigned int nBytes; { std::set setCoins; LOCK2(cs_main, cs_wallet); { std::vector vAvailableCoins; AvailableCoins(vAvailableCoins, true, &coin_control); // Create change script that will be used if we need change // TODO: pass in scriptChange instead of reservekey so // change transaction isn't always pay-to-bitcoin-address CScript scriptChange; // coin control: send change to custom address if (!boost::get(&coin_control.destChange)) { scriptChange = GetScriptForDestination(coin_control.destChange); } else { // no coin control: send change to newly generated address // Note: We use a new key here to keep it from being obvious which side is the change. // The drawback is that by not reusing a previous key, the change may be lost if a // backup is restored, if the backup doesn't have the new private key for the change. // If we reused the old key, it would be possible to add code to look for and // rediscover unknown transactions that were written with keys of ours to recover // post-backup change. // Reserve a new key pair from key pool CPubKey vchPubKey; bool ret; ret = reservekey.GetReservedKey(vchPubKey, true); if (!ret) { strFailReason = _("Keypool ran out, please call keypoolrefill first"); return false; } scriptChange = GetScriptForDestination(vchPubKey.GetID()); } CTxOut change_prototype_txout(0, scriptChange); size_t change_prototype_size = GetSerializeSize(change_prototype_txout, SER_DISK, 0); CFeeRate discard_rate = GetDiscardRate(::feeEstimator); nFeeRet = 0; bool pick_new_inputs = true; CAmount nValueIn = 0; // Start with no fee and loop until there is enough fee while (true) { nChangePosInOut = nChangePosRequest; txNew.vin.clear(); txNew.vout.clear(); wtxNew.fFromMe = true; bool fFirst = true; CAmount nValueToSelect = nValue; if (nSubtractFeeFromAmount == 0) nValueToSelect += nFeeRet; // vouts to the payees for (const auto& recipient : vecSend) { CTxOut txout(recipient.nAmount, recipient.scriptPubKey); if (recipient.fSubtractFeeFromAmount) { assert(nSubtractFeeFromAmount != 0); txout.nValue -= nFeeRet / nSubtractFeeFromAmount; // Subtract fee equally from each selected recipient if (fFirst) // first receiver pays the remainder not divisible by output count { fFirst = false; txout.nValue -= nFeeRet % nSubtractFeeFromAmount; } } if (IsDust(txout, ::dustRelayFee)) { if (recipient.fSubtractFeeFromAmount && nFeeRet > 0) { if (txout.nValue < 0) strFailReason = _("The transaction amount is too small to pay the fee"); else strFailReason = _("The transaction amount is too small to send after the fee has been deducted"); } else strFailReason = _("Transaction amount too small"); return false; } txNew.vout.push_back(txout); } // Choose coins to use if (pick_new_inputs) { nValueIn = 0; setCoins.clear(); if (!SelectCoins(vAvailableCoins, nValueToSelect, setCoins, nValueIn, &coin_control)) { strFailReason = _("Insufficient funds"); return false; } } const CAmount nChange = nValueIn - nValueToSelect; if (nChange > 0) { // Fill a vout to ourself CTxOut newTxOut(nChange, scriptChange); // Never create dust outputs; if we would, just // add the dust to the fee. if (IsDust(newTxOut, discard_rate)) { nChangePosInOut = -1; nFeeRet += nChange; } else { if (nChangePosInOut == -1) { // Insert change txn at random position: nChangePosInOut = GetRandInt(txNew.vout.size()+1); } else if ((unsigned int)nChangePosInOut > txNew.vout.size()) { strFailReason = _("Change index out of range"); return false; } std::vector::iterator position = txNew.vout.begin()+nChangePosInOut; txNew.vout.insert(position, newTxOut); } } else { nChangePosInOut = -1; } // Fill vin // // Note how the sequence number is set to non-maxint so that // the nLockTime set above actually works. // // BIP125 defines opt-in RBF as any nSequence < maxint-1, so // we use the highest possible value in that range (maxint-2) // to avoid conflicting with other possible uses of nSequence, // and in the spirit of "smallest possible change from prior // behavior." const uint32_t nSequence = coin_control.signalRbf ? MAX_BIP125_RBF_SEQUENCE : (CTxIn::SEQUENCE_FINAL - 1); for (const auto& coin : setCoins) txNew.vin.push_back(CTxIn(coin.outpoint,CScript(), nSequence)); // Fill in dummy signatures for fee calculation. if (!DummySignTx(txNew, setCoins)) { strFailReason = _("Signing transaction failed"); return false; } nBytes = GetVirtualTransactionSize(txNew); // Remove scriptSigs to eliminate the fee calculation dummy signatures for (auto& vin : txNew.vin) { vin.scriptSig = CScript(); vin.scriptWitness.SetNull(); } nFeeNeeded = GetMinimumFee(nBytes, coin_control, ::mempool, ::feeEstimator, &feeCalc); // If we made it here and we aren't even able to meet the relay fee on the next pass, give up // because we must be at the maximum allowed fee. if (nFeeNeeded < ::minRelayTxFee.GetFee(nBytes)) { strFailReason = _("Transaction too large for fee policy"); return false; } if (nFeeRet >= nFeeNeeded) { // Reduce fee to only the needed amount if possible. This // prevents potential overpayment in fees if the coins // selected to meet nFeeNeeded result in a transaction that // requires less fee than the prior iteration. // If we have no change and a big enough excess fee, then // try to construct transaction again only without picking // new inputs. We now know we only need the smaller fee // (because of reduced tx size) and so we should add a // change output. Only try this once. if (nChangePosInOut == -1 && nSubtractFeeFromAmount == 0 && pick_new_inputs) { unsigned int tx_size_with_change = nBytes + change_prototype_size + 2; // Add 2 as a buffer in case increasing # of outputs changes compact size CAmount fee_needed_with_change = GetMinimumFee(tx_size_with_change, coin_control, ::mempool, ::feeEstimator, nullptr); CAmount minimum_value_for_change = GetDustThreshold(change_prototype_txout, discard_rate); if (nFeeRet >= fee_needed_with_change + minimum_value_for_change) { pick_new_inputs = false; nFeeRet = fee_needed_with_change; continue; } } // If we have change output already, just increase it if (nFeeRet > nFeeNeeded && nChangePosInOut != -1 && nSubtractFeeFromAmount == 0) { CAmount extraFeePaid = nFeeRet - nFeeNeeded; std::vector::iterator change_position = txNew.vout.begin()+nChangePosInOut; change_position->nValue += extraFeePaid; nFeeRet -= extraFeePaid; } break; // Done, enough fee included. } else if (!pick_new_inputs) { // This shouldn't happen, we should have had enough excess // fee to pay for the new output and still meet nFeeNeeded // Or we should have just subtracted fee from recipients and // nFeeNeeded should not have changed strFailReason = _("Transaction fee and change calculation failed"); return false; } // Try to reduce change to include necessary fee if (nChangePosInOut != -1 && nSubtractFeeFromAmount == 0) { CAmount additionalFeeNeeded = nFeeNeeded - nFeeRet; std::vector::iterator change_position = txNew.vout.begin()+nChangePosInOut; // Only reduce change if remaining amount is still a large enough output. if (change_position->nValue >= MIN_FINAL_CHANGE + additionalFeeNeeded) { change_position->nValue -= additionalFeeNeeded; nFeeRet += additionalFeeNeeded; break; // Done, able to increase fee from change } } // If subtracting fee from recipients, we now know what fee we // need to subtract, we have no reason to reselect inputs if (nSubtractFeeFromAmount > 0) { pick_new_inputs = false; } // Include more fee and try again. nFeeRet = nFeeNeeded; continue; } } if (nChangePosInOut == -1) reservekey.ReturnKey(); // Return any reserved key if we don't have change if (sign) { CTransaction txNewConst(txNew); int nIn = 0; for (const auto& coin : setCoins) { const CScript& scriptPubKey = coin.txout.scriptPubKey; SignatureData sigdata; if (!ProduceSignature(TransactionSignatureCreator(this, &txNewConst, nIn, coin.txout.nValue, SIGHASH_ALL), scriptPubKey, sigdata)) { strFailReason = _("Signing transaction failed"); return false; } else { UpdateTransaction(txNew, nIn, sigdata); } nIn++; } } // Embed the constructed transaction data in wtxNew. wtxNew.SetTx(MakeTransactionRef(std::move(txNew))); // Limit size if (GetTransactionWeight(wtxNew) >= MAX_STANDARD_TX_WEIGHT) { strFailReason = _("Transaction too large"); return false; } } if (gArgs.GetBoolArg("-walletrejectlongchains", DEFAULT_WALLET_REJECT_LONG_CHAINS)) { // Lastly, ensure this tx will pass the mempool's chain limits LockPoints lp; CTxMemPoolEntry entry(wtxNew.tx, 0, 0, 0, false, 0, lp); CTxMemPool::setEntries setAncestors; size_t nLimitAncestors = gArgs.GetArg("-limitancestorcount", DEFAULT_ANCESTOR_LIMIT); size_t nLimitAncestorSize = gArgs.GetArg("-limitancestorsize", DEFAULT_ANCESTOR_SIZE_LIMIT)*1000; size_t nLimitDescendants = gArgs.GetArg("-limitdescendantcount", DEFAULT_DESCENDANT_LIMIT); size_t nLimitDescendantSize = gArgs.GetArg("-limitdescendantsize", DEFAULT_DESCENDANT_SIZE_LIMIT)*1000; std::string errString; if (!mempool.CalculateMemPoolAncestors(entry, setAncestors, nLimitAncestors, nLimitAncestorSize, nLimitDescendants, nLimitDescendantSize, errString)) { strFailReason = _("Transaction has too long of a mempool chain"); return false; } } LogPrintf("Fee Calculation: Fee:%d Bytes:%u Needed:%d Tgt:%d (requested %d) Reason:\"%s\" Decay %.5f: Estimation: (%g - %g) %.2f%% %.1f/(%.1f %d mem %.1f out) Fail: (%g - %g) %.2f%% %.1f/(%.1f %d mem %.1f out)\n", nFeeRet, nBytes, nFeeNeeded, feeCalc.returnedTarget, feeCalc.desiredTarget, StringForFeeReason(feeCalc.reason), feeCalc.est.decay, feeCalc.est.pass.start, feeCalc.est.pass.end, 100 * feeCalc.est.pass.withinTarget / (feeCalc.est.pass.totalConfirmed + feeCalc.est.pass.inMempool + feeCalc.est.pass.leftMempool), feeCalc.est.pass.withinTarget, feeCalc.est.pass.totalConfirmed, feeCalc.est.pass.inMempool, feeCalc.est.pass.leftMempool, feeCalc.est.fail.start, feeCalc.est.fail.end, 100 * feeCalc.est.fail.withinTarget / (feeCalc.est.fail.totalConfirmed + feeCalc.est.fail.inMempool + feeCalc.est.fail.leftMempool), feeCalc.est.fail.withinTarget, feeCalc.est.fail.totalConfirmed, feeCalc.est.fail.inMempool, feeCalc.est.fail.leftMempool); return true; } /** * Call after CreateTransaction unless you want to abort */ bool CWallet::CommitTransaction(CWalletTx& wtxNew, CReserveKey& reservekey, CConnman* connman, CValidationState& state) { { LOCK2(cs_main, cs_wallet); LogPrintf("CommitTransaction:\n%s", wtxNew.tx->ToString()); { // Take key pair from key pool so it won't be used again reservekey.KeepKey(); // Add tx to wallet, because if it has change it's also ours, // otherwise just for transaction history. AddToWallet(wtxNew); // Notify that old coins are spent for (const CTxIn& txin : wtxNew.tx->vin) { CWalletTx &coin = mapWallet[txin.prevout.hash]; coin.BindWallet(this); NotifyTransactionChanged(this, coin.GetHash(), CT_UPDATED); } } // Track how many getdata requests our transaction gets mapRequestCount[wtxNew.GetHash()] = 0; if (fBroadcastTransactions) { // Broadcast if (!wtxNew.AcceptToMemoryPool(maxTxFee, state)) { LogPrintf("CommitTransaction(): Transaction cannot be broadcast immediately, %s\n", state.GetRejectReason()); // TODO: if we expect the failure to be long term or permanent, instead delete wtx from the wallet and return failure. } else { wtxNew.RelayWalletTransaction(connman); } } } return true; } void CWallet::ListAccountCreditDebit(const std::string& strAccount, std::list& entries) { CWalletDB walletdb(*dbw); return walletdb.ListAccountCreditDebit(strAccount, entries); } bool CWallet::AddAccountingEntry(const CAccountingEntry& acentry) { CWalletDB walletdb(*dbw); return AddAccountingEntry(acentry, &walletdb); } bool CWallet::AddAccountingEntry(const CAccountingEntry& acentry, CWalletDB *pwalletdb) { if (!pwalletdb->WriteAccountingEntry(++nAccountingEntryNumber, acentry)) { return false; } laccentries.push_back(acentry); CAccountingEntry & entry = laccentries.back(); wtxOrdered.insert(std::make_pair(entry.nOrderPos, TxPair(nullptr, &entry))); return true; } DBErrors CWallet::LoadWallet(bool& fFirstRunRet) { LOCK2(cs_main, cs_wallet); fFirstRunRet = false; DBErrors nLoadWalletRet = CWalletDB(*dbw,"cr+").LoadWallet(this); if (nLoadWalletRet == DB_NEED_REWRITE) { if (dbw->Rewrite("\x04pool")) { setInternalKeyPool.clear(); setExternalKeyPool.clear(); m_pool_key_to_index.clear(); // Note: can't top-up keypool here, because wallet is locked. // User will be prompted to unlock wallet the next operation // that requires a new key. } } // This wallet is in its first run if all of these are empty fFirstRunRet = mapKeys.empty() && mapCryptedKeys.empty() && mapWatchKeys.empty() && setWatchOnly.empty() && mapScripts.empty(); if (nLoadWalletRet != DB_LOAD_OK) return nLoadWalletRet; uiInterface.LoadWallet(this); return DB_LOAD_OK; } DBErrors CWallet::ZapSelectTx(std::vector& vHashIn, std::vector& vHashOut) { AssertLockHeld(cs_wallet); // mapWallet DBErrors nZapSelectTxRet = CWalletDB(*dbw,"cr+").ZapSelectTx(vHashIn, vHashOut); for (uint256 hash : vHashOut) mapWallet.erase(hash); if (nZapSelectTxRet == DB_NEED_REWRITE) { if (dbw->Rewrite("\x04pool")) { setInternalKeyPool.clear(); setExternalKeyPool.clear(); m_pool_key_to_index.clear(); // Note: can't top-up keypool here, because wallet is locked. // User will be prompted to unlock wallet the next operation // that requires a new key. } } if (nZapSelectTxRet != DB_LOAD_OK) return nZapSelectTxRet; MarkDirty(); return DB_LOAD_OK; } DBErrors CWallet::ZapWalletTx(std::vector& vWtx) { DBErrors nZapWalletTxRet = CWalletDB(*dbw,"cr+").ZapWalletTx(vWtx); if (nZapWalletTxRet == DB_NEED_REWRITE) { if (dbw->Rewrite("\x04pool")) { LOCK(cs_wallet); setInternalKeyPool.clear(); setExternalKeyPool.clear(); m_pool_key_to_index.clear(); // Note: can't top-up keypool here, because wallet is locked. // User will be prompted to unlock wallet the next operation // that requires a new key. } } if (nZapWalletTxRet != DB_LOAD_OK) return nZapWalletTxRet; return DB_LOAD_OK; } bool CWallet::SetAddressBook(const CTxDestination& address, const std::string& strName, const std::string& strPurpose) { bool fUpdated = false; { LOCK(cs_wallet); // mapAddressBook std::map::iterator mi = mapAddressBook.find(address); fUpdated = mi != mapAddressBook.end(); mapAddressBook[address].name = strName; if (!strPurpose.empty()) /* update purpose only if requested */ mapAddressBook[address].purpose = strPurpose; } NotifyAddressBookChanged(this, address, strName, ::IsMine(*this, address) != ISMINE_NO, strPurpose, (fUpdated ? CT_UPDATED : CT_NEW) ); if (!strPurpose.empty() && !CWalletDB(*dbw).WritePurpose(EncodeDestination(address), strPurpose)) return false; return CWalletDB(*dbw).WriteName(EncodeDestination(address), strName); } bool CWallet::DelAddressBook(const CTxDestination& address) { { LOCK(cs_wallet); // mapAddressBook // Delete destdata tuples associated with address std::string strAddress = EncodeDestination(address); for (const std::pair &item : mapAddressBook[address].destdata) { CWalletDB(*dbw).EraseDestData(strAddress, item.first); } mapAddressBook.erase(address); } NotifyAddressBookChanged(this, address, "", ::IsMine(*this, address) != ISMINE_NO, "", CT_DELETED); CWalletDB(*dbw).ErasePurpose(EncodeDestination(address)); return CWalletDB(*dbw).EraseName(EncodeDestination(address)); } const std::string& CWallet::GetAccountName(const CScript& scriptPubKey) const { CTxDestination address; if (ExtractDestination(scriptPubKey, address) && !scriptPubKey.IsUnspendable()) { auto mi = mapAddressBook.find(address); if (mi != mapAddressBook.end()) { return mi->second.name; } } // A scriptPubKey that doesn't have an entry in the address book is // associated with the default account (""). const static std::string DEFAULT_ACCOUNT_NAME; return DEFAULT_ACCOUNT_NAME; } /** * Mark old keypool keys as used, * and generate all new keys */ bool CWallet::NewKeyPool() { { LOCK(cs_wallet); CWalletDB walletdb(*dbw); for (int64_t nIndex : setInternalKeyPool) { walletdb.ErasePool(nIndex); } setInternalKeyPool.clear(); for (int64_t nIndex : setExternalKeyPool) { walletdb.ErasePool(nIndex); } setExternalKeyPool.clear(); m_pool_key_to_index.clear(); if (!TopUpKeyPool()) { return false; } LogPrintf("CWallet::NewKeyPool rewrote keypool\n"); } return true; } size_t CWallet::KeypoolCountExternalKeys() { AssertLockHeld(cs_wallet); // setExternalKeyPool return setExternalKeyPool.size(); } void CWallet::LoadKeyPool(int64_t nIndex, const CKeyPool &keypool) { AssertLockHeld(cs_wallet); if (keypool.fInternal) { setInternalKeyPool.insert(nIndex); } else { setExternalKeyPool.insert(nIndex); } m_max_keypool_index = std::max(m_max_keypool_index, nIndex); m_pool_key_to_index[keypool.vchPubKey.GetID()] = nIndex; // If no metadata exists yet, create a default with the pool key's // creation time. Note that this may be overwritten by actually // stored metadata for that key later, which is fine. CKeyID keyid = keypool.vchPubKey.GetID(); if (mapKeyMetadata.count(keyid) == 0) mapKeyMetadata[keyid] = CKeyMetadata(keypool.nTime); } bool CWallet::TopUpKeyPool(unsigned int kpSize) { { LOCK(cs_wallet); if (IsLocked()) return false; // Top up key pool unsigned int nTargetSize; if (kpSize > 0) nTargetSize = kpSize; else nTargetSize = std::max(gArgs.GetArg("-keypool", DEFAULT_KEYPOOL_SIZE), (int64_t) 0); // count amount of available keys (internal, external) // make sure the keypool of external and internal keys fits the user selected target (-keypool) int64_t missingExternal = std::max(std::max((int64_t) nTargetSize, (int64_t) 1) - (int64_t)setExternalKeyPool.size(), (int64_t) 0); int64_t missingInternal = std::max(std::max((int64_t) nTargetSize, (int64_t) 1) - (int64_t)setInternalKeyPool.size(), (int64_t) 0); if (!IsHDEnabled() || !CanSupportFeature(FEATURE_HD_SPLIT)) { // don't create extra internal keys missingInternal = 0; } bool internal = false; CWalletDB walletdb(*dbw); for (int64_t i = missingInternal + missingExternal; i--;) { if (i < missingInternal) { internal = true; } assert(m_max_keypool_index < std::numeric_limits::max()); // How in the hell did you use so many keys? int64_t index = ++m_max_keypool_index; CPubKey pubkey(GenerateNewKey(walletdb, internal)); if (!walletdb.WritePool(index, CKeyPool(pubkey, internal))) { throw std::runtime_error(std::string(__func__) + ": writing generated key failed"); } if (internal) { setInternalKeyPool.insert(index); } else { setExternalKeyPool.insert(index); } m_pool_key_to_index[pubkey.GetID()] = index; } if (missingInternal + missingExternal > 0) { LogPrintf("keypool added %d keys (%d internal), size=%u (%u internal)\n", missingInternal + missingExternal, missingInternal, setInternalKeyPool.size() + setExternalKeyPool.size(), setInternalKeyPool.size()); } } return true; } void CWallet::ReserveKeyFromKeyPool(int64_t& nIndex, CKeyPool& keypool, bool fRequestedInternal) { nIndex = -1; keypool.vchPubKey = CPubKey(); { LOCK(cs_wallet); if (!IsLocked()) TopUpKeyPool(); bool fReturningInternal = IsHDEnabled() && CanSupportFeature(FEATURE_HD_SPLIT) && fRequestedInternal; std::set& setKeyPool = fReturningInternal ? setInternalKeyPool : setExternalKeyPool; // Get the oldest key if(setKeyPool.empty()) return; CWalletDB walletdb(*dbw); auto it = setKeyPool.begin(); nIndex = *it; setKeyPool.erase(it); if (!walletdb.ReadPool(nIndex, keypool)) { throw std::runtime_error(std::string(__func__) + ": read failed"); } if (!HaveKey(keypool.vchPubKey.GetID())) { throw std::runtime_error(std::string(__func__) + ": unknown key in key pool"); } if (keypool.fInternal != fReturningInternal) { throw std::runtime_error(std::string(__func__) + ": keypool entry misclassified"); } assert(keypool.vchPubKey.IsValid()); m_pool_key_to_index.erase(keypool.vchPubKey.GetID()); LogPrintf("keypool reserve %d\n", nIndex); } } void CWallet::KeepKey(int64_t nIndex) { // Remove from key pool CWalletDB walletdb(*dbw); walletdb.ErasePool(nIndex); LogPrintf("keypool keep %d\n", nIndex); } void CWallet::ReturnKey(int64_t nIndex, bool fInternal, const CPubKey& pubkey) { // Return to key pool { LOCK(cs_wallet); if (fInternal) { setInternalKeyPool.insert(nIndex); } else { setExternalKeyPool.insert(nIndex); } m_pool_key_to_index[pubkey.GetID()] = nIndex; } LogPrintf("keypool return %d\n", nIndex); } bool CWallet::GetKeyFromPool(CPubKey& result, bool internal) { CKeyPool keypool; { LOCK(cs_wallet); int64_t nIndex = 0; ReserveKeyFromKeyPool(nIndex, keypool, internal); if (nIndex == -1) { if (IsLocked()) return false; CWalletDB walletdb(*dbw); result = GenerateNewKey(walletdb, internal); return true; } KeepKey(nIndex); result = keypool.vchPubKey; } return true; } static int64_t GetOldestKeyTimeInPool(const std::set& setKeyPool, CWalletDB& walletdb) { if (setKeyPool.empty()) { return GetTime(); } CKeyPool keypool; int64_t nIndex = *(setKeyPool.begin()); if (!walletdb.ReadPool(nIndex, keypool)) { throw std::runtime_error(std::string(__func__) + ": read oldest key in keypool failed"); } assert(keypool.vchPubKey.IsValid()); return keypool.nTime; } int64_t CWallet::GetOldestKeyPoolTime() { LOCK(cs_wallet); CWalletDB walletdb(*dbw); // load oldest key from keypool, get time and return int64_t oldestKey = GetOldestKeyTimeInPool(setExternalKeyPool, walletdb); if (IsHDEnabled() && CanSupportFeature(FEATURE_HD_SPLIT)) { oldestKey = std::max(GetOldestKeyTimeInPool(setInternalKeyPool, walletdb), oldestKey); } return oldestKey; } std::map CWallet::GetAddressBalances() { std::map balances; { LOCK(cs_wallet); for (const auto& walletEntry : mapWallet) { const CWalletTx *pcoin = &walletEntry.second; if (!pcoin->IsTrusted()) continue; if (pcoin->IsCoinBase() && pcoin->GetBlocksToMaturity() > 0) continue; int nDepth = pcoin->GetDepthInMainChain(); if (nDepth < (pcoin->IsFromMe(ISMINE_ALL) ? 0 : 1)) continue; for (unsigned int i = 0; i < pcoin->tx->vout.size(); i++) { CTxDestination addr; if (!IsMine(pcoin->tx->vout[i])) continue; if(!ExtractDestination(pcoin->tx->vout[i].scriptPubKey, addr)) continue; CAmount n = IsSpent(walletEntry.first, i) ? 0 : pcoin->tx->vout[i].nValue; if (!balances.count(addr)) balances[addr] = 0; balances[addr] += n; } } } return balances; } std::set< std::set > CWallet::GetAddressGroupings() { AssertLockHeld(cs_wallet); // mapWallet std::set< std::set > groupings; std::set grouping; for (const auto& walletEntry : mapWallet) { const CWalletTx *pcoin = &walletEntry.second; if (pcoin->tx->vin.size() > 0) { bool any_mine = false; // group all input addresses with each other for (CTxIn txin : pcoin->tx->vin) { CTxDestination address; if(!IsMine(txin)) /* If this input isn't mine, ignore it */ continue; if(!ExtractDestination(mapWallet[txin.prevout.hash].tx->vout[txin.prevout.n].scriptPubKey, address)) continue; grouping.insert(address); any_mine = true; } // group change with input addresses if (any_mine) { for (CTxOut txout : pcoin->tx->vout) if (IsChange(txout)) { CTxDestination txoutAddr; if(!ExtractDestination(txout.scriptPubKey, txoutAddr)) continue; grouping.insert(txoutAddr); } } if (grouping.size() > 0) { groupings.insert(grouping); grouping.clear(); } } // group lone addrs by themselves for (const auto& txout : pcoin->tx->vout) if (IsMine(txout)) { CTxDestination address; if(!ExtractDestination(txout.scriptPubKey, address)) continue; grouping.insert(address); groupings.insert(grouping); grouping.clear(); } } std::set< std::set* > uniqueGroupings; // a set of pointers to groups of addresses std::map< CTxDestination, std::set* > setmap; // map addresses to the unique group containing it for (std::set _grouping : groupings) { // make a set of all the groups hit by this new group std::set< std::set* > hits; std::map< CTxDestination, std::set* >::iterator it; for (CTxDestination address : _grouping) if ((it = setmap.find(address)) != setmap.end()) hits.insert((*it).second); // merge all hit groups into a new single group and delete old groups std::set* merged = new std::set(_grouping); for (std::set* hit : hits) { merged->insert(hit->begin(), hit->end()); uniqueGroupings.erase(hit); delete hit; } uniqueGroupings.insert(merged); // update setmap for (CTxDestination element : *merged) setmap[element] = merged; } std::set< std::set > ret; for (std::set* uniqueGrouping : uniqueGroupings) { ret.insert(*uniqueGrouping); delete uniqueGrouping; } return ret; } std::set CWallet::GetAccountAddresses(const std::string& strAccount) const { LOCK(cs_wallet); std::set result; for (const std::pair& item : mapAddressBook) { const CTxDestination& address = item.first; const std::string& strName = item.second.name; if (strName == strAccount) result.insert(address); } return result; } bool CReserveKey::GetReservedKey(CPubKey& pubkey, bool internal) { if (nIndex == -1) { CKeyPool keypool; pwallet->ReserveKeyFromKeyPool(nIndex, keypool, internal); if (nIndex != -1) vchPubKey = keypool.vchPubKey; else { return false; } fInternal = keypool.fInternal; } assert(vchPubKey.IsValid()); pubkey = vchPubKey; return true; } void CReserveKey::KeepKey() { if (nIndex != -1) pwallet->KeepKey(nIndex); nIndex = -1; vchPubKey = CPubKey(); } void CReserveKey::ReturnKey() { if (nIndex != -1) { pwallet->ReturnKey(nIndex, fInternal, vchPubKey); } nIndex = -1; vchPubKey = CPubKey(); } void CWallet::MarkReserveKeysAsUsed(int64_t keypool_id) { AssertLockHeld(cs_wallet); bool internal = setInternalKeyPool.count(keypool_id); if (!internal) assert(setExternalKeyPool.count(keypool_id)); std::set *setKeyPool = internal ? &setInternalKeyPool : &setExternalKeyPool; auto it = setKeyPool->begin(); CWalletDB walletdb(*dbw); while (it != std::end(*setKeyPool)) { const int64_t& index = *(it); if (index > keypool_id) break; // set*KeyPool is ordered CKeyPool keypool; if (walletdb.ReadPool(index, keypool)) { //TODO: This should be unnecessary m_pool_key_to_index.erase(keypool.vchPubKey.GetID()); } walletdb.ErasePool(index); LogPrintf("keypool index %d removed\n", index); it = setKeyPool->erase(it); } } void CWallet::GetScriptForMining(std::shared_ptr &script) { std::shared_ptr rKey = std::make_shared(this); CPubKey pubkey; if (!rKey->GetReservedKey(pubkey)) return; script = rKey; script->reserveScript = CScript() << ToByteVector(pubkey) << OP_CHECKSIG; } void CWallet::LockCoin(const COutPoint& output) { AssertLockHeld(cs_wallet); // setLockedCoins setLockedCoins.insert(output); } void CWallet::UnlockCoin(const COutPoint& output) { AssertLockHeld(cs_wallet); // setLockedCoins setLockedCoins.erase(output); } void CWallet::UnlockAllCoins() { AssertLockHeld(cs_wallet); // setLockedCoins setLockedCoins.clear(); } bool CWallet::IsLockedCoin(uint256 hash, unsigned int n) const { AssertLockHeld(cs_wallet); // setLockedCoins COutPoint outpt(hash, n); return (setLockedCoins.count(outpt) > 0); } void CWallet::ListLockedCoins(std::vector& vOutpts) const { AssertLockHeld(cs_wallet); // setLockedCoins for (std::set::iterator it = setLockedCoins.begin(); it != setLockedCoins.end(); it++) { COutPoint outpt = (*it); vOutpts.push_back(outpt); } } /** @} */ // end of Actions void CWallet::GetKeyBirthTimes(std::map &mapKeyBirth) const { AssertLockHeld(cs_wallet); // mapKeyMetadata mapKeyBirth.clear(); // get birth times for keys with metadata for (const auto& entry : mapKeyMetadata) { if (entry.second.nCreateTime) { mapKeyBirth[entry.first] = entry.second.nCreateTime; } } // map in which we'll infer heights of other keys CBlockIndex *pindexMax = chainActive[std::max(0, chainActive.Height() - 144)]; // the tip can be reorganized; use a 144-block safety margin std::map mapKeyFirstBlock; for (const CKeyID &keyid : GetKeys()) { if (mapKeyBirth.count(keyid) == 0) mapKeyFirstBlock[keyid] = pindexMax; } // if there are no such keys, we're done if (mapKeyFirstBlock.empty()) return; // find first block that affects those keys, if there are any left std::vector vAffected; for (std::map::const_iterator it = mapWallet.begin(); it != mapWallet.end(); it++) { // iterate over all wallet transactions... const CWalletTx &wtx = (*it).second; BlockMap::const_iterator blit = mapBlockIndex.find(wtx.hashBlock); if (blit != mapBlockIndex.end() && chainActive.Contains(blit->second)) { // ... which are already in a block int nHeight = blit->second->nHeight; for (const CTxOut &txout : wtx.tx->vout) { // iterate over all their outputs CAffectedKeysVisitor(*this, vAffected).Process(txout.scriptPubKey); for (const CKeyID &keyid : vAffected) { // ... and all their affected keys std::map::iterator rit = mapKeyFirstBlock.find(keyid); if (rit != mapKeyFirstBlock.end() && nHeight < rit->second->nHeight) rit->second = blit->second; } vAffected.clear(); } } } // Extract block timestamps for those keys for (std::map::const_iterator it = mapKeyFirstBlock.begin(); it != mapKeyFirstBlock.end(); it++) mapKeyBirth[it->first] = it->second->GetBlockTime() - TIMESTAMP_WINDOW; // block times can be 2h off } /** * Compute smart timestamp for a transaction being added to the wallet. * * Logic: * - If sending a transaction, assign its timestamp to the current time. * - If receiving a transaction outside a block, assign its timestamp to the * current time. * - If receiving a block with a future timestamp, assign all its (not already * known) transactions' timestamps to the current time. * - If receiving a block with a past timestamp, before the most recent known * transaction (that we care about), assign all its (not already known) * transactions' timestamps to the same timestamp as that most-recent-known * transaction. * - If receiving a block with a past timestamp, but after the most recent known * transaction, assign all its (not already known) transactions' timestamps to * the block time. * * For more information see CWalletTx::nTimeSmart, * https://bitcointalk.org/?topic=54527, or * https://github.com/bitcoin/bitcoin/pull/1393. */ unsigned int CWallet::ComputeTimeSmart(const CWalletTx& wtx) const { unsigned int nTimeSmart = wtx.nTimeReceived; if (!wtx.hashUnset()) { if (mapBlockIndex.count(wtx.hashBlock)) { int64_t latestNow = wtx.nTimeReceived; int64_t latestEntry = 0; // Tolerate times up to the last timestamp in the wallet not more than 5 minutes into the future int64_t latestTolerated = latestNow + 300; const TxItems& txOrdered = wtxOrdered; for (auto it = txOrdered.rbegin(); it != txOrdered.rend(); ++it) { CWalletTx* const pwtx = it->second.first; if (pwtx == &wtx) { continue; } CAccountingEntry* const pacentry = it->second.second; int64_t nSmartTime; if (pwtx) { nSmartTime = pwtx->nTimeSmart; if (!nSmartTime) { nSmartTime = pwtx->nTimeReceived; } } else { nSmartTime = pacentry->nTime; } if (nSmartTime <= latestTolerated) { latestEntry = nSmartTime; if (nSmartTime > latestNow) { latestNow = nSmartTime; } break; } } int64_t blocktime = mapBlockIndex[wtx.hashBlock]->GetBlockTime(); nTimeSmart = std::max(latestEntry, std::min(blocktime, latestNow)); } else { LogPrintf("%s: found %s in block %s not in index\n", __func__, wtx.GetHash().ToString(), wtx.hashBlock.ToString()); } } return nTimeSmart; } bool CWallet::AddDestData(const CTxDestination &dest, const std::string &key, const std::string &value) { if (boost::get(&dest)) return false; mapAddressBook[dest].destdata.insert(std::make_pair(key, value)); return CWalletDB(*dbw).WriteDestData(EncodeDestination(dest), key, value); } bool CWallet::EraseDestData(const CTxDestination &dest, const std::string &key) { if (!mapAddressBook[dest].destdata.erase(key)) return false; return CWalletDB(*dbw).EraseDestData(EncodeDestination(dest), key); } bool CWallet::LoadDestData(const CTxDestination &dest, const std::string &key, const std::string &value) { mapAddressBook[dest].destdata.insert(std::make_pair(key, value)); return true; } bool CWallet::GetDestData(const CTxDestination &dest, const std::string &key, std::string *value) const { std::map::const_iterator i = mapAddressBook.find(dest); if(i != mapAddressBook.end()) { CAddressBookData::StringMap::const_iterator j = i->second.destdata.find(key); if(j != i->second.destdata.end()) { if(value) *value = j->second; return true; } } return false; } std::vector CWallet::GetDestValues(const std::string& prefix) const { LOCK(cs_wallet); std::vector values; for (const auto& address : mapAddressBook) { for (const auto& data : address.second.destdata) { if (!data.first.compare(0, prefix.size(), prefix)) { values.emplace_back(data.second); } } } return values; } CWallet* CWallet::CreateWalletFromFile(const std::string walletFile) { // needed to restore wallet transaction meta data after -zapwallettxes std::vector vWtx; if (gArgs.GetBoolArg("-zapwallettxes", false)) { uiInterface.InitMessage(_("Zapping all transactions from wallet...")); std::unique_ptr dbw(new CWalletDBWrapper(&bitdb, walletFile)); std::unique_ptr tempWallet(new CWallet(std::move(dbw))); DBErrors nZapWalletRet = tempWallet->ZapWalletTx(vWtx); if (nZapWalletRet != DB_LOAD_OK) { InitError(strprintf(_("Error loading %s: Wallet corrupted"), walletFile)); return nullptr; } } uiInterface.InitMessage(_("Loading wallet...")); int64_t nStart = GetTimeMillis(); bool fFirstRun = true; std::unique_ptr dbw(new CWalletDBWrapper(&bitdb, walletFile)); CWallet *walletInstance = new CWallet(std::move(dbw)); DBErrors nLoadWalletRet = walletInstance->LoadWallet(fFirstRun); if (nLoadWalletRet != DB_LOAD_OK) { if (nLoadWalletRet == DB_CORRUPT) { InitError(strprintf(_("Error loading %s: Wallet corrupted"), walletFile)); return nullptr; } else if (nLoadWalletRet == DB_NONCRITICAL_ERROR) { InitWarning(strprintf(_("Error reading %s! All keys read correctly, but transaction data" " or address book entries might be missing or incorrect."), walletFile)); } else if (nLoadWalletRet == DB_TOO_NEW) { InitError(strprintf(_("Error loading %s: Wallet requires newer version of %s"), walletFile, _(PACKAGE_NAME))); return nullptr; } else if (nLoadWalletRet == DB_NEED_REWRITE) { InitError(strprintf(_("Wallet needed to be rewritten: restart %s to complete"), _(PACKAGE_NAME))); return nullptr; } else { InitError(strprintf(_("Error loading %s"), walletFile)); return nullptr; } } if (gArgs.GetBoolArg("-upgradewallet", fFirstRun)) { int nMaxVersion = gArgs.GetArg("-upgradewallet", 0); if (nMaxVersion == 0) // the -upgradewallet without argument case { LogPrintf("Performing wallet upgrade to %i\n", FEATURE_LATEST); nMaxVersion = CLIENT_VERSION; walletInstance->SetMinVersion(FEATURE_LATEST); // permanently upgrade the wallet immediately } else LogPrintf("Allowing wallet upgrade up to %i\n", nMaxVersion); if (nMaxVersion < walletInstance->GetVersion()) { InitError(_("Cannot downgrade wallet")); return nullptr; } walletInstance->SetMaxVersion(nMaxVersion); } if (fFirstRun) { // ensure this wallet.dat can only be opened by clients supporting HD with chain split and expects no default key if (!gArgs.GetBoolArg("-usehd", true)) { InitError(strprintf(_("Error creating %s: You can't create non-HD wallets with this version."), walletFile)); return nullptr; } walletInstance->SetMinVersion(FEATURE_NO_DEFAULT_KEY); // generate a new master key CPubKey masterPubKey = walletInstance->GenerateNewHDMasterKey(); if (!walletInstance->SetHDMasterKey(masterPubKey)) throw std::runtime_error(std::string(__func__) + ": Storing master key failed"); // Top up the keypool if (!walletInstance->TopUpKeyPool()) { InitError(_("Unable to generate initial keys") += "\n"); return NULL; } walletInstance->SetBestChain(chainActive.GetLocator()); } else if (gArgs.IsArgSet("-usehd")) { bool useHD = gArgs.GetBoolArg("-usehd", true); if (walletInstance->IsHDEnabled() && !useHD) { InitError(strprintf(_("Error loading %s: You can't disable HD on an already existing HD wallet"), walletFile)); return nullptr; } if (!walletInstance->IsHDEnabled() && useHD) { InitError(strprintf(_("Error loading %s: You can't enable HD on an already existing non-HD wallet"), walletFile)); return nullptr; } } LogPrintf(" wallet %15dms\n", GetTimeMillis() - nStart); // Try to top up keypool. No-op if the wallet is locked. walletInstance->TopUpKeyPool(); CBlockIndex *pindexRescan = chainActive.Genesis(); if (!gArgs.GetBoolArg("-rescan", false)) { CWalletDB walletdb(*walletInstance->dbw); CBlockLocator locator; if (walletdb.ReadBestBlock(locator)) pindexRescan = FindForkInGlobalIndex(chainActive, locator); } walletInstance->m_last_block_processed = chainActive.Tip(); RegisterValidationInterface(walletInstance); if (chainActive.Tip() && chainActive.Tip() != pindexRescan) { //We can't rescan beyond non-pruned blocks, stop and throw an error //this might happen if a user uses an old wallet within a pruned node // or if he ran -disablewallet for a longer time, then decided to re-enable if (fPruneMode) { CBlockIndex *block = chainActive.Tip(); while (block && block->pprev && (block->pprev->nStatus & BLOCK_HAVE_DATA) && block->pprev->nTx > 0 && pindexRescan != block) block = block->pprev; if (pindexRescan != block) { InitError(_("Prune: last wallet synchronisation goes beyond pruned data. You need to -reindex (download the whole blockchain again in case of pruned node)")); return nullptr; } } uiInterface.InitMessage(_("Rescanning...")); LogPrintf("Rescanning last %i blocks (from block %i)...\n", chainActive.Height() - pindexRescan->nHeight, pindexRescan->nHeight); // No need to read and scan block if block was created before // our wallet birthday (as adjusted for block time variability) while (pindexRescan && walletInstance->nTimeFirstKey && (pindexRescan->GetBlockTime() < (walletInstance->nTimeFirstKey - TIMESTAMP_WINDOW))) { pindexRescan = chainActive.Next(pindexRescan); } nStart = GetTimeMillis(); walletInstance->ScanForWalletTransactions(pindexRescan, nullptr, true); LogPrintf(" rescan %15dms\n", GetTimeMillis() - nStart); walletInstance->SetBestChain(chainActive.GetLocator()); walletInstance->dbw->IncrementUpdateCounter(); // Restore wallet transaction metadata after -zapwallettxes=1 if (gArgs.GetBoolArg("-zapwallettxes", false) && gArgs.GetArg("-zapwallettxes", "1") != "2") { CWalletDB walletdb(*walletInstance->dbw); for (const CWalletTx& wtxOld : vWtx) { uint256 hash = wtxOld.GetHash(); std::map::iterator mi = walletInstance->mapWallet.find(hash); if (mi != walletInstance->mapWallet.end()) { const CWalletTx* copyFrom = &wtxOld; CWalletTx* copyTo = &mi->second; copyTo->mapValue = copyFrom->mapValue; copyTo->vOrderForm = copyFrom->vOrderForm; copyTo->nTimeReceived = copyFrom->nTimeReceived; copyTo->nTimeSmart = copyFrom->nTimeSmart; copyTo->fFromMe = copyFrom->fFromMe; copyTo->strFromAccount = copyFrom->strFromAccount; copyTo->nOrderPos = copyFrom->nOrderPos; walletdb.WriteTx(*copyTo); } } } } walletInstance->SetBroadcastTransactions(gArgs.GetBoolArg("-walletbroadcast", DEFAULT_WALLETBROADCAST)); { LOCK(walletInstance->cs_wallet); LogPrintf("setKeyPool.size() = %u\n", walletInstance->GetKeyPoolSize()); LogPrintf("mapWallet.size() = %u\n", walletInstance->mapWallet.size()); LogPrintf("mapAddressBook.size() = %u\n", walletInstance->mapAddressBook.size()); } return walletInstance; } std::atomic CWallet::fFlushScheduled(false); void CWallet::postInitProcess(CScheduler& scheduler) { // Add wallet transactions that aren't already in a block to mempool // Do this here as mempool requires genesis block to be loaded ReacceptWalletTransactions(); // Run a thread to flush wallet periodically if (!CWallet::fFlushScheduled.exchange(true)) { scheduler.scheduleEvery(MaybeCompactWalletDB, 500); } } bool CWallet::BackupWallet(const std::string& strDest) { return dbw->Backup(strDest); } CKeyPool::CKeyPool() { nTime = GetTime(); fInternal = false; } CKeyPool::CKeyPool(const CPubKey& vchPubKeyIn, bool internalIn) { nTime = GetTime(); vchPubKey = vchPubKeyIn; fInternal = internalIn; } CWalletKey::CWalletKey(int64_t nExpires) { nTimeCreated = (nExpires ? GetTime() : 0); nTimeExpires = nExpires; } void CMerkleTx::SetMerkleBranch(const CBlockIndex* pindex, int posInBlock) { // Update the tx's hashBlock hashBlock = pindex->GetBlockHash(); // set the position of the transaction in the block nIndex = posInBlock; } int CMerkleTx::GetDepthInMainChain(const CBlockIndex* &pindexRet) const { if (hashUnset()) return 0; AssertLockHeld(cs_main); // Find the block it claims to be in BlockMap::iterator mi = mapBlockIndex.find(hashBlock); if (mi == mapBlockIndex.end()) return 0; CBlockIndex* pindex = (*mi).second; if (!pindex || !chainActive.Contains(pindex)) return 0; pindexRet = pindex; return ((nIndex == -1) ? (-1) : 1) * (chainActive.Height() - pindex->nHeight + 1); } int CMerkleTx::GetBlocksToMaturity() const { if (!IsCoinBase()) return 0; return std::max(0, (COINBASE_MATURITY+1) - GetDepthInMainChain()); } bool CMerkleTx::AcceptToMemoryPool(const CAmount& nAbsurdFee, CValidationState& state) { return ::AcceptToMemoryPool(mempool, state, tx, nullptr /* pfMissingInputs */, nullptr /* plTxnReplaced */, false /* bypass_limits */, nAbsurdFee); }