// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2013 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_CORE_H #define BITCOIN_CORE_H #include "script.h" #include "serialize.h" #include "uint256.h" #include class CTransaction; /** An outpoint - a combination of a transaction hash and an index n into its vout */ class COutPoint { public: uint256 hash; unsigned int n; COutPoint() { SetNull(); } COutPoint(uint256 hashIn, unsigned int nIn) { hash = hashIn; n = nIn; } IMPLEMENT_SERIALIZE( READWRITE(FLATDATA(*this)); ) void SetNull() { hash = 0; n = (unsigned int) -1; } bool IsNull() const { return (hash == 0 && n == (unsigned int) -1); } friend bool operator<(const COutPoint& a, const COutPoint& b) { return (a.hash < b.hash || (a.hash == b.hash && a.n < b.n)); } friend bool operator==(const COutPoint& a, const COutPoint& b) { return (a.hash == b.hash && a.n == b.n); } friend bool operator!=(const COutPoint& a, const COutPoint& b) { return !(a == b); } std::string ToString() const; void print() const; }; /** An inpoint - a combination of a transaction and an index n into its vin */ class CInPoint { public: CTransaction* ptx; unsigned int n; CInPoint() { SetNull(); } CInPoint(CTransaction* ptxIn, unsigned int nIn) { ptx = ptxIn; n = nIn; } void SetNull() { ptx = NULL; n = (unsigned int) -1; } bool IsNull() const { return (ptx == NULL && n == (unsigned int) -1); } }; /** An input of a transaction. It contains the location of the previous * transaction's output that it claims and a signature that matches the * output's public key. */ class CTxIn { public: COutPoint prevout; CScript scriptSig; unsigned int nSequence; CTxIn() { nSequence = std::numeric_limits::max(); } explicit CTxIn(COutPoint prevoutIn, CScript scriptSigIn=CScript(), unsigned int nSequenceIn=std::numeric_limits::max()); CTxIn(uint256 hashPrevTx, unsigned int nOut, CScript scriptSigIn=CScript(), unsigned int nSequenceIn=std::numeric_limits::max()); IMPLEMENT_SERIALIZE ( READWRITE(prevout); READWRITE(scriptSig); READWRITE(nSequence); ) bool IsFinal() const { return (nSequence == std::numeric_limits::max()); } friend bool operator==(const CTxIn& a, const CTxIn& b) { return (a.prevout == b.prevout && a.scriptSig == b.scriptSig && a.nSequence == b.nSequence); } friend bool operator!=(const CTxIn& a, const CTxIn& b) { return !(a == b); } std::string ToString() const; void print() const; }; /** An output of a transaction. It contains the public key that the next input * must be able to sign with to claim it. */ class CTxOut { public: int64_t nValue; CScript scriptPubKey; CTxOut() { SetNull(); } CTxOut(int64_t nValueIn, CScript scriptPubKeyIn); IMPLEMENT_SERIALIZE ( READWRITE(nValue); READWRITE(scriptPubKey); ) void SetNull() { nValue = -1; scriptPubKey.clear(); } bool IsNull() const { return (nValue == -1); } uint256 GetHash() const; bool IsDust(int64_t nMinRelayTxFee) const { // "Dust" is defined in terms of CTransaction::nMinRelayTxFee, // which has units satoshis-per-kilobyte. // If you'd pay more than 1/3 in fees // to spend something, then we consider it dust. // A typical txout is 34 bytes big, and will // need a CTxIn of at least 148 bytes to spend, // so dust is a txout less than 546 satoshis // with default nMinRelayTxFee. return ((nValue*1000)/(3*((int)GetSerializeSize(SER_DISK,0)+148)) < nMinRelayTxFee); } friend bool operator==(const CTxOut& a, const CTxOut& b) { return (a.nValue == b.nValue && a.scriptPubKey == b.scriptPubKey); } friend bool operator!=(const CTxOut& a, const CTxOut& b) { return !(a == b); } std::string ToString() const; void print() const; }; /** The basic transaction that is broadcasted on the network and contained in * blocks. A transaction can contain multiple inputs and outputs. */ class CTransaction { public: static int64_t nMinTxFee; static int64_t nMinRelayTxFee; static const int CURRENT_VERSION=1; int nVersion; std::vector vin; std::vector vout; unsigned int nLockTime; CTransaction() { SetNull(); } IMPLEMENT_SERIALIZE ( READWRITE(this->nVersion); nVersion = this->nVersion; READWRITE(vin); READWRITE(vout); READWRITE(nLockTime); ) void SetNull() { nVersion = CTransaction::CURRENT_VERSION; vin.clear(); vout.clear(); nLockTime = 0; } bool IsNull() const { return (vin.empty() && vout.empty()); } uint256 GetHash() const; bool IsNewerThan(const CTransaction& old) const; bool IsCoinBase() const { return (vin.size() == 1 && vin[0].prevout.IsNull()); } friend bool operator==(const CTransaction& a, const CTransaction& b) { return (a.nVersion == b.nVersion && a.vin == b.vin && a.vout == b.vout && a.nLockTime == b.nLockTime); } friend bool operator!=(const CTransaction& a, const CTransaction& b) { return !(a == b); } std::string ToString() const; void print() const; }; /** wrapper for CTxOut that provides a more compact serialization */ class CTxOutCompressor { private: CTxOut &txout; public: static uint64_t CompressAmount(uint64_t nAmount); static uint64_t DecompressAmount(uint64_t nAmount); CTxOutCompressor(CTxOut &txoutIn) : txout(txoutIn) { } IMPLEMENT_SERIALIZE(({ if (!fRead) { uint64_t nVal = CompressAmount(txout.nValue); READWRITE(VARINT(nVal)); } else { uint64_t nVal = 0; READWRITE(VARINT(nVal)); txout.nValue = DecompressAmount(nVal); } CScriptCompressor cscript(REF(txout.scriptPubKey)); READWRITE(cscript); });) }; /** Undo information for a CTxIn * * Contains the prevout's CTxOut being spent, and if this was the * last output of the affected transaction, its metadata as well * (coinbase or not, height, transaction version) */ class CTxInUndo { public: CTxOut txout; // the txout data before being spent bool fCoinBase; // if the outpoint was the last unspent: whether it belonged to a coinbase unsigned int nHeight; // if the outpoint was the last unspent: its height int nVersion; // if the outpoint was the last unspent: its version CTxInUndo() : txout(), fCoinBase(false), nHeight(0), nVersion(0) {} CTxInUndo(const CTxOut &txoutIn, bool fCoinBaseIn = false, unsigned int nHeightIn = 0, int nVersionIn = 0) : txout(txoutIn), fCoinBase(fCoinBaseIn), nHeight(nHeightIn), nVersion(nVersionIn) { } unsigned int GetSerializeSize(int nType, int nVersion) const { return ::GetSerializeSize(VARINT(nHeight*2+(fCoinBase ? 1 : 0)), nType, nVersion) + (nHeight > 0 ? ::GetSerializeSize(VARINT(this->nVersion), nType, nVersion) : 0) + ::GetSerializeSize(CTxOutCompressor(REF(txout)), nType, nVersion); } template void Serialize(Stream &s, int nType, int nVersion) const { ::Serialize(s, VARINT(nHeight*2+(fCoinBase ? 1 : 0)), nType, nVersion); if (nHeight > 0) ::Serialize(s, VARINT(this->nVersion), nType, nVersion); ::Serialize(s, CTxOutCompressor(REF(txout)), nType, nVersion); } template void Unserialize(Stream &s, int nType, int nVersion) { unsigned int nCode = 0; ::Unserialize(s, VARINT(nCode), nType, nVersion); nHeight = nCode / 2; fCoinBase = nCode & 1; if (nHeight > 0) ::Unserialize(s, VARINT(this->nVersion), nType, nVersion); ::Unserialize(s, REF(CTxOutCompressor(REF(txout))), nType, nVersion); } }; /** Undo information for a CTransaction */ class CTxUndo { public: // undo information for all txins std::vector vprevout; IMPLEMENT_SERIALIZE( READWRITE(vprevout); ) }; /** Nodes collect new transactions into a block, hash them into a hash tree, * and scan through nonce values to make the block's hash satisfy proof-of-work * requirements. When they solve the proof-of-work, they broadcast the block * to everyone and the block is added to the block chain. The first transaction * in the block is a special one that creates a new coin owned by the creator * of the block. */ class CBlockHeader { public: // header static const int CURRENT_VERSION=2; int nVersion; uint256 hashPrevBlock; uint256 hashMerkleRoot; unsigned int nTime; unsigned int nBits; unsigned int nNonce; CBlockHeader() { SetNull(); } IMPLEMENT_SERIALIZE ( READWRITE(this->nVersion); nVersion = this->nVersion; READWRITE(hashPrevBlock); READWRITE(hashMerkleRoot); READWRITE(nTime); READWRITE(nBits); READWRITE(nNonce); ) void SetNull() { nVersion = CBlockHeader::CURRENT_VERSION; hashPrevBlock = 0; hashMerkleRoot = 0; nTime = 0; nBits = 0; nNonce = 0; } bool IsNull() const { return (nBits == 0); } uint256 GetHash() const; int64_t GetBlockTime() const { return (int64_t)nTime; } }; class CBlock : public CBlockHeader { public: // network and disk std::vector vtx; // memory only mutable std::vector vMerkleTree; CBlock() { SetNull(); } CBlock(const CBlockHeader &header) { SetNull(); *((CBlockHeader*)this) = header; } IMPLEMENT_SERIALIZE ( READWRITE(*(CBlockHeader*)this); READWRITE(vtx); ) void SetNull() { CBlockHeader::SetNull(); vtx.clear(); vMerkleTree.clear(); } CBlockHeader GetBlockHeader() const { CBlockHeader block; block.nVersion = nVersion; block.hashPrevBlock = hashPrevBlock; block.hashMerkleRoot = hashMerkleRoot; block.nTime = nTime; block.nBits = nBits; block.nNonce = nNonce; return block; } uint256 BuildMerkleTree() const; const uint256 &GetTxHash(unsigned int nIndex) const { assert(vMerkleTree.size() > 0); // BuildMerkleTree must have been called first assert(nIndex < vtx.size()); return vMerkleTree[nIndex]; } std::vector GetMerkleBranch(int nIndex) const; static uint256 CheckMerkleBranch(uint256 hash, const std::vector& vMerkleBranch, int nIndex); void print() const; }; /** Describes a place in the block chain to another node such that if the * other node doesn't have the same branch, it can find a recent common trunk. * The further back it is, the further before the fork it may be. */ struct CBlockLocator { std::vector vHave; CBlockLocator() {} CBlockLocator(const std::vector& vHaveIn) { vHave = vHaveIn; } IMPLEMENT_SERIALIZE ( if (!(nType & SER_GETHASH)) READWRITE(nVersion); READWRITE(vHave); ) void SetNull() { vHave.clear(); } bool IsNull() { return vHave.empty(); } }; #endif