// Copyright (c) 2013-2018 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include inline uint32_t ROTL32(uint32_t x, int8_t r) { return (x << r) | (x >> (32 - r)); } uint256 PoWHash(const std::vector& input) { CHash256 h256; CSHA512 h512; CRIPEMD160 h160; std::vector out; out.resize(h512.OUTPUT_SIZE); std::vector out_small; out_small.resize(h160.OUTPUT_SIZE); h256.Write(input.data(), input.size()); h256.Finalize(&out[0]); h256.Reset(); h512.Write(out.data(), h256.OUTPUT_SIZE); h512.Finalize(&out[0]); h160.Write(out.data(), h512.OUTPUT_SIZE / 2); h160.Finalize(&out_small[0]); h160.Reset(); h256.Write(out_small.data(), h160.OUTPUT_SIZE); h160.Write(out.data() + h512.OUTPUT_SIZE / 2, h512.OUTPUT_SIZE / 2); h160.Finalize(&out_small[0]); out.resize(h256.OUTPUT_SIZE); h256.Write(out_small.data(), h160.OUTPUT_SIZE); h256.Finalize(&out[0]); uint256 result(out); return result; } unsigned int MurmurHash3(unsigned int nHashSeed, const std::vector& vDataToHash) { // The following is MurmurHash3 (x86_32), see http://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp uint32_t h1 = nHashSeed; const uint32_t c1 = 0xcc9e2d51; const uint32_t c2 = 0x1b873593; const int nblocks = vDataToHash.size() / 4; //---------- // body const uint8_t* blocks = vDataToHash.data(); for (int i = 0; i < nblocks; ++i) { uint32_t k1 = ReadLE32(blocks + i*4); k1 *= c1; k1 = ROTL32(k1, 15); k1 *= c2; h1 ^= k1; h1 = ROTL32(h1, 13); h1 = h1 * 5 + 0xe6546b64; } //---------- // tail const uint8_t* tail = vDataToHash.data() + nblocks * 4; uint32_t k1 = 0; switch (vDataToHash.size() & 3) { case 3: k1 ^= tail[2] << 16; case 2: k1 ^= tail[1] << 8; case 1: k1 ^= tail[0]; k1 *= c1; k1 = ROTL32(k1, 15); k1 *= c2; h1 ^= k1; } //---------- // finalization h1 ^= vDataToHash.size(); h1 ^= h1 >> 16; h1 *= 0x85ebca6b; h1 ^= h1 >> 13; h1 *= 0xc2b2ae35; h1 ^= h1 >> 16; return h1; } void BIP32Hash(const ChainCode &chainCode, unsigned int nChild, unsigned char header, const unsigned char data[32], unsigned char output[64]) { unsigned char num[4]; num[0] = (nChild >> 24) & 0xFF; num[1] = (nChild >> 16) & 0xFF; num[2] = (nChild >> 8) & 0xFF; num[3] = (nChild >> 0) & 0xFF; CHMAC_SHA512(chainCode.begin(), chainCode.size()).Write(&header, 1).Write(data, 32).Write(num, 4).Finalize(output); } #define ROTL(x, b) (uint64_t)(((x) << (b)) | ((x) >> (64 - (b)))) #define SIPROUND do { \ v0 += v1; v1 = ROTL(v1, 13); v1 ^= v0; \ v0 = ROTL(v0, 32); \ v2 += v3; v3 = ROTL(v3, 16); v3 ^= v2; \ v0 += v3; v3 = ROTL(v3, 21); v3 ^= v0; \ v2 += v1; v1 = ROTL(v1, 17); v1 ^= v2; \ v2 = ROTL(v2, 32); \ } while (0) CSipHasher::CSipHasher(uint64_t k0, uint64_t k1) { v[0] = 0x736f6d6570736575ULL ^ k0; v[1] = 0x646f72616e646f6dULL ^ k1; v[2] = 0x6c7967656e657261ULL ^ k0; v[3] = 0x7465646279746573ULL ^ k1; count = 0; tmp = 0; } CSipHasher& CSipHasher::Write(uint64_t data) { uint64_t v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3]; assert(count % 8 == 0); v3 ^= data; SIPROUND; SIPROUND; v0 ^= data; v[0] = v0; v[1] = v1; v[2] = v2; v[3] = v3; count += 8; return *this; } CSipHasher& CSipHasher::Write(const unsigned char* data, size_t size) { uint64_t v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3]; uint64_t t = tmp; int c = count; while (size--) { t |= ((uint64_t)(*(data++))) << (8 * (c % 8)); c++; if ((c & 7) == 0) { v3 ^= t; SIPROUND; SIPROUND; v0 ^= t; t = 0; } } v[0] = v0; v[1] = v1; v[2] = v2; v[3] = v3; count = c; tmp = t; return *this; } uint64_t CSipHasher::Finalize() const { uint64_t v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3]; uint64_t t = tmp | (((uint64_t)count) << 56); v3 ^= t; SIPROUND; SIPROUND; v0 ^= t; v2 ^= 0xFF; SIPROUND; SIPROUND; SIPROUND; SIPROUND; return v0 ^ v1 ^ v2 ^ v3; } uint64_t SipHashUint256(uint64_t k0, uint64_t k1, const uint256& val) { /* Specialized implementation for efficiency */ uint64_t d = val.GetUint64(0); uint64_t v0 = 0x736f6d6570736575ULL ^ k0; uint64_t v1 = 0x646f72616e646f6dULL ^ k1; uint64_t v2 = 0x6c7967656e657261ULL ^ k0; uint64_t v3 = 0x7465646279746573ULL ^ k1 ^ d; SIPROUND; SIPROUND; v0 ^= d; d = val.GetUint64(1); v3 ^= d; SIPROUND; SIPROUND; v0 ^= d; d = val.GetUint64(2); v3 ^= d; SIPROUND; SIPROUND; v0 ^= d; d = val.GetUint64(3); v3 ^= d; SIPROUND; SIPROUND; v0 ^= d; v3 ^= ((uint64_t)4) << 59; SIPROUND; SIPROUND; v0 ^= ((uint64_t)4) << 59; v2 ^= 0xFF; SIPROUND; SIPROUND; SIPROUND; SIPROUND; return v0 ^ v1 ^ v2 ^ v3; } uint64_t SipHashUint256Extra(uint64_t k0, uint64_t k1, const uint256& val, uint32_t extra) { /* Specialized implementation for efficiency */ uint64_t d = val.GetUint64(0); uint64_t v0 = 0x736f6d6570736575ULL ^ k0; uint64_t v1 = 0x646f72616e646f6dULL ^ k1; uint64_t v2 = 0x6c7967656e657261ULL ^ k0; uint64_t v3 = 0x7465646279746573ULL ^ k1 ^ d; SIPROUND; SIPROUND; v0 ^= d; d = val.GetUint64(1); v3 ^= d; SIPROUND; SIPROUND; v0 ^= d; d = val.GetUint64(2); v3 ^= d; SIPROUND; SIPROUND; v0 ^= d; d = val.GetUint64(3); v3 ^= d; SIPROUND; SIPROUND; v0 ^= d; d = (((uint64_t)36) << 56) | extra; v3 ^= d; SIPROUND; SIPROUND; v0 ^= d; v2 ^= 0xFF; SIPROUND; SIPROUND; SIPROUND; SIPROUND; return v0 ^ v1 ^ v2 ^ v3; }