// Copyright (c) 2009-2010 Satoshi Nakamoto // Distributed under the MIT/X11 software license, see the accompanying // file license.txt or http://www.opensource.org/licenses/mit-license.php. #include "headers.h" #include "cryptopp/sha.h" // // Global state // CCriticalSection cs_main; map mapTransactions; CCriticalSection cs_mapTransactions; unsigned int nTransactionsUpdated = 0; map mapNextTx; map mapBlockIndex; uint256 hashGenesisBlock("0x000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f"); CBigNum bnProofOfWorkLimit(~uint256(0) >> 32); CBlockIndex* pindexGenesisBlock = NULL; int nBestHeight = -1; CBigNum bnBestChainWork = 0; CBigNum bnBestInvalidWork = 0; uint256 hashBestChain = 0; CBlockIndex* pindexBest = NULL; int64 nTimeBestReceived = 0; map mapOrphanBlocks; multimap mapOrphanBlocksByPrev; map mapOrphanTransactions; multimap mapOrphanTransactionsByPrev; map mapWallet; vector vWalletUpdated; CCriticalSection cs_mapWallet; map, CPrivKey> mapKeys; map > mapPubKeys; CCriticalSection cs_mapKeys; CKey keyUser; map mapRequestCount; CCriticalSection cs_mapRequestCount; map mapAddressBook; CCriticalSection cs_mapAddressBook; vector vchDefaultKey; double dHashesPerSec; int64 nHPSTimerStart; // Settings int fGenerateBitcoins = false; int64 nTransactionFee = 0; CAddress addrIncoming; int fLimitProcessors = false; int nLimitProcessors = 1; int fMinimizeToTray = true; int fMinimizeOnClose = true; ////////////////////////////////////////////////////////////////////////////// // // mapKeys // bool AddKey(const CKey& key) { CRITICAL_BLOCK(cs_mapKeys) { mapKeys[key.GetPubKey()] = key.GetPrivKey(); mapPubKeys[Hash160(key.GetPubKey())] = key.GetPubKey(); } return CWalletDB().WriteKey(key.GetPubKey(), key.GetPrivKey()); } vector GenerateNewKey() { RandAddSeedPerfmon(); CKey key; key.MakeNewKey(); if (!AddKey(key)) throw runtime_error("GenerateNewKey() : AddKey failed"); return key.GetPubKey(); } ////////////////////////////////////////////////////////////////////////////// // // mapWallet // bool AddToWallet(const CWalletTx& wtxIn) { uint256 hash = wtxIn.GetHash(); CRITICAL_BLOCK(cs_mapWallet) { // Inserts only if not already there, returns tx inserted or tx found pair::iterator, bool> ret = mapWallet.insert(make_pair(hash, wtxIn)); CWalletTx& wtx = (*ret.first).second; bool fInsertedNew = ret.second; if (fInsertedNew) wtx.nTimeReceived = GetAdjustedTime(); bool fUpdated = false; if (!fInsertedNew) { // Merge if (wtxIn.hashBlock != 0 && wtxIn.hashBlock != wtx.hashBlock) { wtx.hashBlock = wtxIn.hashBlock; fUpdated = true; } if (wtxIn.nIndex != -1 && (wtxIn.vMerkleBranch != wtx.vMerkleBranch || wtxIn.nIndex != wtx.nIndex)) { wtx.vMerkleBranch = wtxIn.vMerkleBranch; wtx.nIndex = wtxIn.nIndex; fUpdated = true; } if (wtxIn.fFromMe && wtxIn.fFromMe != wtx.fFromMe) { wtx.fFromMe = wtxIn.fFromMe; fUpdated = true; } if (wtxIn.fSpent && wtxIn.fSpent != wtx.fSpent) { wtx.fSpent = wtxIn.fSpent; fUpdated = true; } } //// debug print printf("AddToWallet %s %s%s\n", wtxIn.GetHash().ToString().substr(0,10).c_str(), (fInsertedNew ? "new" : ""), (fUpdated ? "update" : "")); // Write to disk if (fInsertedNew || fUpdated) if (!wtx.WriteToDisk()) return false; // If default receiving address gets used, replace it with a new one CScript scriptDefaultKey; scriptDefaultKey.SetBitcoinAddress(vchDefaultKey); foreach(const CTxOut& txout, wtx.vout) { if (txout.scriptPubKey == scriptDefaultKey) { CWalletDB walletdb; vchDefaultKey = GetKeyFromKeyPool(); walletdb.WriteDefaultKey(vchDefaultKey); walletdb.WriteName(PubKeyToAddress(vchDefaultKey), ""); } } // Notify UI vWalletUpdated.push_back(hash); } // Refresh UI MainFrameRepaint(); return true; } bool AddToWalletIfMine(const CTransaction& tx, const CBlock* pblock) { if (tx.IsMine() || mapWallet.count(tx.GetHash())) { CWalletTx wtx(tx); // Get merkle branch if transaction was found in a block if (pblock) wtx.SetMerkleBranch(pblock); return AddToWallet(wtx); } return true; } bool EraseFromWallet(uint256 hash) { CRITICAL_BLOCK(cs_mapWallet) { if (mapWallet.erase(hash)) CWalletDB().EraseTx(hash); } return true; } void WalletUpdateSpent(const COutPoint& prevout) { // Anytime a signature is successfully verified, it's proof the outpoint is spent. // Update the wallet spent flag if it doesn't know due to wallet.dat being // restored from backup or the user making copies of wallet.dat. CRITICAL_BLOCK(cs_mapWallet) { map::iterator mi = mapWallet.find(prevout.hash); if (mi != mapWallet.end()) { CWalletTx& wtx = (*mi).second; if (!wtx.fSpent && wtx.vout[prevout.n].IsMine()) { printf("WalletUpdateSpent found spent coin %sbc %s\n", FormatMoney(wtx.GetCredit()).c_str(), wtx.GetHash().ToString().c_str()); wtx.fSpent = true; wtx.WriteToDisk(); vWalletUpdated.push_back(prevout.hash); } } } } ////////////////////////////////////////////////////////////////////////////// // // mapOrphanTransactions // void AddOrphanTx(const CDataStream& vMsg) { CTransaction tx; CDataStream(vMsg) >> tx; uint256 hash = tx.GetHash(); if (mapOrphanTransactions.count(hash)) return; CDataStream* pvMsg = mapOrphanTransactions[hash] = new CDataStream(vMsg); foreach(const CTxIn& txin, tx.vin) mapOrphanTransactionsByPrev.insert(make_pair(txin.prevout.hash, pvMsg)); } void EraseOrphanTx(uint256 hash) { if (!mapOrphanTransactions.count(hash)) return; const CDataStream* pvMsg = mapOrphanTransactions[hash]; CTransaction tx; CDataStream(*pvMsg) >> tx; foreach(const CTxIn& txin, tx.vin) { for (multimap::iterator mi = mapOrphanTransactionsByPrev.lower_bound(txin.prevout.hash); mi != mapOrphanTransactionsByPrev.upper_bound(txin.prevout.hash);) { if ((*mi).second == pvMsg) mapOrphanTransactionsByPrev.erase(mi++); else mi++; } } delete pvMsg; mapOrphanTransactions.erase(hash); } ////////////////////////////////////////////////////////////////////////////// // // CTransaction // bool CTransaction::ReadFromDisk(CTxDB& txdb, COutPoint prevout, CTxIndex& txindexRet) { SetNull(); if (!txdb.ReadTxIndex(prevout.hash, txindexRet)) return false; if (!ReadFromDisk(txindexRet.pos)) return false; if (prevout.n >= vout.size()) { SetNull(); return false; } return true; } bool CTransaction::ReadFromDisk(CTxDB& txdb, COutPoint prevout) { CTxIndex txindex; return ReadFromDisk(txdb, prevout, txindex); } bool CTransaction::ReadFromDisk(COutPoint prevout) { CTxDB txdb("r"); CTxIndex txindex; return ReadFromDisk(txdb, prevout, txindex); } bool CTxIn::IsMine() const { CRITICAL_BLOCK(cs_mapWallet) { map::iterator mi = mapWallet.find(prevout.hash); if (mi != mapWallet.end()) { const CWalletTx& prev = (*mi).second; if (prevout.n < prev.vout.size()) if (prev.vout[prevout.n].IsMine()) return true; } } return false; } int64 CTxIn::GetDebit() const { CRITICAL_BLOCK(cs_mapWallet) { map::iterator mi = mapWallet.find(prevout.hash); if (mi != mapWallet.end()) { const CWalletTx& prev = (*mi).second; if (prevout.n < prev.vout.size()) if (prev.vout[prevout.n].IsMine()) return prev.vout[prevout.n].nValue; } } return 0; } int64 CWalletTx::GetTxTime() const { if (!fTimeReceivedIsTxTime && hashBlock != 0) { // If we did not receive the transaction directly, we rely on the block's // time to figure out when it happened. We use the median over a range // of blocks to try to filter out inaccurate block times. map::iterator mi = mapBlockIndex.find(hashBlock); if (mi != mapBlockIndex.end()) { CBlockIndex* pindex = (*mi).second; if (pindex) return pindex->GetMedianTime(); } } return nTimeReceived; } int CWalletTx::GetRequestCount() const { // Returns -1 if it wasn't being tracked int nRequests = -1; CRITICAL_BLOCK(cs_mapRequestCount) { if (IsCoinBase()) { // Generated block if (hashBlock != 0) { map::iterator mi = mapRequestCount.find(hashBlock); if (mi != mapRequestCount.end()) nRequests = (*mi).second; } } else { // Did anyone request this transaction? map::iterator mi = mapRequestCount.find(GetHash()); if (mi != mapRequestCount.end()) { nRequests = (*mi).second; // How about the block it's in? if (nRequests == 0 && hashBlock != 0) { map::iterator mi = mapRequestCount.find(hashBlock); if (mi != mapRequestCount.end()) nRequests = (*mi).second; else nRequests = 1; // If it's in someone else's block it must have got out } } } } return nRequests; } void CWalletTx::GetAmounts(int64& nGenerated, list >& listReceived, list >& listSent, int64& nFee, string& strSentAccount) const { nGenerated = nFee = 0; listReceived.clear(); listSent.clear(); strSentAccount = strFromAccount; if (IsCoinBase()) { if (GetBlocksToMaturity() == 0) nGenerated = GetCredit(); return; } // Compute fee: int64 nDebit = GetDebit(); if (nDebit > 0) // debit>0 means we signed/sent this transaction { int64 nValueOut = GetValueOut(); nFee = nDebit - nValueOut; } // Sent/received. Standard client will never generate a send-to-multiple-recipients, // but non-standard clients might (so return a list of address/amount pairs) foreach(const CTxOut& txout, vout) { string address; uint160 hash160; vector vchPubKey; if (ExtractHash160(txout.scriptPubKey, hash160)) address = Hash160ToAddress(hash160); else if (ExtractPubKey(txout.scriptPubKey, false, vchPubKey)) address = PubKeyToAddress(vchPubKey); else address = " unknown "; // some type of weird non-standard transaction? if (nDebit > 0 && txout.IsChange()) continue; if (nDebit > 0) listSent.push_back(make_pair(address, txout.nValue)); if (txout.IsMine()) listReceived.push_back(make_pair(address, txout.nValue)); } } void CWalletTx::GetAccountAmounts(const string& strAccount, int64& nGenerated, int64& nReceived, int64& nSent, int64& nFee) const { nGenerated = nReceived = nSent = nFee = 0; int64 allGenerated, allFee; allGenerated = allFee = 0; string strSentAccount; list > listReceived; list > listSent; GetAmounts(allGenerated, listReceived, listSent, allFee, strSentAccount); if (strAccount == "") nGenerated = allGenerated; if (strAccount == strSentAccount) { foreach(const PAIRTYPE(string,int64)& s, listSent) nSent += s.second; nFee = allFee; } CRITICAL_BLOCK(cs_mapAddressBook) { foreach(const PAIRTYPE(string,int64)& r, listReceived) if (mapAddressBook.count(r.first) && mapAddressBook[r.first] == strAccount) nReceived += r.second; } } int CMerkleTx::SetMerkleBranch(const CBlock* pblock) { if (fClient) { if (hashBlock == 0) return 0; } else { CBlock blockTmp; if (pblock == NULL) { // Load the block this tx is in CTxIndex txindex; if (!CTxDB("r").ReadTxIndex(GetHash(), txindex)) return 0; if (!blockTmp.ReadFromDisk(txindex.pos.nFile, txindex.pos.nBlockPos)) return 0; pblock = &blockTmp; } // Update the tx's hashBlock hashBlock = pblock->GetHash(); // Locate the transaction for (nIndex = 0; nIndex < pblock->vtx.size(); nIndex++) if (pblock->vtx[nIndex] == *(CTransaction*)this) break; if (nIndex == pblock->vtx.size()) { vMerkleBranch.clear(); nIndex = -1; printf("ERROR: SetMerkleBranch() : couldn't find tx in block\n"); return 0; } // Fill in merkle branch vMerkleBranch = pblock->GetMerkleBranch(nIndex); } // Is the tx in a block that's in the main chain map::iterator mi = mapBlockIndex.find(hashBlock); if (mi == mapBlockIndex.end()) return 0; CBlockIndex* pindex = (*mi).second; if (!pindex || !pindex->IsInMainChain()) return 0; return pindexBest->nHeight - pindex->nHeight + 1; } void CWalletTx::AddSupportingTransactions(CTxDB& txdb) { vtxPrev.clear(); const int COPY_DEPTH = 3; if (SetMerkleBranch() < COPY_DEPTH) { vector vWorkQueue; foreach(const CTxIn& txin, vin) vWorkQueue.push_back(txin.prevout.hash); // This critsect is OK because txdb is already open CRITICAL_BLOCK(cs_mapWallet) { map mapWalletPrev; set setAlreadyDone; for (int i = 0; i < vWorkQueue.size(); i++) { uint256 hash = vWorkQueue[i]; if (setAlreadyDone.count(hash)) continue; setAlreadyDone.insert(hash); CMerkleTx tx; if (mapWallet.count(hash)) { tx = mapWallet[hash]; foreach(const CMerkleTx& txWalletPrev, mapWallet[hash].vtxPrev) mapWalletPrev[txWalletPrev.GetHash()] = &txWalletPrev; } else if (mapWalletPrev.count(hash)) { tx = *mapWalletPrev[hash]; } else if (!fClient && txdb.ReadDiskTx(hash, tx)) { ; } else { printf("ERROR: AddSupportingTransactions() : unsupported transaction\n"); continue; } int nDepth = tx.SetMerkleBranch(); vtxPrev.push_back(tx); if (nDepth < COPY_DEPTH) foreach(const CTxIn& txin, tx.vin) vWorkQueue.push_back(txin.prevout.hash); } } } reverse(vtxPrev.begin(), vtxPrev.end()); } bool CTransaction::CheckTransaction() const { // Basic checks that don't depend on any context if (vin.empty() || vout.empty()) return error("CTransaction::CheckTransaction() : vin or vout empty"); // Size limits if (::GetSerializeSize(*this, SER_NETWORK) > MAX_BLOCK_SIZE) return error("CTransaction::CheckTransaction() : size limits failed"); // Check for negative or overflow output values int64 nValueOut = 0; foreach(const CTxOut& txout, vout) { if (txout.nValue < 0) return error("CTransaction::CheckTransaction() : txout.nValue negative"); if (txout.nValue > MAX_MONEY) return error("CTransaction::CheckTransaction() : txout.nValue too high"); nValueOut += txout.nValue; if (!MoneyRange(nValueOut)) return error("CTransaction::CheckTransaction() : txout total out of range"); } if (IsCoinBase()) { if (vin[0].scriptSig.size() < 2 || vin[0].scriptSig.size() > 100) return error("CTransaction::CheckTransaction() : coinbase script size"); } else { foreach(const CTxIn& txin, vin) if (txin.prevout.IsNull()) return error("CTransaction::CheckTransaction() : prevout is null"); } return true; } bool CTransaction::AcceptToMemoryPool(CTxDB& txdb, bool fCheckInputs, bool* pfMissingInputs) { if (pfMissingInputs) *pfMissingInputs = false; if (!CheckTransaction()) return error("AcceptToMemoryPool() : CheckTransaction failed"); // Coinbase is only valid in a block, not as a loose transaction if (IsCoinBase()) return error("AcceptToMemoryPool() : coinbase as individual tx"); // To help v0.1.5 clients who would see it as a negative number if ((int64)nLockTime > INT_MAX) return error("AcceptToMemoryPool() : not accepting nLockTime beyond 2038 yet"); // Safety limits unsigned int nSize = ::GetSerializeSize(*this, SER_NETWORK); if (GetSigOpCount() > 2 || nSize < 100) return error("AcceptToMemoryPool() : nonstandard transaction"); // Rather not work on nonstandard transactions if (!IsStandard()) return error("AcceptToMemoryPool() : nonstandard transaction type"); // Do we already have it? uint256 hash = GetHash(); CRITICAL_BLOCK(cs_mapTransactions) if (mapTransactions.count(hash)) return false; if (fCheckInputs) if (txdb.ContainsTx(hash)) return false; // Check for conflicts with in-memory transactions CTransaction* ptxOld = NULL; for (int i = 0; i < vin.size(); i++) { COutPoint outpoint = vin[i].prevout; if (mapNextTx.count(outpoint)) { // Disable replacement feature for now return false; // Allow replacing with a newer version of the same transaction if (i != 0) return false; ptxOld = mapNextTx[outpoint].ptx; if (ptxOld->IsFinal()) return false; if (!IsNewerThan(*ptxOld)) return false; for (int i = 0; i < vin.size(); i++) { COutPoint outpoint = vin[i].prevout; if (!mapNextTx.count(outpoint) || mapNextTx[outpoint].ptx != ptxOld) return false; } break; } } if (fCheckInputs) { // Check against previous transactions map mapUnused; int64 nFees = 0; if (!ConnectInputs(txdb, mapUnused, CDiskTxPos(1,1,1), pindexBest, nFees, false, false)) { if (pfMissingInputs) *pfMissingInputs = true; return error("AcceptToMemoryPool() : ConnectInputs failed %s", hash.ToString().substr(0,10).c_str()); } // Don't accept it if it can't get into a block if (nFees < GetMinFee(1000)) return error("AcceptToMemoryPool() : not enough fees"); // Limit free transactions per 10 minutes if (nFees < CENT && GetBoolArg("-limitfreerelay")) { static int64 nNextReset; static int64 nFreeCount; if (GetTime() > nNextReset) { nNextReset = GetTime() + 10 * 60; nFreeCount = 0; } if (nFreeCount > 150000 && !IsFromMe()) return error("AcceptToMemoryPool() : free transaction rejected by rate limiter"); nFreeCount += nSize; } } // Store transaction in memory CRITICAL_BLOCK(cs_mapTransactions) { if (ptxOld) { printf("AcceptToMemoryPool() : replacing tx %s with new version\n", ptxOld->GetHash().ToString().c_str()); ptxOld->RemoveFromMemoryPool(); } AddToMemoryPoolUnchecked(); } ///// are we sure this is ok when loading transactions or restoring block txes // If updated, erase old tx from wallet if (ptxOld) EraseFromWallet(ptxOld->GetHash()); printf("AcceptToMemoryPool(): accepted %s\n", hash.ToString().substr(0,10).c_str()); return true; } bool CTransaction::AddToMemoryPoolUnchecked() { // Add to memory pool without checking anything. Don't call this directly, // call AcceptToMemoryPool to properly check the transaction first. CRITICAL_BLOCK(cs_mapTransactions) { uint256 hash = GetHash(); mapTransactions[hash] = *this; for (int i = 0; i < vin.size(); i++) mapNextTx[vin[i].prevout] = CInPoint(&mapTransactions[hash], i); nTransactionsUpdated++; } return true; } bool CTransaction::RemoveFromMemoryPool() { // Remove transaction from memory pool CRITICAL_BLOCK(cs_mapTransactions) { foreach(const CTxIn& txin, vin) mapNextTx.erase(txin.prevout); mapTransactions.erase(GetHash()); nTransactionsUpdated++; } return true; } int CMerkleTx::GetDepthInMainChain(int& nHeightRet) const { if (hashBlock == 0 || nIndex == -1) return 0; // Find the block it claims to be in map::iterator mi = mapBlockIndex.find(hashBlock); if (mi == mapBlockIndex.end()) return 0; CBlockIndex* pindex = (*mi).second; if (!pindex || !pindex->IsInMainChain()) return 0; // Make sure the merkle branch connects to this block if (!fMerkleVerified) { if (CBlock::CheckMerkleBranch(GetHash(), vMerkleBranch, nIndex) != pindex->hashMerkleRoot) return 0; fMerkleVerified = true; } nHeightRet = pindex->nHeight; return pindexBest->nHeight - pindex->nHeight + 1; } int CMerkleTx::GetBlocksToMaturity() const { if (!IsCoinBase()) return 0; return max(0, (COINBASE_MATURITY+20) - GetDepthInMainChain()); } bool CMerkleTx::AcceptToMemoryPool(CTxDB& txdb, bool fCheckInputs) { if (fClient) { if (!IsInMainChain() && !ClientConnectInputs()) return false; return CTransaction::AcceptToMemoryPool(txdb, false); } else { return CTransaction::AcceptToMemoryPool(txdb, fCheckInputs); } } bool CWalletTx::AcceptWalletTransaction(CTxDB& txdb, bool fCheckInputs) { CRITICAL_BLOCK(cs_mapTransactions) { // Add previous supporting transactions first foreach(CMerkleTx& tx, vtxPrev) { if (!tx.IsCoinBase()) { uint256 hash = tx.GetHash(); if (!mapTransactions.count(hash) && !txdb.ContainsTx(hash)) tx.AcceptToMemoryPool(txdb, fCheckInputs); } } return AcceptToMemoryPool(txdb, fCheckInputs); } return false; } void ReacceptWalletTransactions() { CTxDB txdb("r"); CRITICAL_BLOCK(cs_mapWallet) { foreach(PAIRTYPE(const uint256, CWalletTx)& item, mapWallet) { CWalletTx& wtx = item.second; if (wtx.fSpent && wtx.IsCoinBase()) continue; CTxIndex txindex; if (txdb.ReadTxIndex(wtx.GetHash(), txindex)) { // Update fSpent if a tx got spent somewhere else by a copy of wallet.dat if (!wtx.fSpent) { if (txindex.vSpent.size() != wtx.vout.size()) { printf("ERROR: ReacceptWalletTransactions() : txindex.vSpent.size() %d != wtx.vout.size() %d\n", txindex.vSpent.size(), wtx.vout.size()); continue; } for (int i = 0; i < txindex.vSpent.size(); i++) { if (!txindex.vSpent[i].IsNull() && wtx.vout[i].IsMine()) { printf("ReacceptWalletTransactions found spent coin %sbc %s\n", FormatMoney(wtx.GetCredit()).c_str(), wtx.GetHash().ToString().c_str()); wtx.fSpent = true; wtx.WriteToDisk(); break; } } } } else { // Reaccept any txes of ours that aren't already in a block if (!wtx.IsCoinBase()) wtx.AcceptWalletTransaction(txdb, false); } } } } void CWalletTx::RelayWalletTransaction(CTxDB& txdb) { foreach(const CMerkleTx& tx, vtxPrev) { if (!tx.IsCoinBase()) { uint256 hash = tx.GetHash(); if (!txdb.ContainsTx(hash)) RelayMessage(CInv(MSG_TX, hash), (CTransaction)tx); } } if (!IsCoinBase()) { uint256 hash = GetHash(); if (!txdb.ContainsTx(hash)) { printf("Relaying wtx %s\n", hash.ToString().substr(0,10).c_str()); RelayMessage(CInv(MSG_TX, hash), (CTransaction)*this); } } } void ResendWalletTransactions() { // Do this infrequently and randomly to avoid giving away // that these are our transactions. static int64 nNextTime; if (GetTime() < nNextTime) return; bool fFirst = (nNextTime == 0); nNextTime = GetTime() + GetRand(30 * 60); if (fFirst) return; // Only do it if there's been a new block since last time static int64 nLastTime; if (nTimeBestReceived < nLastTime) return; nLastTime = GetTime(); // Rebroadcast any of our txes that aren't in a block yet printf("ResendWalletTransactions()\n"); CTxDB txdb("r"); CRITICAL_BLOCK(cs_mapWallet) { // Sort them in chronological order multimap mapSorted; foreach(PAIRTYPE(const uint256, CWalletTx)& item, mapWallet) { CWalletTx& wtx = item.second; // Don't rebroadcast until it's had plenty of time that // it should have gotten in already by now. if (nTimeBestReceived - (int64)wtx.nTimeReceived > 5 * 60) mapSorted.insert(make_pair(wtx.nTimeReceived, &wtx)); } foreach(PAIRTYPE(const unsigned int, CWalletTx*)& item, mapSorted) { CWalletTx& wtx = *item.second; wtx.RelayWalletTransaction(txdb); } } } ////////////////////////////////////////////////////////////////////////////// // // CBlock and CBlockIndex // bool CBlock::ReadFromDisk(const CBlockIndex* pindex, bool fReadTransactions) { if (!fReadTransactions) { *this = pindex->GetBlockHeader(); return true; } if (!ReadFromDisk(pindex->nFile, pindex->nBlockPos, fReadTransactions)) return false; if (GetHash() != pindex->GetBlockHash()) return error("CBlock::ReadFromDisk() : GetHash() doesn't match index"); return true; } uint256 GetOrphanRoot(const CBlock* pblock) { // Work back to the first block in the orphan chain while (mapOrphanBlocks.count(pblock->hashPrevBlock)) pblock = mapOrphanBlocks[pblock->hashPrevBlock]; return pblock->GetHash(); } int64 GetBlockValue(int nHeight, int64 nFees) { int64 nSubsidy = 50 * COIN; // Subsidy is cut in half every 4 years nSubsidy >>= (nHeight / 210000); return nSubsidy + nFees; } unsigned int GetNextWorkRequired(const CBlockIndex* pindexLast) { const int64 nTargetTimespan = 14 * 24 * 60 * 60; // two weeks const int64 nTargetSpacing = 10 * 60; const int64 nInterval = nTargetTimespan / nTargetSpacing; // Genesis block if (pindexLast == NULL) return bnProofOfWorkLimit.GetCompact(); // Only change once per interval if ((pindexLast->nHeight+1) % nInterval != 0) return pindexLast->nBits; // Go back by what we want to be 14 days worth of blocks const CBlockIndex* pindexFirst = pindexLast; for (int i = 0; pindexFirst && i < nInterval-1; i++) pindexFirst = pindexFirst->pprev; assert(pindexFirst); // Limit adjustment step int64 nActualTimespan = pindexLast->GetBlockTime() - pindexFirst->GetBlockTime(); printf(" nActualTimespan = %"PRI64d" before bounds\n", nActualTimespan); if (nActualTimespan < nTargetTimespan/4) nActualTimespan = nTargetTimespan/4; if (nActualTimespan > nTargetTimespan*4) nActualTimespan = nTargetTimespan*4; // Retarget CBigNum bnNew; bnNew.SetCompact(pindexLast->nBits); bnNew *= nActualTimespan; bnNew /= nTargetTimespan; if (bnNew > bnProofOfWorkLimit) bnNew = bnProofOfWorkLimit; /// debug print printf("GetNextWorkRequired RETARGET\n"); printf("nTargetTimespan = %"PRI64d" nActualTimespan = %"PRI64d"\n", nTargetTimespan, nActualTimespan); printf("Before: %08x %s\n", pindexLast->nBits, CBigNum().SetCompact(pindexLast->nBits).getuint256().ToString().c_str()); printf("After: %08x %s\n", bnNew.GetCompact(), bnNew.getuint256().ToString().c_str()); return bnNew.GetCompact(); } bool CheckProofOfWork(uint256 hash, unsigned int nBits) { CBigNum bnTarget; bnTarget.SetCompact(nBits); // Check range if (bnTarget <= 0 || bnTarget > bnProofOfWorkLimit) return error("CheckProofOfWork() : nBits below minimum work"); // Check proof of work matches claimed amount if (hash > bnTarget.getuint256()) return error("CheckProofOfWork() : hash doesn't match nBits"); return true; } bool IsInitialBlockDownload() { if (pindexBest == NULL || (!fTestNet && nBestHeight < 74000)) return true; static int64 nLastUpdate; static CBlockIndex* pindexLastBest; if (pindexBest != pindexLastBest) { pindexLastBest = pindexBest; nLastUpdate = GetTime(); } return (GetTime() - nLastUpdate < 10 && pindexBest->GetBlockTime() < GetTime() - 24 * 60 * 60); } void InvalidChainFound(CBlockIndex* pindexNew) { if (pindexNew->bnChainWork > bnBestInvalidWork) { bnBestInvalidWork = pindexNew->bnChainWork; CTxDB().WriteBestInvalidWork(bnBestInvalidWork); MainFrameRepaint(); } printf("InvalidChainFound: invalid block=%s height=%d work=%s\n", pindexNew->GetBlockHash().ToString().substr(0,20).c_str(), pindexNew->nHeight, pindexNew->bnChainWork.ToString().c_str()); printf("InvalidChainFound: current best=%s height=%d work=%s\n", hashBestChain.ToString().substr(0,20).c_str(), nBestHeight, bnBestChainWork.ToString().c_str()); if (pindexBest && bnBestInvalidWork > bnBestChainWork + pindexBest->GetBlockWork() * 6) printf("InvalidChainFound: WARNING: Displayed transactions may not be correct! You may need to upgrade, or other nodes may need to upgrade.\n"); } bool CTransaction::DisconnectInputs(CTxDB& txdb) { // Relinquish previous transactions' spent pointers if (!IsCoinBase()) { foreach(const CTxIn& txin, vin) { COutPoint prevout = txin.prevout; // Get prev txindex from disk CTxIndex txindex; if (!txdb.ReadTxIndex(prevout.hash, txindex)) return error("DisconnectInputs() : ReadTxIndex failed"); if (prevout.n >= txindex.vSpent.size()) return error("DisconnectInputs() : prevout.n out of range"); // Mark outpoint as not spent txindex.vSpent[prevout.n].SetNull(); // Write back if (!txdb.UpdateTxIndex(prevout.hash, txindex)) return error("DisconnectInputs() : UpdateTxIndex failed"); } } // Remove transaction from index if (!txdb.EraseTxIndex(*this)) return error("DisconnectInputs() : EraseTxPos failed"); return true; } bool CTransaction::ConnectInputs(CTxDB& txdb, map& mapTestPool, CDiskTxPos posThisTx, CBlockIndex* pindexBlock, int64& nFees, bool fBlock, bool fMiner, int64 nMinFee) { // Take over previous transactions' spent pointers if (!IsCoinBase()) { int64 nValueIn = 0; for (int i = 0; i < vin.size(); i++) { COutPoint prevout = vin[i].prevout; // Read txindex CTxIndex txindex; bool fFound = true; if (fMiner && mapTestPool.count(prevout.hash)) { // Get txindex from current proposed changes txindex = mapTestPool[prevout.hash]; } else { // Read txindex from txdb fFound = txdb.ReadTxIndex(prevout.hash, txindex); } if (!fFound && (fBlock || fMiner)) return fMiner ? false : error("ConnectInputs() : %s prev tx %s index entry not found", GetHash().ToString().substr(0,10).c_str(), prevout.hash.ToString().substr(0,10).c_str()); // Read txPrev CTransaction txPrev; if (!fFound || txindex.pos == CDiskTxPos(1,1,1)) { // Get prev tx from single transactions in memory CRITICAL_BLOCK(cs_mapTransactions) { if (!mapTransactions.count(prevout.hash)) return error("ConnectInputs() : %s mapTransactions prev not found %s", GetHash().ToString().substr(0,10).c_str(), prevout.hash.ToString().substr(0,10).c_str()); txPrev = mapTransactions[prevout.hash]; } if (!fFound) txindex.vSpent.resize(txPrev.vout.size()); } else { // Get prev tx from disk if (!txPrev.ReadFromDisk(txindex.pos)) return error("ConnectInputs() : %s ReadFromDisk prev tx %s failed", GetHash().ToString().substr(0,10).c_str(), prevout.hash.ToString().substr(0,10).c_str()); } if (prevout.n >= txPrev.vout.size() || prevout.n >= txindex.vSpent.size()) return error("ConnectInputs() : %s prevout.n out of range %d %d %d prev tx %s\n%s", GetHash().ToString().substr(0,10).c_str(), prevout.n, txPrev.vout.size(), txindex.vSpent.size(), prevout.hash.ToString().substr(0,10).c_str(), txPrev.ToString().c_str()); // If prev is coinbase, check that it's matured if (txPrev.IsCoinBase()) for (CBlockIndex* pindex = pindexBlock; pindex && pindexBlock->nHeight - pindex->nHeight < COINBASE_MATURITY; pindex = pindex->pprev) if (pindex->nBlockPos == txindex.pos.nBlockPos && pindex->nFile == txindex.pos.nFile) return error("ConnectInputs() : tried to spend coinbase at depth %d", pindexBlock->nHeight - pindex->nHeight); // Verify signature if (!VerifySignature(txPrev, *this, i)) return error("ConnectInputs() : %s VerifySignature failed", GetHash().ToString().substr(0,10).c_str()); // Check for conflicts if (!txindex.vSpent[prevout.n].IsNull()) return fMiner ? false : error("ConnectInputs() : %s prev tx already used at %s", GetHash().ToString().substr(0,10).c_str(), txindex.vSpent[prevout.n].ToString().c_str()); // Check for negative or overflow input values nValueIn += txPrev.vout[prevout.n].nValue; if (!MoneyRange(txPrev.vout[prevout.n].nValue) || !MoneyRange(nValueIn)) return error("ConnectInputs() : txin values out of range"); // Mark outpoints as spent txindex.vSpent[prevout.n] = posThisTx; // Write back if (fBlock) { if (!txdb.UpdateTxIndex(prevout.hash, txindex)) return error("ConnectInputs() : UpdateTxIndex failed"); } else if (fMiner) { mapTestPool[prevout.hash] = txindex; } } if (nValueIn < GetValueOut()) return error("ConnectInputs() : %s value in < value out", GetHash().ToString().substr(0,10).c_str()); // Tally transaction fees int64 nTxFee = nValueIn - GetValueOut(); if (nTxFee < 0) return error("ConnectInputs() : %s nTxFee < 0", GetHash().ToString().substr(0,10).c_str()); if (nTxFee < nMinFee) return false; nFees += nTxFee; if (!MoneyRange(nFees)) return error("ConnectInputs() : nFees out of range"); } if (fBlock) { // Add transaction to disk index if (!txdb.AddTxIndex(*this, posThisTx, pindexBlock->nHeight)) return error("ConnectInputs() : AddTxPos failed"); } else if (fMiner) { // Add transaction to test pool mapTestPool[GetHash()] = CTxIndex(CDiskTxPos(1,1,1), vout.size()); } return true; } bool CTransaction::ClientConnectInputs() { if (IsCoinBase()) return false; // Take over previous transactions' spent pointers CRITICAL_BLOCK(cs_mapTransactions) { int64 nValueIn = 0; for (int i = 0; i < vin.size(); i++) { // Get prev tx from single transactions in memory COutPoint prevout = vin[i].prevout; if (!mapTransactions.count(prevout.hash)) return false; CTransaction& txPrev = mapTransactions[prevout.hash]; if (prevout.n >= txPrev.vout.size()) return false; // Verify signature if (!VerifySignature(txPrev, *this, i)) return error("ConnectInputs() : VerifySignature failed"); ///// this is redundant with the mapNextTx stuff, not sure which I want to get rid of ///// this has to go away now that posNext is gone // // Check for conflicts // if (!txPrev.vout[prevout.n].posNext.IsNull()) // return error("ConnectInputs() : prev tx already used"); // // // Flag outpoints as used // txPrev.vout[prevout.n].posNext = posThisTx; nValueIn += txPrev.vout[prevout.n].nValue; if (!MoneyRange(txPrev.vout[prevout.n].nValue) || !MoneyRange(nValueIn)) return error("ClientConnectInputs() : txin values out of range"); } if (GetValueOut() > nValueIn) return false; } return true; } bool CBlock::DisconnectBlock(CTxDB& txdb, CBlockIndex* pindex) { // Disconnect in reverse order for (int i = vtx.size()-1; i >= 0; i--) if (!vtx[i].DisconnectInputs(txdb)) return false; // Update block index on disk without changing it in memory. // The memory index structure will be changed after the db commits. if (pindex->pprev) { CDiskBlockIndex blockindexPrev(pindex->pprev); blockindexPrev.hashNext = 0; if (!txdb.WriteBlockIndex(blockindexPrev)) return error("DisconnectBlock() : WriteBlockIndex failed"); } return true; } bool CBlock::ConnectBlock(CTxDB& txdb, CBlockIndex* pindex) { // Check it again in case a previous version let a bad block in if (!CheckBlock()) return false; //// issue here: it doesn't know the version unsigned int nTxPos = pindex->nBlockPos + ::GetSerializeSize(CBlock(), SER_DISK) - 1 + GetSizeOfCompactSize(vtx.size()); map mapUnused; int64 nFees = 0; foreach(CTransaction& tx, vtx) { CDiskTxPos posThisTx(pindex->nFile, pindex->nBlockPos, nTxPos); nTxPos += ::GetSerializeSize(tx, SER_DISK); if (!tx.ConnectInputs(txdb, mapUnused, posThisTx, pindex, nFees, true, false)) return false; } if (vtx[0].GetValueOut() > GetBlockValue(pindex->nHeight, nFees)) return false; // Update block index on disk without changing it in memory. // The memory index structure will be changed after the db commits. if (pindex->pprev) { CDiskBlockIndex blockindexPrev(pindex->pprev); blockindexPrev.hashNext = pindex->GetBlockHash(); if (!txdb.WriteBlockIndex(blockindexPrev)) return error("ConnectBlock() : WriteBlockIndex failed"); } // Watch for transactions paying to me foreach(CTransaction& tx, vtx) AddToWalletIfMine(tx, this); return true; } bool Reorganize(CTxDB& txdb, CBlockIndex* pindexNew) { printf("REORGANIZE\n"); // Find the fork CBlockIndex* pfork = pindexBest; CBlockIndex* plonger = pindexNew; while (pfork != plonger) { while (plonger->nHeight > pfork->nHeight) if (!(plonger = plonger->pprev)) return error("Reorganize() : plonger->pprev is null"); if (pfork == plonger) break; if (!(pfork = pfork->pprev)) return error("Reorganize() : pfork->pprev is null"); } // List of what to disconnect vector vDisconnect; for (CBlockIndex* pindex = pindexBest; pindex != pfork; pindex = pindex->pprev) vDisconnect.push_back(pindex); // List of what to connect vector vConnect; for (CBlockIndex* pindex = pindexNew; pindex != pfork; pindex = pindex->pprev) vConnect.push_back(pindex); reverse(vConnect.begin(), vConnect.end()); // Disconnect shorter branch vector vResurrect; foreach(CBlockIndex* pindex, vDisconnect) { CBlock block; if (!block.ReadFromDisk(pindex)) return error("Reorganize() : ReadFromDisk for disconnect failed"); if (!block.DisconnectBlock(txdb, pindex)) return error("Reorganize() : DisconnectBlock failed"); // Queue memory transactions to resurrect foreach(const CTransaction& tx, block.vtx) if (!tx.IsCoinBase()) vResurrect.push_back(tx); } // Connect longer branch vector vDelete; for (int i = 0; i < vConnect.size(); i++) { CBlockIndex* pindex = vConnect[i]; CBlock block; if (!block.ReadFromDisk(pindex)) return error("Reorganize() : ReadFromDisk for connect failed"); if (!block.ConnectBlock(txdb, pindex)) { // Invalid block txdb.TxnAbort(); return error("Reorganize() : ConnectBlock failed"); } // Queue memory transactions to delete foreach(const CTransaction& tx, block.vtx) vDelete.push_back(tx); } if (!txdb.WriteHashBestChain(pindexNew->GetBlockHash())) return error("Reorganize() : WriteHashBestChain failed"); // Make sure it's successfully written to disk before changing memory structure if (!txdb.TxnCommit()) return error("Reorganize() : TxnCommit failed"); // Disconnect shorter branch foreach(CBlockIndex* pindex, vDisconnect) if (pindex->pprev) pindex->pprev->pnext = NULL; // Connect longer branch foreach(CBlockIndex* pindex, vConnect) if (pindex->pprev) pindex->pprev->pnext = pindex; // Resurrect memory transactions that were in the disconnected branch foreach(CTransaction& tx, vResurrect) tx.AcceptToMemoryPool(txdb, false); // Delete redundant memory transactions that are in the connected branch foreach(CTransaction& tx, vDelete) tx.RemoveFromMemoryPool(); return true; } bool CBlock::SetBestChain(CTxDB& txdb, CBlockIndex* pindexNew) { uint256 hash = GetHash(); txdb.TxnBegin(); if (pindexGenesisBlock == NULL && hash == hashGenesisBlock) { txdb.WriteHashBestChain(hash); if (!txdb.TxnCommit()) return error("SetBestChain() : TxnCommit failed"); pindexGenesisBlock = pindexNew; } else if (hashPrevBlock == hashBestChain) { // Adding to current best branch if (!ConnectBlock(txdb, pindexNew) || !txdb.WriteHashBestChain(hash)) { txdb.TxnAbort(); InvalidChainFound(pindexNew); return error("SetBestChain() : ConnectBlock failed"); } if (!txdb.TxnCommit()) return error("SetBestChain() : TxnCommit failed"); // Add to current best branch pindexNew->pprev->pnext = pindexNew; // Delete redundant memory transactions foreach(CTransaction& tx, vtx) tx.RemoveFromMemoryPool(); } else { // New best branch if (!Reorganize(txdb, pindexNew)) { txdb.TxnAbort(); InvalidChainFound(pindexNew); return error("SetBestChain() : Reorganize failed"); } } // New best block hashBestChain = hash; pindexBest = pindexNew; nBestHeight = pindexBest->nHeight; bnBestChainWork = pindexNew->bnChainWork; nTimeBestReceived = GetTime(); nTransactionsUpdated++; printf("SetBestChain: new best=%s height=%d work=%s\n", hashBestChain.ToString().substr(0,20).c_str(), nBestHeight, bnBestChainWork.ToString().c_str()); return true; } bool CBlock::AddToBlockIndex(unsigned int nFile, unsigned int nBlockPos) { // Check for duplicate uint256 hash = GetHash(); if (mapBlockIndex.count(hash)) return error("AddToBlockIndex() : %s already exists", hash.ToString().substr(0,20).c_str()); // Construct new block index object CBlockIndex* pindexNew = new CBlockIndex(nFile, nBlockPos, *this); if (!pindexNew) return error("AddToBlockIndex() : new CBlockIndex failed"); map::iterator mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first; pindexNew->phashBlock = &((*mi).first); map::iterator miPrev = mapBlockIndex.find(hashPrevBlock); if (miPrev != mapBlockIndex.end()) { pindexNew->pprev = (*miPrev).second; pindexNew->nHeight = pindexNew->pprev->nHeight + 1; } pindexNew->bnChainWork = (pindexNew->pprev ? pindexNew->pprev->bnChainWork : 0) + pindexNew->GetBlockWork(); CTxDB txdb; txdb.TxnBegin(); txdb.WriteBlockIndex(CDiskBlockIndex(pindexNew)); if (!txdb.TxnCommit()) return false; // New best if (pindexNew->bnChainWork > bnBestChainWork) if (!SetBestChain(txdb, pindexNew)) return false; txdb.Close(); if (pindexNew == pindexBest) { // Notify UI to display prev block's coinbase if it was ours static uint256 hashPrevBestCoinBase; CRITICAL_BLOCK(cs_mapWallet) vWalletUpdated.push_back(hashPrevBestCoinBase); hashPrevBestCoinBase = vtx[0].GetHash(); } MainFrameRepaint(); return true; } bool CBlock::CheckBlock() const { // These are checks that are independent of context // that can be verified before saving an orphan block. // Size limits if (vtx.empty() || vtx.size() > MAX_BLOCK_SIZE || ::GetSerializeSize(*this, SER_NETWORK) > MAX_BLOCK_SIZE) return error("CheckBlock() : size limits failed"); // Check proof of work matches claimed amount if (!CheckProofOfWork(GetHash(), nBits)) return error("CheckBlock() : proof of work failed"); // Check timestamp if (GetBlockTime() > GetAdjustedTime() + 2 * 60 * 60) return error("CheckBlock() : block timestamp too far in the future"); // First transaction must be coinbase, the rest must not be if (vtx.empty() || !vtx[0].IsCoinBase()) return error("CheckBlock() : first tx is not coinbase"); for (int i = 1; i < vtx.size(); i++) if (vtx[i].IsCoinBase()) return error("CheckBlock() : more than one coinbase"); // Check transactions foreach(const CTransaction& tx, vtx) if (!tx.CheckTransaction()) return error("CheckBlock() : CheckTransaction failed"); // Check that it's not full of nonstandard transactions if (GetSigOpCount() > MAX_BLOCK_SIGOPS) return error("CheckBlock() : too many nonstandard transactions"); // Check merkleroot if (hashMerkleRoot != BuildMerkleTree()) return error("CheckBlock() : hashMerkleRoot mismatch"); return true; } bool CBlock::AcceptBlock() { // Check for duplicate uint256 hash = GetHash(); if (mapBlockIndex.count(hash)) return error("AcceptBlock() : block already in mapBlockIndex"); // Get prev block index map::iterator mi = mapBlockIndex.find(hashPrevBlock); if (mi == mapBlockIndex.end()) return error("AcceptBlock() : prev block not found"); CBlockIndex* pindexPrev = (*mi).second; int nHeight = pindexPrev->nHeight+1; // Check proof of work if (nBits != GetNextWorkRequired(pindexPrev)) return error("AcceptBlock() : incorrect proof of work"); // Check timestamp against prev if (GetBlockTime() <= pindexPrev->GetMedianTimePast()) return error("AcceptBlock() : block's timestamp is too early"); // Check that all transactions are finalized foreach(const CTransaction& tx, vtx) if (!tx.IsFinal(nHeight, GetBlockTime())) return error("AcceptBlock() : contains a non-final transaction"); // Check that the block chain matches the known block chain up to a checkpoint if (!fTestNet) if ((nHeight == 11111 && hash != uint256("0x0000000069e244f73d78e8fd29ba2fd2ed618bd6fa2ee92559f542fdb26e7c1d")) || (nHeight == 33333 && hash != uint256("0x000000002dd5588a74784eaa7ab0507a18ad16a236e7b1ce69f00d7ddfb5d0a6")) || (nHeight == 68555 && hash != uint256("0x00000000001e1b4903550a0b96e9a9405c8a95f387162e4944e8d9fbe501cd6a")) || (nHeight == 70567 && hash != uint256("0x00000000006a49b14bcf27462068f1264c961f11fa2e0eddd2be0791e1d4124a")) || (nHeight == 74000 && hash != uint256("0x0000000000573993a3c9e41ce34471c079dcf5f52a0e824a81e7f953b8661a20"))) return error("AcceptBlock() : rejected by checkpoint lockin at %d", nHeight); // Write block to history file if (!CheckDiskSpace(::GetSerializeSize(*this, SER_DISK))) return error("AcceptBlock() : out of disk space"); unsigned int nFile = -1; unsigned int nBlockPos = 0; if (!WriteToDisk(nFile, nBlockPos)) return error("AcceptBlock() : WriteToDisk failed"); if (!AddToBlockIndex(nFile, nBlockPos)) return error("AcceptBlock() : AddToBlockIndex failed"); // Relay inventory, but don't relay old inventory during initial block download if (hashBestChain == hash) CRITICAL_BLOCK(cs_vNodes) foreach(CNode* pnode, vNodes) if (nBestHeight > (pnode->nStartingHeight != -1 ? pnode->nStartingHeight - 2000 : 55000)) pnode->PushInventory(CInv(MSG_BLOCK, hash)); return true; } bool ProcessBlock(CNode* pfrom, CBlock* pblock) { // Check for duplicate uint256 hash = pblock->GetHash(); if (mapBlockIndex.count(hash)) return error("ProcessBlock() : already have block %d %s", mapBlockIndex[hash]->nHeight, hash.ToString().substr(0,20).c_str()); if (mapOrphanBlocks.count(hash)) return error("ProcessBlock() : already have block (orphan) %s", hash.ToString().substr(0,20).c_str()); // Preliminary checks if (!pblock->CheckBlock()) return error("ProcessBlock() : CheckBlock FAILED"); // If don't already have its previous block, shunt it off to holding area until we get it if (!mapBlockIndex.count(pblock->hashPrevBlock)) { printf("ProcessBlock: ORPHAN BLOCK, prev=%s\n", pblock->hashPrevBlock.ToString().substr(0,20).c_str()); CBlock* pblock2 = new CBlock(*pblock); mapOrphanBlocks.insert(make_pair(hash, pblock2)); mapOrphanBlocksByPrev.insert(make_pair(pblock2->hashPrevBlock, pblock2)); // Ask this guy to fill in what we're missing if (pfrom) pfrom->PushGetBlocks(pindexBest, GetOrphanRoot(pblock2)); return true; } // Store to disk if (!pblock->AcceptBlock()) return error("ProcessBlock() : AcceptBlock FAILED"); // Recursively process any orphan blocks that depended on this one vector vWorkQueue; vWorkQueue.push_back(hash); for (int i = 0; i < vWorkQueue.size(); i++) { uint256 hashPrev = vWorkQueue[i]; for (multimap::iterator mi = mapOrphanBlocksByPrev.lower_bound(hashPrev); mi != mapOrphanBlocksByPrev.upper_bound(hashPrev); ++mi) { CBlock* pblockOrphan = (*mi).second; if (pblockOrphan->AcceptBlock()) vWorkQueue.push_back(pblockOrphan->GetHash()); mapOrphanBlocks.erase(pblockOrphan->GetHash()); delete pblockOrphan; } mapOrphanBlocksByPrev.erase(hashPrev); } printf("ProcessBlock: ACCEPTED\n"); return true; } template bool ScanMessageStart(Stream& s) { // Scan ahead to the next pchMessageStart, which should normally be immediately // at the file pointer. Leaves file pointer at end of pchMessageStart. s.clear(0); short prevmask = s.exceptions(0); const char* p = BEGIN(pchMessageStart); try { loop { char c; s.read(&c, 1); if (s.fail()) { s.clear(0); s.exceptions(prevmask); return false; } if (*p != c) p = BEGIN(pchMessageStart); if (*p == c) { if (++p == END(pchMessageStart)) { s.clear(0); s.exceptions(prevmask); return true; } } } } catch (...) { s.clear(0); s.exceptions(prevmask); return false; } } bool CheckDiskSpace(uint64 nAdditionalBytes) { uint64 nFreeBytesAvailable = filesystem::space(GetDataDir()).available; // Check for 15MB because database could create another 10MB log file at any time if (nFreeBytesAvailable < (uint64)15000000 + nAdditionalBytes) { fShutdown = true; string strMessage = _("Warning: Disk space is low "); strMiscWarning = strMessage; printf("*** %s\n", strMessage.c_str()); ThreadSafeMessageBox(strMessage, "Bitcoin", wxOK | wxICON_EXCLAMATION); CreateThread(Shutdown, NULL); return false; } return true; } FILE* OpenBlockFile(unsigned int nFile, unsigned int nBlockPos, const char* pszMode) { if (nFile == -1) return NULL; FILE* file = fopen(strprintf("%s/blk%04d.dat", GetDataDir().c_str(), nFile).c_str(), pszMode); if (!file) return NULL; if (nBlockPos != 0 && !strchr(pszMode, 'a') && !strchr(pszMode, 'w')) { if (fseek(file, nBlockPos, SEEK_SET) != 0) { fclose(file); return NULL; } } return file; } static unsigned int nCurrentBlockFile = 1; FILE* AppendBlockFile(unsigned int& nFileRet) { nFileRet = 0; loop { FILE* file = OpenBlockFile(nCurrentBlockFile, 0, "ab"); if (!file) return NULL; if (fseek(file, 0, SEEK_END) != 0) return NULL; // FAT32 filesize max 4GB, fseek and ftell max 2GB, so we must stay under 2GB if (ftell(file) < 0x7F000000 - MAX_SIZE) { nFileRet = nCurrentBlockFile; return file; } fclose(file); nCurrentBlockFile++; } } bool LoadBlockIndex(bool fAllowNew) { if (fTestNet) { hashGenesisBlock = uint256("0x0000000224b1593e3ff16a0e3b61285bbc393a39f78c8aa48c456142671f7110"); bnProofOfWorkLimit = CBigNum(~uint256(0) >> 28); pchMessageStart[0] = 0xfa; pchMessageStart[1] = 0xbf; pchMessageStart[2] = 0xb5; pchMessageStart[3] = 0xda; } // // Load block index // CTxDB txdb("cr"); if (!txdb.LoadBlockIndex()) return false; txdb.Close(); // // Init with genesis block // if (mapBlockIndex.empty()) { if (!fAllowNew) return false; // Genesis Block: // CBlock(hash=000000000019d6, ver=1, hashPrevBlock=00000000000000, hashMerkleRoot=4a5e1e, nTime=1231006505, nBits=1d00ffff, nNonce=2083236893, vtx=1) // CTransaction(hash=4a5e1e, ver=1, vin.size=1, vout.size=1, nLockTime=0) // CTxIn(COutPoint(000000, -1), coinbase 04ffff001d0104455468652054696d65732030332f4a616e2f32303039204368616e63656c6c6f72206f6e206272696e6b206f66207365636f6e64206261696c6f757420666f722062616e6b73) // CTxOut(nValue=50.00000000, scriptPubKey=0x5F1DF16B2B704C8A578D0B) // vMerkleTree: 4a5e1e // Genesis block const char* pszTimestamp = "The Times 03/Jan/2009 Chancellor on brink of second bailout for banks"; CTransaction txNew; txNew.vin.resize(1); txNew.vout.resize(1); txNew.vin[0].scriptSig = CScript() << 486604799 << CBigNum(4) << vector((const unsigned char*)pszTimestamp, (const unsigned char*)pszTimestamp + strlen(pszTimestamp)); txNew.vout[0].nValue = 50 * COIN; txNew.vout[0].scriptPubKey = CScript() << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909a67962e0ea1f61deb649f6bc3f4cef38c4f35504e51ec112de5c384df7ba0b8d578a4c702b6bf11d5f") << OP_CHECKSIG; CBlock block; block.vtx.push_back(txNew); block.hashPrevBlock = 0; block.hashMerkleRoot = block.BuildMerkleTree(); block.nVersion = 1; block.nTime = 1231006505; block.nBits = 0x1d00ffff; block.nNonce = 2083236893; if (fTestNet) { block.nTime = 1279232055; block.nBits = 0x1d07fff8; block.nNonce = 81622180; } //// debug print printf("%s\n", block.GetHash().ToString().c_str()); printf("%s\n", hashGenesisBlock.ToString().c_str()); printf("%s\n", block.hashMerkleRoot.ToString().c_str()); assert(block.hashMerkleRoot == uint256("0x4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b")); block.print(); assert(block.GetHash() == hashGenesisBlock); // Start new block file unsigned int nFile; unsigned int nBlockPos; if (!block.WriteToDisk(nFile, nBlockPos)) return error("LoadBlockIndex() : writing genesis block to disk failed"); if (!block.AddToBlockIndex(nFile, nBlockPos)) return error("LoadBlockIndex() : genesis block not accepted"); } return true; } void PrintBlockTree() { // precompute tree structure map > mapNext; for (map::iterator mi = mapBlockIndex.begin(); mi != mapBlockIndex.end(); ++mi) { CBlockIndex* pindex = (*mi).second; mapNext[pindex->pprev].push_back(pindex); // test //while (rand() % 3 == 0) // mapNext[pindex->pprev].push_back(pindex); } vector > vStack; vStack.push_back(make_pair(0, pindexGenesisBlock)); int nPrevCol = 0; while (!vStack.empty()) { int nCol = vStack.back().first; CBlockIndex* pindex = vStack.back().second; vStack.pop_back(); // print split or gap if (nCol > nPrevCol) { for (int i = 0; i < nCol-1; i++) printf("| "); printf("|\\\n"); } else if (nCol < nPrevCol) { for (int i = 0; i < nCol; i++) printf("| "); printf("|\n"); } nPrevCol = nCol; // print columns for (int i = 0; i < nCol; i++) printf("| "); // print item CBlock block; block.ReadFromDisk(pindex); printf("%d (%u,%u) %s %s tx %d", pindex->nHeight, pindex->nFile, pindex->nBlockPos, block.GetHash().ToString().substr(0,20).c_str(), DateTimeStrFormat("%x %H:%M:%S", block.GetBlockTime()).c_str(), block.vtx.size()); CRITICAL_BLOCK(cs_mapWallet) { if (mapWallet.count(block.vtx[0].GetHash())) { CWalletTx& wtx = mapWallet[block.vtx[0].GetHash()]; printf(" mine: %d %d %d", wtx.GetDepthInMainChain(), wtx.GetBlocksToMaturity(), wtx.GetCredit()); } } printf("\n"); // put the main timechain first vector& vNext = mapNext[pindex]; for (int i = 0; i < vNext.size(); i++) { if (vNext[i]->pnext) { swap(vNext[0], vNext[i]); break; } } // iterate children for (int i = 0; i < vNext.size(); i++) vStack.push_back(make_pair(nCol+i, vNext[i])); } } ////////////////////////////////////////////////////////////////////////////// // // CAlert // map mapAlerts; CCriticalSection cs_mapAlerts; string GetWarnings(string strFor) { int nPriority = 0; string strStatusBar; string strRPC; if (GetBoolArg("-testsafemode")) strRPC = "test"; // Misc warnings like out of disk space and clock is wrong if (strMiscWarning != "") { nPriority = 1000; strStatusBar = strMiscWarning; } // Longer invalid proof-of-work chain if (pindexBest && bnBestInvalidWork > bnBestChainWork + pindexBest->GetBlockWork() * 6) { nPriority = 2000; strStatusBar = strRPC = "WARNING: Displayed transactions may not be correct! You may need to upgrade, or other nodes may need to upgrade."; } // Alerts CRITICAL_BLOCK(cs_mapAlerts) { foreach(PAIRTYPE(const uint256, CAlert)& item, mapAlerts) { const CAlert& alert = item.second; if (alert.AppliesToMe() && alert.nPriority > nPriority) { nPriority = alert.nPriority; strStatusBar = alert.strStatusBar; } } } if (strFor == "statusbar") return strStatusBar; else if (strFor == "rpc") return strRPC; assert(("GetWarnings() : invalid parameter", false)); return "error"; } bool CAlert::ProcessAlert() { if (!CheckSignature()) return false; if (!IsInEffect()) return false; CRITICAL_BLOCK(cs_mapAlerts) { // Cancel previous alerts for (map::iterator mi = mapAlerts.begin(); mi != mapAlerts.end();) { const CAlert& alert = (*mi).second; if (Cancels(alert)) { printf("cancelling alert %d\n", alert.nID); mapAlerts.erase(mi++); } else if (!alert.IsInEffect()) { printf("expiring alert %d\n", alert.nID); mapAlerts.erase(mi++); } else mi++; } // Check if this alert has been cancelled foreach(PAIRTYPE(const uint256, CAlert)& item, mapAlerts) { const CAlert& alert = item.second; if (alert.Cancels(*this)) { printf("alert already cancelled by %d\n", alert.nID); return false; } } // Add to mapAlerts mapAlerts.insert(make_pair(GetHash(), *this)); } printf("accepted alert %d, AppliesToMe()=%d\n", nID, AppliesToMe()); MainFrameRepaint(); return true; } ////////////////////////////////////////////////////////////////////////////// // // Messages // bool AlreadyHave(CTxDB& txdb, const CInv& inv) { switch (inv.type) { case MSG_TX: return mapTransactions.count(inv.hash) || mapOrphanTransactions.count(inv.hash) || txdb.ContainsTx(inv.hash); case MSG_BLOCK: return mapBlockIndex.count(inv.hash) || mapOrphanBlocks.count(inv.hash); } // Don't know what it is, just say we already got one return true; } // The message start string is designed to be unlikely to occur in normal data. // The characters are rarely used upper ascii, not valid as UTF-8, and produce // a large 4-byte int at any alignment. char pchMessageStart[4] = { 0xf9, 0xbe, 0xb4, 0xd9 }; bool ProcessMessages(CNode* pfrom) { CDataStream& vRecv = pfrom->vRecv; if (vRecv.empty()) return true; //if (fDebug) // printf("ProcessMessages(%u bytes)\n", vRecv.size()); // // Message format // (4) message start // (12) command // (4) size // (4) checksum // (x) data // loop { // Scan for message start CDataStream::iterator pstart = search(vRecv.begin(), vRecv.end(), BEGIN(pchMessageStart), END(pchMessageStart)); int nHeaderSize = vRecv.GetSerializeSize(CMessageHeader()); if (vRecv.end() - pstart < nHeaderSize) { if (vRecv.size() > nHeaderSize) { printf("\n\nPROCESSMESSAGE MESSAGESTART NOT FOUND\n\n"); vRecv.erase(vRecv.begin(), vRecv.end() - nHeaderSize); } break; } if (pstart - vRecv.begin() > 0) printf("\n\nPROCESSMESSAGE SKIPPED %d BYTES\n\n", pstart - vRecv.begin()); vRecv.erase(vRecv.begin(), pstart); // Read header vector vHeaderSave(vRecv.begin(), vRecv.begin() + nHeaderSize); CMessageHeader hdr; vRecv >> hdr; if (!hdr.IsValid()) { printf("\n\nPROCESSMESSAGE: ERRORS IN HEADER %s\n\n\n", hdr.GetCommand().c_str()); continue; } string strCommand = hdr.GetCommand(); // Message size unsigned int nMessageSize = hdr.nMessageSize; if (nMessageSize > MAX_SIZE) { printf("ProcessMessage(%s, %u bytes) : nMessageSize > MAX_SIZE\n", strCommand.c_str(), nMessageSize); continue; } if (nMessageSize > vRecv.size()) { // Rewind and wait for rest of message vRecv.insert(vRecv.begin(), vHeaderSave.begin(), vHeaderSave.end()); break; } // Checksum if (vRecv.GetVersion() >= 209) { uint256 hash = Hash(vRecv.begin(), vRecv.begin() + nMessageSize); unsigned int nChecksum = 0; memcpy(&nChecksum, &hash, sizeof(nChecksum)); if (nChecksum != hdr.nChecksum) { printf("ProcessMessage(%s, %u bytes) : CHECKSUM ERROR nChecksum=%08x hdr.nChecksum=%08x\n", strCommand.c_str(), nMessageSize, nChecksum, hdr.nChecksum); continue; } } // Copy message to its own buffer CDataStream vMsg(vRecv.begin(), vRecv.begin() + nMessageSize, vRecv.nType, vRecv.nVersion); vRecv.ignore(nMessageSize); // Process message bool fRet = false; try { CRITICAL_BLOCK(cs_main) fRet = ProcessMessage(pfrom, strCommand, vMsg); if (fShutdown) return true; } catch (std::ios_base::failure& e) { if (strstr(e.what(), "end of data")) { // Allow exceptions from underlength message on vRecv printf("ProcessMessage(%s, %u bytes) : Exception '%s' caught, normally caused by a message being shorter than its stated length\n", strCommand.c_str(), nMessageSize, e.what()); } else if (strstr(e.what(), "size too large")) { // Allow exceptions from overlong size printf("ProcessMessage(%s, %u bytes) : Exception '%s' caught\n", strCommand.c_str(), nMessageSize, e.what()); } else { PrintExceptionContinue(&e, "ProcessMessage()"); } } catch (std::exception& e) { PrintExceptionContinue(&e, "ProcessMessage()"); } catch (...) { PrintExceptionContinue(NULL, "ProcessMessage()"); } if (!fRet) printf("ProcessMessage(%s, %u bytes) FAILED\n", strCommand.c_str(), nMessageSize); } vRecv.Compact(); return true; } bool ProcessMessage(CNode* pfrom, string strCommand, CDataStream& vRecv) { static map > mapReuseKey; RandAddSeedPerfmon(); if (fDebug) printf("%s ", DateTimeStrFormat("%x %H:%M:%S", GetTime()).c_str()); printf("received: %s (%d bytes)\n", strCommand.c_str(), vRecv.size()); if (mapArgs.count("-dropmessagestest") && GetRand(atoi(mapArgs["-dropmessagestest"])) == 0) { printf("dropmessagestest DROPPING RECV MESSAGE\n"); return true; } if (strCommand == "version") { // Each connection can only send one version message if (pfrom->nVersion != 0) return false; int64 nTime; CAddress addrMe; CAddress addrFrom; uint64 nNonce = 1; vRecv >> pfrom->nVersion >> pfrom->nServices >> nTime >> addrMe; if (pfrom->nVersion == 10300) pfrom->nVersion = 300; if (pfrom->nVersion >= 106 && !vRecv.empty()) vRecv >> addrFrom >> nNonce; if (pfrom->nVersion >= 106 && !vRecv.empty()) vRecv >> pfrom->strSubVer; if (pfrom->nVersion >= 209 && !vRecv.empty()) vRecv >> pfrom->nStartingHeight; if (pfrom->nVersion == 0) return false; // Disconnect if we connected to ourself if (nNonce == nLocalHostNonce && nNonce > 1) { printf("connected to self at %s, disconnecting\n", pfrom->addr.ToString().c_str()); pfrom->fDisconnect = true; return true; } pfrom->fClient = !(pfrom->nServices & NODE_NETWORK); AddTimeData(pfrom->addr.ip, nTime); // Change version if (pfrom->nVersion >= 209) pfrom->PushMessage("verack"); pfrom->vSend.SetVersion(min(pfrom->nVersion, VERSION)); if (pfrom->nVersion < 209) pfrom->vRecv.SetVersion(min(pfrom->nVersion, VERSION)); if (!pfrom->fInbound) { // Advertise our address if (addrLocalHost.IsRoutable() && !fUseProxy) { CAddress addr(addrLocalHost); addr.nTime = GetAdjustedTime(); pfrom->PushAddress(addr); } // Get recent addresses if (pfrom->nVersion >= 31402 || mapAddresses.size() < 1000) { pfrom->PushMessage("getaddr"); pfrom->fGetAddr = true; } } // Ask the first connected node for block updates static int nAskedForBlocks; if (!pfrom->fClient && (nAskedForBlocks < 1 || vNodes.size() <= 1)) { nAskedForBlocks++; pfrom->PushGetBlocks(pindexBest, uint256(0)); } // Relay alerts CRITICAL_BLOCK(cs_mapAlerts) foreach(PAIRTYPE(const uint256, CAlert)& item, mapAlerts) item.second.RelayTo(pfrom); pfrom->fSuccessfullyConnected = true; printf("version message: version %d, blocks=%d\n", pfrom->nVersion, pfrom->nStartingHeight); } else if (pfrom->nVersion == 0) { // Must have a version message before anything else return false; } else if (strCommand == "verack") { pfrom->vRecv.SetVersion(min(pfrom->nVersion, VERSION)); } else if (strCommand == "addr") { vector vAddr; vRecv >> vAddr; // Don't want addr from older versions unless seeding if (pfrom->nVersion < 209) return true; if (pfrom->nVersion < 31402 && mapAddresses.size() > 1000) return true; if (vAddr.size() > 1000) return error("message addr size() = %d", vAddr.size()); // Store the new addresses int64 nNow = GetAdjustedTime(); int64 nSince = nNow - 10 * 60; foreach(CAddress& addr, vAddr) { if (fShutdown) return true; // ignore IPv6 for now, since it isn't implemented anyway if (!addr.IsIPv4()) continue; if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60) addr.nTime = nNow - 5 * 24 * 60 * 60; AddAddress(addr, 2 * 60 * 60); pfrom->AddAddressKnown(addr); if (addr.nTime > nSince && !pfrom->fGetAddr && vAddr.size() <= 10 && addr.IsRoutable()) { // Relay to a limited number of other nodes CRITICAL_BLOCK(cs_vNodes) { // Use deterministic randomness to send to the same nodes for 24 hours // at a time so the setAddrKnowns of the chosen nodes prevent repeats static uint256 hashSalt; if (hashSalt == 0) RAND_bytes((unsigned char*)&hashSalt, sizeof(hashSalt)); uint256 hashRand = hashSalt ^ (((int64)addr.ip)<<32) ^ ((GetTime()+addr.ip)/(24*60*60)); hashRand = Hash(BEGIN(hashRand), END(hashRand)); multimap mapMix; foreach(CNode* pnode, vNodes) { if (pnode->nVersion < 31402) continue; unsigned int nPointer; memcpy(&nPointer, &pnode, sizeof(nPointer)); uint256 hashKey = hashRand ^ nPointer; hashKey = Hash(BEGIN(hashKey), END(hashKey)); mapMix.insert(make_pair(hashKey, pnode)); } int nRelayNodes = 2; for (multimap::iterator mi = mapMix.begin(); mi != mapMix.end() && nRelayNodes-- > 0; ++mi) ((*mi).second)->PushAddress(addr); } } } if (vAddr.size() < 1000) pfrom->fGetAddr = false; } else if (strCommand == "inv") { vector vInv; vRecv >> vInv; if (vInv.size() > 50000) return error("message inv size() = %d", vInv.size()); CTxDB txdb("r"); foreach(const CInv& inv, vInv) { if (fShutdown) return true; pfrom->AddInventoryKnown(inv); bool fAlreadyHave = AlreadyHave(txdb, inv); printf(" got inventory: %s %s\n", inv.ToString().c_str(), fAlreadyHave ? "have" : "new"); if (!fAlreadyHave) pfrom->AskFor(inv); else if (inv.type == MSG_BLOCK && mapOrphanBlocks.count(inv.hash)) pfrom->PushGetBlocks(pindexBest, GetOrphanRoot(mapOrphanBlocks[inv.hash])); // Track requests for our stuff CRITICAL_BLOCK(cs_mapRequestCount) { map::iterator mi = mapRequestCount.find(inv.hash); if (mi != mapRequestCount.end()) (*mi).second++; } } } else if (strCommand == "getdata") { vector vInv; vRecv >> vInv; if (vInv.size() > 50000) return error("message getdata size() = %d", vInv.size()); foreach(const CInv& inv, vInv) { if (fShutdown) return true; printf("received getdata for: %s\n", inv.ToString().c_str()); if (inv.type == MSG_BLOCK) { // Send block from disk map::iterator mi = mapBlockIndex.find(inv.hash); if (mi != mapBlockIndex.end()) { CBlock block; block.ReadFromDisk((*mi).second); pfrom->PushMessage("block", block); // Trigger them to send a getblocks request for the next batch of inventory if (inv.hash == pfrom->hashContinue) { // Bypass PushInventory, this must send even if redundant, // and we want it right after the last block so they don't // wait for other stuff first. vector vInv; vInv.push_back(CInv(MSG_BLOCK, hashBestChain)); pfrom->PushMessage("inv", vInv); pfrom->hashContinue = 0; } } } else if (inv.IsKnownType()) { // Send stream from relay memory CRITICAL_BLOCK(cs_mapRelay) { map::iterator mi = mapRelay.find(inv); if (mi != mapRelay.end()) pfrom->PushMessage(inv.GetCommand(), (*mi).second); } } // Track requests for our stuff CRITICAL_BLOCK(cs_mapRequestCount) { map::iterator mi = mapRequestCount.find(inv.hash); if (mi != mapRequestCount.end()) (*mi).second++; } } } else if (strCommand == "getblocks") { CBlockLocator locator; uint256 hashStop; vRecv >> locator >> hashStop; // Find the last block the caller has in the main chain CBlockIndex* pindex = locator.GetBlockIndex(); // Send the rest of the chain if (pindex) pindex = pindex->pnext; int nLimit = 500 + locator.GetDistanceBack(); printf("getblocks %d to %s limit %d\n", (pindex ? pindex->nHeight : -1), hashStop.ToString().substr(0,20).c_str(), nLimit); for (; pindex; pindex = pindex->pnext) { if (pindex->GetBlockHash() == hashStop) { printf(" getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString().substr(0,20).c_str()); break; } pfrom->PushInventory(CInv(MSG_BLOCK, pindex->GetBlockHash())); if (--nLimit <= 0) { // When this block is requested, we'll send an inv that'll make them // getblocks the next batch of inventory. printf(" getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString().substr(0,20).c_str()); pfrom->hashContinue = pindex->GetBlockHash(); break; } } } else if (strCommand == "getheaders") { CBlockLocator locator; uint256 hashStop; vRecv >> locator >> hashStop; CBlockIndex* pindex = NULL; if (locator.IsNull()) { // If locator is null, return the hashStop block map::iterator mi = mapBlockIndex.find(hashStop); if (mi == mapBlockIndex.end()) return true; pindex = (*mi).second; } else { // Find the last block the caller has in the main chain pindex = locator.GetBlockIndex(); if (pindex) pindex = pindex->pnext; } vector vHeaders; int nLimit = 2000 + locator.GetDistanceBack(); printf("getheaders %d to %s limit %d\n", (pindex ? pindex->nHeight : -1), hashStop.ToString().substr(0,20).c_str(), nLimit); for (; pindex; pindex = pindex->pnext) { vHeaders.push_back(pindex->GetBlockHeader()); if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop) break; } pfrom->PushMessage("headers", vHeaders); } else if (strCommand == "tx") { vector vWorkQueue; CDataStream vMsg(vRecv); CTransaction tx; vRecv >> tx; CInv inv(MSG_TX, tx.GetHash()); pfrom->AddInventoryKnown(inv); bool fMissingInputs = false; if (tx.AcceptToMemoryPool(true, &fMissingInputs)) { AddToWalletIfMine(tx, NULL); RelayMessage(inv, vMsg); mapAlreadyAskedFor.erase(inv); vWorkQueue.push_back(inv.hash); // Recursively process any orphan transactions that depended on this one for (int i = 0; i < vWorkQueue.size(); i++) { uint256 hashPrev = vWorkQueue[i]; for (multimap::iterator mi = mapOrphanTransactionsByPrev.lower_bound(hashPrev); mi != mapOrphanTransactionsByPrev.upper_bound(hashPrev); ++mi) { const CDataStream& vMsg = *((*mi).second); CTransaction tx; CDataStream(vMsg) >> tx; CInv inv(MSG_TX, tx.GetHash()); if (tx.AcceptToMemoryPool(true)) { printf(" accepted orphan tx %s\n", inv.hash.ToString().substr(0,10).c_str()); AddToWalletIfMine(tx, NULL); RelayMessage(inv, vMsg); mapAlreadyAskedFor.erase(inv); vWorkQueue.push_back(inv.hash); } } } foreach(uint256 hash, vWorkQueue) EraseOrphanTx(hash); } else if (fMissingInputs) { printf("storing orphan tx %s\n", inv.hash.ToString().substr(0,10).c_str()); AddOrphanTx(vMsg); } } else if (strCommand == "block") { CBlock block; vRecv >> block; printf("received block %s\n", block.GetHash().ToString().substr(0,20).c_str()); // block.print(); CInv inv(MSG_BLOCK, block.GetHash()); pfrom->AddInventoryKnown(inv); if (ProcessBlock(pfrom, &block)) mapAlreadyAskedFor.erase(inv); } else if (strCommand == "getaddr") { // Nodes rebroadcast an addr every 24 hours pfrom->vAddrToSend.clear(); int64 nSince = GetAdjustedTime() - 3 * 60 * 60; // in the last 3 hours CRITICAL_BLOCK(cs_mapAddresses) { unsigned int nCount = 0; foreach(const PAIRTYPE(vector, CAddress)& item, mapAddresses) { const CAddress& addr = item.second; if (addr.nTime > nSince) nCount++; } foreach(const PAIRTYPE(vector, CAddress)& item, mapAddresses) { const CAddress& addr = item.second; if (addr.nTime > nSince && GetRand(nCount) < 2500) pfrom->PushAddress(addr); } } } else if (strCommand == "checkorder") { uint256 hashReply; vRecv >> hashReply; if (!GetBoolArg("-allowreceivebyip")) { pfrom->PushMessage("reply", hashReply, (int)2, string("")); return true; } CWalletTx order; vRecv >> order; /// we have a chance to check the order here // Keep giving the same key to the same ip until they use it if (!mapReuseKey.count(pfrom->addr.ip)) mapReuseKey[pfrom->addr.ip] = GetKeyFromKeyPool(); // Send back approval of order and pubkey to use CScript scriptPubKey; scriptPubKey << mapReuseKey[pfrom->addr.ip] << OP_CHECKSIG; pfrom->PushMessage("reply", hashReply, (int)0, scriptPubKey); } else if (strCommand == "submitorder") { uint256 hashReply; vRecv >> hashReply; if (!GetBoolArg("-allowreceivebyip")) { pfrom->PushMessage("reply", hashReply, (int)2); return true; } CWalletTx wtxNew; vRecv >> wtxNew; wtxNew.fFromMe = false; // Broadcast if (!wtxNew.AcceptWalletTransaction()) { pfrom->PushMessage("reply", hashReply, (int)1); return error("submitorder AcceptWalletTransaction() failed, returning error 1"); } wtxNew.fTimeReceivedIsTxTime = true; AddToWallet(wtxNew); wtxNew.RelayWalletTransaction(); mapReuseKey.erase(pfrom->addr.ip); // Send back confirmation pfrom->PushMessage("reply", hashReply, (int)0); } else if (strCommand == "reply") { uint256 hashReply; vRecv >> hashReply; CRequestTracker tracker; CRITICAL_BLOCK(pfrom->cs_mapRequests) { map::iterator mi = pfrom->mapRequests.find(hashReply); if (mi != pfrom->mapRequests.end()) { tracker = (*mi).second; pfrom->mapRequests.erase(mi); } } if (!tracker.IsNull()) tracker.fn(tracker.param1, vRecv); } else if (strCommand == "ping") { } else if (strCommand == "alert") { CAlert alert; vRecv >> alert; if (alert.ProcessAlert()) { // Relay pfrom->setKnown.insert(alert.GetHash()); CRITICAL_BLOCK(cs_vNodes) foreach(CNode* pnode, vNodes) alert.RelayTo(pnode); } } else { // Ignore unknown commands for extensibility } // Update the last seen time for this node's address if (pfrom->fNetworkNode) if (strCommand == "version" || strCommand == "addr" || strCommand == "inv" || strCommand == "getdata" || strCommand == "ping") AddressCurrentlyConnected(pfrom->addr); return true; } bool SendMessages(CNode* pto, bool fSendTrickle) { CRITICAL_BLOCK(cs_main) { // Don't send anything until we get their version message if (pto->nVersion == 0) return true; // Keep-alive ping if (pto->nLastSend && GetTime() - pto->nLastSend > 30 * 60 && pto->vSend.empty()) pto->PushMessage("ping"); // Resend wallet transactions that haven't gotten in a block yet ResendWalletTransactions(); // Address refresh broadcast static int64 nLastRebroadcast; if (GetTime() - nLastRebroadcast > 24 * 60 * 60) { nLastRebroadcast = GetTime(); CRITICAL_BLOCK(cs_vNodes) { foreach(CNode* pnode, vNodes) { // Periodically clear setAddrKnown to allow refresh broadcasts pnode->setAddrKnown.clear(); // Rebroadcast our address if (addrLocalHost.IsRoutable() && !fUseProxy) { CAddress addr(addrLocalHost); addr.nTime = GetAdjustedTime(); pnode->PushAddress(addr); } } } } // Clear out old addresses periodically so it's not too much work at once static int64 nLastClear; if (nLastClear == 0) nLastClear = GetTime(); if (GetTime() - nLastClear > 10 * 60 && vNodes.size() >= 3) { nLastClear = GetTime(); CRITICAL_BLOCK(cs_mapAddresses) { CAddrDB addrdb; int64 nSince = GetAdjustedTime() - 14 * 24 * 60 * 60; for (map, CAddress>::iterator mi = mapAddresses.begin(); mi != mapAddresses.end();) { const CAddress& addr = (*mi).second; if (addr.nTime < nSince) { if (mapAddresses.size() < 1000 || GetTime() > nLastClear + 20) break; addrdb.EraseAddress(addr); mapAddresses.erase(mi++); } else mi++; } } } // // Message: addr // if (fSendTrickle) { vector vAddr; vAddr.reserve(pto->vAddrToSend.size()); foreach(const CAddress& addr, pto->vAddrToSend) { // returns true if wasn't already contained in the set if (pto->setAddrKnown.insert(addr).second) { vAddr.push_back(addr); // receiver rejects addr messages larger than 1000 if (vAddr.size() >= 1000) { pto->PushMessage("addr", vAddr); vAddr.clear(); } } } pto->vAddrToSend.clear(); if (!vAddr.empty()) pto->PushMessage("addr", vAddr); } // // Message: inventory // vector vInv; vector vInvWait; CRITICAL_BLOCK(pto->cs_inventory) { vInv.reserve(pto->vInventoryToSend.size()); vInvWait.reserve(pto->vInventoryToSend.size()); foreach(const CInv& inv, pto->vInventoryToSend) { if (pto->setInventoryKnown.count(inv)) continue; // trickle out tx inv to protect privacy if (inv.type == MSG_TX && !fSendTrickle) { // 1/4 of tx invs blast to all immediately static uint256 hashSalt; if (hashSalt == 0) RAND_bytes((unsigned char*)&hashSalt, sizeof(hashSalt)); uint256 hashRand = inv.hash ^ hashSalt; hashRand = Hash(BEGIN(hashRand), END(hashRand)); bool fTrickleWait = ((hashRand & 3) != 0); // always trickle our own transactions if (!fTrickleWait) { TRY_CRITICAL_BLOCK(cs_mapWallet) { map::iterator mi = mapWallet.find(inv.hash); if (mi != mapWallet.end()) { CWalletTx& wtx = (*mi).second; if (wtx.fFromMe) fTrickleWait = true; } } } if (fTrickleWait) { vInvWait.push_back(inv); continue; } } // returns true if wasn't already contained in the set if (pto->setInventoryKnown.insert(inv).second) { vInv.push_back(inv); if (vInv.size() >= 1000) { pto->PushMessage("inv", vInv); vInv.clear(); } } } pto->vInventoryToSend = vInvWait; } if (!vInv.empty()) pto->PushMessage("inv", vInv); // // Message: getdata // vector vGetData; int64 nNow = GetTime() * 1000000; CTxDB txdb("r"); while (!pto->mapAskFor.empty() && (*pto->mapAskFor.begin()).first <= nNow) { const CInv& inv = (*pto->mapAskFor.begin()).second; if (!AlreadyHave(txdb, inv)) { printf("sending getdata: %s\n", inv.ToString().c_str()); vGetData.push_back(inv); if (vGetData.size() >= 1000) { pto->PushMessage("getdata", vGetData); vGetData.clear(); } } pto->mapAskFor.erase(pto->mapAskFor.begin()); } if (!vGetData.empty()) pto->PushMessage("getdata", vGetData); } return true; } ////////////////////////////////////////////////////////////////////////////// // // BitcoinMiner // void GenerateBitcoins(bool fGenerate) { if (fGenerateBitcoins != fGenerate) { fGenerateBitcoins = fGenerate; CWalletDB().WriteSetting("fGenerateBitcoins", fGenerateBitcoins); MainFrameRepaint(); } if (fGenerateBitcoins) { int nProcessors = boost::thread::hardware_concurrency(); printf("%d processors\n", nProcessors); if (nProcessors < 1) nProcessors = 1; if (fLimitProcessors && nProcessors > nLimitProcessors) nProcessors = nLimitProcessors; int nAddThreads = nProcessors - vnThreadsRunning[3]; printf("Starting %d BitcoinMiner threads\n", nAddThreads); for (int i = 0; i < nAddThreads; i++) { if (!CreateThread(ThreadBitcoinMiner, NULL)) printf("Error: CreateThread(ThreadBitcoinMiner) failed\n"); Sleep(10); } } } void ThreadBitcoinMiner(void* parg) { try { vnThreadsRunning[3]++; BitcoinMiner(); vnThreadsRunning[3]--; } catch (std::exception& e) { vnThreadsRunning[3]--; PrintException(&e, "ThreadBitcoinMiner()"); } catch (...) { vnThreadsRunning[3]--; PrintException(NULL, "ThreadBitcoinMiner()"); } UIThreadCall(boost::bind(CalledSetStatusBar, "", 0)); nHPSTimerStart = 0; if (vnThreadsRunning[3] == 0) dHashesPerSec = 0; printf("ThreadBitcoinMiner exiting, %d threads remaining\n", vnThreadsRunning[3]); } #if defined(__GNUC__) && defined(CRYPTOPP_X86_ASM_AVAILABLE) void CallCPUID(int in, int& aret, int& cret) { int a, c; asm ( "mov %2, %%eax; " // in into eax "cpuid;" "mov %%eax, %0;" // eax into a "mov %%ecx, %1;" // ecx into c :"=r"(a),"=r"(c) /* output */ :"r"(in) /* input */ :"%eax","%ecx" /* clobbered register */ ); aret = a; cret = c; } bool Detect128BitSSE2() { int a, c, nBrand; CallCPUID(0, a, nBrand); bool fIntel = (nBrand == 0x6c65746e); // ntel bool fAMD = (nBrand == 0x444d4163); // cAMD struct { unsigned int nStepping : 4; unsigned int nModel : 4; unsigned int nFamily : 4; unsigned int nProcessorType : 2; unsigned int nUnused : 2; unsigned int nExtendedModel : 4; unsigned int nExtendedFamily : 8; } cpu; CallCPUID(1, a, c); memcpy(&cpu, &a, sizeof(cpu)); int nFamily = cpu.nExtendedFamily + cpu.nFamily; int nModel = cpu.nExtendedModel*16 + cpu.nModel; // We need Intel Nehalem or AMD K10 or better for 128bit SSE2 // Nehalem = i3/i5/i7 and some Xeon // K10 = Opterons with 4 or more cores, Phenom, Phenom II, Athlon II // Intel Core i5 family 6, model 26 or 30 // Intel Core i7 family 6, model 26 or 30 // Intel Core i3 family 6, model 37 // AMD Phenom family 16, model 10 bool fUseSSE2 = ((fIntel && nFamily * 10000 + nModel >= 60026) || (fAMD && nFamily * 10000 + nModel >= 160010)); // AMD reports a lower model number in 64-bit mode if (fAMD && sizeof(void*) > 4 && nFamily * 10000 + nModel >= 160000) fUseSSE2 = true; static bool fPrinted; if (!fPrinted) { fPrinted = true; printf("CPUID %08x family %d, model %d, stepping %d, fUseSSE2=%d\n", nBrand, nFamily, nModel, cpu.nStepping, fUseSSE2); } return fUseSSE2; } #else bool Detect128BitSSE2() { return false; } #endif int FormatHashBlocks(void* pbuffer, unsigned int len) { unsigned char* pdata = (unsigned char*)pbuffer; unsigned int blocks = 1 + ((len + 8) / 64); unsigned char* pend = pdata + 64 * blocks; memset(pdata + len, 0, 64 * blocks - len); pdata[len] = 0x80; unsigned int bits = len * 8; pend[-1] = (bits >> 0) & 0xff; pend[-2] = (bits >> 8) & 0xff; pend[-3] = (bits >> 16) & 0xff; pend[-4] = (bits >> 24) & 0xff; return blocks; } using CryptoPP::ByteReverse; static const unsigned int pSHA256InitState[8] = {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19}; inline void SHA256Transform(void* pstate, void* pinput, const void* pinit) { memcpy(pstate, pinit, 32); CryptoPP::SHA256::Transform((CryptoPP::word32*)pstate, (CryptoPP::word32*)pinput); } // // ScanHash scans nonces looking for a hash with at least some zero bits. // It operates on big endian data. Caller does the byte reversing. // All input buffers are 16-byte aligned. nNonce is usually preserved // between calls, but periodically or if nNonce is 0xffff0000 or above, // the block is rebuilt and nNonce starts over at zero. // unsigned int ScanHash_CryptoPP(char* pmidstate, char* pdata, char* phash1, char* phash, unsigned int& nHashesDone) { unsigned int& nNonce = *(unsigned int*)(pdata + 12); for (;;) { // Crypto++ SHA-256 // Hash pdata using pmidstate as the starting state into // preformatted buffer phash1, then hash phash1 into phash nNonce++; SHA256Transform(phash1, pdata, pmidstate); SHA256Transform(phash, phash1, pSHA256InitState); // Return the nonce if the hash has at least some zero bits, // caller will check if it has enough to reach the target if (((unsigned short*)phash)[14] == 0) return nNonce; // If nothing found after trying for a while, return -1 if ((nNonce & 0xffff) == 0) { nHashesDone = 0xffff+1; return -1; } } } extern unsigned int ScanHash_4WaySSE2(char* pmidstate, char* pblock, char* phash1, char* phash, unsigned int& nHashesDone); class COrphan { public: CTransaction* ptx; set setDependsOn; double dPriority; COrphan(CTransaction* ptxIn) { ptx = ptxIn; dPriority = 0; } void print() const { printf("COrphan(hash=%s, dPriority=%.1f)\n", ptx->GetHash().ToString().substr(0,10).c_str(), dPriority); foreach(uint256 hash, setDependsOn) printf(" setDependsOn %s\n", hash.ToString().substr(0,10).c_str()); } }; CBlock* CreateNewBlock(CReserveKey& reservekey) { CBlockIndex* pindexPrev = pindexBest; // Create new block auto_ptr pblock(new CBlock()); if (!pblock.get()) return NULL; // Create coinbase tx CTransaction txNew; txNew.vin.resize(1); txNew.vin[0].prevout.SetNull(); txNew.vout.resize(1); txNew.vout[0].scriptPubKey << reservekey.GetReservedKey() << OP_CHECKSIG; // Add our coinbase tx as first transaction pblock->vtx.push_back(txNew); // Collect memory pool transactions into the block int64 nFees = 0; CRITICAL_BLOCK(cs_main) CRITICAL_BLOCK(cs_mapTransactions) { CTxDB txdb("r"); // Priority order to process transactions list vOrphan; // list memory doesn't move map > mapDependers; multimap mapPriority; for (map::iterator mi = mapTransactions.begin(); mi != mapTransactions.end(); ++mi) { CTransaction& tx = (*mi).second; if (tx.IsCoinBase() || !tx.IsFinal()) continue; COrphan* porphan = NULL; double dPriority = 0; foreach(const CTxIn& txin, tx.vin) { // Read prev transaction CTransaction txPrev; CTxIndex txindex; if (!txPrev.ReadFromDisk(txdb, txin.prevout, txindex)) { // Has to wait for dependencies if (!porphan) { // Use list for automatic deletion vOrphan.push_back(COrphan(&tx)); porphan = &vOrphan.back(); } mapDependers[txin.prevout.hash].push_back(porphan); porphan->setDependsOn.insert(txin.prevout.hash); continue; } int64 nValueIn = txPrev.vout[txin.prevout.n].nValue; // Read block header int nConf = 0; CBlock block; if (block.ReadFromDisk(txindex.pos.nFile, txindex.pos.nBlockPos, false)) { map::iterator it = mapBlockIndex.find(block.GetHash()); if (it != mapBlockIndex.end()) { CBlockIndex* pindex = (*it).second; if (pindex->IsInMainChain()) nConf = 1 + nBestHeight - pindex->nHeight; } } dPriority += (double)nValueIn * nConf; if (fDebug && GetBoolArg("-printpriority")) printf("priority nValueIn=%-12I64d nConf=%-5d dPriority=%-20.1f\n", nValueIn, nConf, dPriority); } // Priority is sum(valuein * age) / txsize dPriority /= ::GetSerializeSize(tx, SER_NETWORK); if (porphan) porphan->dPriority = dPriority; else mapPriority.insert(make_pair(-dPriority, &(*mi).second)); if (fDebug && GetBoolArg("-printpriority")) { printf("priority %-20.1f %s\n%s", dPriority, tx.GetHash().ToString().substr(0,10).c_str(), tx.ToString().c_str()); if (porphan) porphan->print(); printf("\n"); } } // Collect transactions into block map mapTestPool; uint64 nBlockSize = 1000; int nBlockSigOps = 100; while (!mapPriority.empty()) { // Take highest priority transaction off priority queue double dPriority = -(*mapPriority.begin()).first; CTransaction& tx = *(*mapPriority.begin()).second; mapPriority.erase(mapPriority.begin()); // Size limits unsigned int nTxSize = ::GetSerializeSize(tx, SER_NETWORK); if (nBlockSize + nTxSize >= MAX_BLOCK_SIZE_GEN) continue; int nTxSigOps = tx.GetSigOpCount(); if (nBlockSigOps + nTxSigOps >= MAX_BLOCK_SIGOPS) continue; // Transaction fee required depends on block size bool fAllowFree = (nBlockSize + nTxSize < 4000 || dPriority > COIN * 144 / 250); int64 nMinFee = tx.GetMinFee(nBlockSize, fAllowFree); // Connecting shouldn't fail due to dependency on other memory pool transactions // because we're already processing them in order of dependency map mapTestPoolTmp(mapTestPool); if (!tx.ConnectInputs(txdb, mapTestPoolTmp, CDiskTxPos(1,1,1), pindexPrev, nFees, false, true, nMinFee)) continue; swap(mapTestPool, mapTestPoolTmp); // Added pblock->vtx.push_back(tx); nBlockSize += nTxSize; nBlockSigOps += nTxSigOps; // Add transactions that depend on this one to the priority queue uint256 hash = tx.GetHash(); if (mapDependers.count(hash)) { foreach(COrphan* porphan, mapDependers[hash]) { if (!porphan->setDependsOn.empty()) { porphan->setDependsOn.erase(hash); if (porphan->setDependsOn.empty()) mapPriority.insert(make_pair(-porphan->dPriority, porphan->ptx)); } } } } } pblock->vtx[0].vout[0].nValue = GetBlockValue(pindexPrev->nHeight+1, nFees); // Fill in header pblock->hashPrevBlock = pindexPrev->GetBlockHash(); pblock->hashMerkleRoot = pblock->BuildMerkleTree(); pblock->nTime = max(pindexPrev->GetMedianTimePast()+1, GetAdjustedTime()); pblock->nBits = GetNextWorkRequired(pindexPrev); pblock->nNonce = 0; return pblock.release(); } void IncrementExtraNonce(CBlock* pblock, CBlockIndex* pindexPrev, unsigned int& nExtraNonce, int64& nPrevTime) { // Update nExtraNonce int64 nNow = max(pindexPrev->GetMedianTimePast()+1, GetAdjustedTime()); if (++nExtraNonce >= 0x7f && nNow > nPrevTime+1) { nExtraNonce = 1; nPrevTime = nNow; } pblock->vtx[0].vin[0].scriptSig = CScript() << pblock->nBits << CBigNum(nExtraNonce); pblock->hashMerkleRoot = pblock->BuildMerkleTree(); } void FormatHashBuffers(CBlock* pblock, char* pmidstate, char* pdata, char* phash1) { // // Prebuild hash buffers // struct { struct unnamed2 { int nVersion; uint256 hashPrevBlock; uint256 hashMerkleRoot; unsigned int nTime; unsigned int nBits; unsigned int nNonce; } block; unsigned char pchPadding0[64]; uint256 hash1; unsigned char pchPadding1[64]; } tmp; memset(&tmp, 0, sizeof(tmp)); tmp.block.nVersion = pblock->nVersion; tmp.block.hashPrevBlock = pblock->hashPrevBlock; tmp.block.hashMerkleRoot = pblock->hashMerkleRoot; tmp.block.nTime = pblock->nTime; tmp.block.nBits = pblock->nBits; tmp.block.nNonce = pblock->nNonce; FormatHashBlocks(&tmp.block, sizeof(tmp.block)); FormatHashBlocks(&tmp.hash1, sizeof(tmp.hash1)); // Byte swap all the input buffer for (int i = 0; i < sizeof(tmp)/4; i++) ((unsigned int*)&tmp)[i] = ByteReverse(((unsigned int*)&tmp)[i]); // Precalc the first half of the first hash, which stays constant SHA256Transform(pmidstate, &tmp.block, pSHA256InitState); memcpy(pdata, &tmp.block, 128); memcpy(phash1, &tmp.hash1, 64); } bool CheckWork(CBlock* pblock, CReserveKey& reservekey) { uint256 hash = pblock->GetHash(); uint256 hashTarget = CBigNum().SetCompact(pblock->nBits).getuint256(); if (hash > hashTarget) return false; //// debug print printf("BitcoinMiner:\n"); printf("proof-of-work found \n hash: %s \ntarget: %s\n", hash.GetHex().c_str(), hashTarget.GetHex().c_str()); pblock->print(); printf("%s ", DateTimeStrFormat("%x %H:%M", GetTime()).c_str()); printf("generated %s\n", FormatMoney(pblock->vtx[0].vout[0].nValue).c_str()); // Found a solution CRITICAL_BLOCK(cs_main) { if (pblock->hashPrevBlock != hashBestChain) return error("BitcoinMiner : generated block is stale"); // Remove key from key pool reservekey.KeepKey(); // Track how many getdata requests this block gets CRITICAL_BLOCK(cs_mapRequestCount) mapRequestCount[pblock->GetHash()] = 0; // Process this block the same as if we had received it from another node if (!ProcessBlock(NULL, pblock)) return error("BitcoinMiner : ProcessBlock, block not accepted"); } Sleep(2000); return true; } void BitcoinMiner() { printf("BitcoinMiner started\n"); SetThreadPriority(THREAD_PRIORITY_LOWEST); bool f4WaySSE2 = Detect128BitSSE2(); if (mapArgs.count("-4way")) f4WaySSE2 = GetBoolArg("-4way"); // Each thread has its own key and counter CReserveKey reservekey; unsigned int nExtraNonce = 0; int64 nPrevTime = 0; while (fGenerateBitcoins) { if (AffinityBugWorkaround(ThreadBitcoinMiner)) return; if (fShutdown) return; while (vNodes.empty() || IsInitialBlockDownload()) { Sleep(1000); if (fShutdown) return; if (!fGenerateBitcoins) return; } // // Create new block // unsigned int nTransactionsUpdatedLast = nTransactionsUpdated; CBlockIndex* pindexPrev = pindexBest; auto_ptr pblock(CreateNewBlock(reservekey)); if (!pblock.get()) return; IncrementExtraNonce(pblock.get(), pindexPrev, nExtraNonce, nPrevTime); printf("Running BitcoinMiner with %d transactions in block\n", pblock->vtx.size()); // // Prebuild hash buffers // char pmidstatebuf[32+16]; char* pmidstate = alignup<16>(pmidstatebuf); char pdatabuf[128+16]; char* pdata = alignup<16>(pdatabuf); char phash1buf[64+16]; char* phash1 = alignup<16>(phash1buf); FormatHashBuffers(pblock.get(), pmidstate, pdata, phash1); unsigned int& nBlockTime = *(unsigned int*)(pdata + 64 + 4); unsigned int& nBlockNonce = *(unsigned int*)(pdata + 64 + 12); // // Search // int64 nStart = GetTime(); uint256 hashTarget = CBigNum().SetCompact(pblock->nBits).getuint256(); uint256 hashbuf[2]; uint256& hash = *alignup<16>(hashbuf); loop { unsigned int nHashesDone = 0; unsigned int nNonceFound; #ifdef FOURWAYSSE2 if (f4WaySSE2) // tcatm's 4-way 128-bit SSE2 SHA-256 nNonceFound = ScanHash_4WaySSE2(pmidstate, pdata + 64, phash1, (char*)&hash, nHashesDone); else #endif // Crypto++ SHA-256 nNonceFound = ScanHash_CryptoPP(pmidstate, pdata + 64, phash1, (char*)&hash, nHashesDone); // Check if something found if (nNonceFound != -1) { for (int i = 0; i < sizeof(hash)/4; i++) ((unsigned int*)&hash)[i] = ByteReverse(((unsigned int*)&hash)[i]); if (hash <= hashTarget) { // Found a solution pblock->nNonce = ByteReverse(nNonceFound); assert(hash == pblock->GetHash()); SetThreadPriority(THREAD_PRIORITY_NORMAL); CheckWork(pblock.get(), reservekey); SetThreadPriority(THREAD_PRIORITY_LOWEST); break; } } // Meter hashes/sec static int64 nHashCounter; if (nHPSTimerStart == 0) { nHPSTimerStart = GetTimeMillis(); nHashCounter = 0; } else nHashCounter += nHashesDone; if (GetTimeMillis() - nHPSTimerStart > 4000) { static CCriticalSection cs; CRITICAL_BLOCK(cs) { if (GetTimeMillis() - nHPSTimerStart > 4000) { dHashesPerSec = 1000.0 * nHashCounter / (GetTimeMillis() - nHPSTimerStart); nHPSTimerStart = GetTimeMillis(); nHashCounter = 0; string strStatus = strprintf(" %.0f khash/s", dHashesPerSec/1000.0); UIThreadCall(boost::bind(CalledSetStatusBar, strStatus, 0)); static int64 nLogTime; if (GetTime() - nLogTime > 30 * 60) { nLogTime = GetTime(); printf("%s ", DateTimeStrFormat("%x %H:%M", GetTime()).c_str()); printf("hashmeter %3d CPUs %6.0f khash/s\n", vnThreadsRunning[3], dHashesPerSec/1000.0); } } } } // Check for stop or if block needs to be rebuilt if (fShutdown) return; if (!fGenerateBitcoins) return; if (fLimitProcessors && vnThreadsRunning[3] > nLimitProcessors) return; if (vNodes.empty()) break; if (nBlockNonce >= 0xffff0000) break; if (nTransactionsUpdated != nTransactionsUpdatedLast && GetTime() - nStart > 60) break; if (pindexPrev != pindexBest) break; // Update nTime every few seconds pblock->nTime = max(pindexPrev->GetMedianTimePast()+1, GetAdjustedTime()); nBlockTime = ByteReverse(pblock->nTime); } } } ////////////////////////////////////////////////////////////////////////////// // // Actions // int64 GetBalance() { int64 nStart = GetTimeMillis(); int64 nTotal = 0; CRITICAL_BLOCK(cs_mapWallet) { for (map::iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) { CWalletTx* pcoin = &(*it).second; if (!pcoin->IsFinal() || pcoin->fSpent || !pcoin->IsConfirmed()) continue; nTotal += pcoin->GetCredit(); } } //printf("GetBalance() %"PRI64d"ms\n", GetTimeMillis() - nStart); return nTotal; } bool SelectCoinsMinConf(int64 nTargetValue, int nConfMine, int nConfTheirs, set& setCoinsRet) { setCoinsRet.clear(); // List of values less than target int64 nLowestLarger = INT64_MAX; CWalletTx* pcoinLowestLarger = NULL; vector > vValue; int64 nTotalLower = 0; CRITICAL_BLOCK(cs_mapWallet) { vector vCoins; vCoins.reserve(mapWallet.size()); for (map::iterator it = mapWallet.begin(); it != mapWallet.end(); ++it) vCoins.push_back(&(*it).second); random_shuffle(vCoins.begin(), vCoins.end(), GetRandInt); foreach(CWalletTx* pcoin, vCoins) { if (!pcoin->IsFinal() || pcoin->fSpent || !pcoin->IsConfirmed()) continue; int nDepth = pcoin->GetDepthInMainChain(); if (nDepth < (pcoin->IsFromMe() ? nConfMine : nConfTheirs)) continue; int64 n = pcoin->GetCredit(); if (n <= 0) continue; if (n < nTargetValue) { vValue.push_back(make_pair(n, pcoin)); nTotalLower += n; } else if (n == nTargetValue) { setCoinsRet.insert(pcoin); return true; } else if (n < nLowestLarger) { nLowestLarger = n; pcoinLowestLarger = pcoin; } } } if (nTotalLower < nTargetValue) { if (pcoinLowestLarger == NULL) return false; setCoinsRet.insert(pcoinLowestLarger); return true; } // Solve subset sum by stochastic approximation sort(vValue.rbegin(), vValue.rend()); vector vfIncluded; vector vfBest(vValue.size(), true); int64 nBest = nTotalLower; for (int nRep = 0; nRep < 1000 && nBest != nTargetValue; nRep++) { vfIncluded.assign(vValue.size(), false); int64 nTotal = 0; bool fReachedTarget = false; for (int nPass = 0; nPass < 2 && !fReachedTarget; nPass++) { for (int i = 0; i < vValue.size(); i++) { if (nPass == 0 ? rand() % 2 : !vfIncluded[i]) { nTotal += vValue[i].first; vfIncluded[i] = true; if (nTotal >= nTargetValue) { fReachedTarget = true; if (nTotal < nBest) { nBest = nTotal; vfBest = vfIncluded; } nTotal -= vValue[i].first; vfIncluded[i] = false; } } } } } // If the next larger is still closer, return it if (pcoinLowestLarger && nLowestLarger - nTargetValue <= nBest - nTargetValue) setCoinsRet.insert(pcoinLowestLarger); else { for (int i = 0; i < vValue.size(); i++) if (vfBest[i]) setCoinsRet.insert(vValue[i].second); //// debug print printf("SelectCoins() best subset: "); for (int i = 0; i < vValue.size(); i++) if (vfBest[i]) printf("%s ", FormatMoney(vValue[i].first).c_str()); printf("total %s\n", FormatMoney(nBest).c_str()); } return true; } bool SelectCoins(int64 nTargetValue, set& setCoinsRet) { return (SelectCoinsMinConf(nTargetValue, 1, 6, setCoinsRet) || SelectCoinsMinConf(nTargetValue, 1, 1, setCoinsRet) || SelectCoinsMinConf(nTargetValue, 0, 1, setCoinsRet)); } bool CreateTransaction(CScript scriptPubKey, int64 nValue, CWalletTx& wtxNew, CReserveKey& reservekey, int64& nFeeRet) { CRITICAL_BLOCK(cs_main) { // txdb must be opened before the mapWallet lock CTxDB txdb("r"); CRITICAL_BLOCK(cs_mapWallet) { nFeeRet = nTransactionFee; loop { wtxNew.vin.clear(); wtxNew.vout.clear(); wtxNew.fFromMe = true; if (nValue < 0) return false; int64 nValueOut = nValue; int64 nTotalValue = nValue + nFeeRet; // Choose coins to use set setCoins; if (!SelectCoins(nTotalValue, setCoins)) return false; int64 nValueIn = 0; foreach(CWalletTx* pcoin, setCoins) nValueIn += pcoin->GetCredit(); // Fill a vout to the payee bool fChangeFirst = GetRand(2); if (!fChangeFirst) wtxNew.vout.push_back(CTxOut(nValueOut, scriptPubKey)); // Fill a vout back to self with any change int64 nChange = nValueIn - nTotalValue; if (nChange >= CENT) { // Note: We use a new key here to keep it from being obvious which side is the change. // The drawback is that by not reusing a previous key, the change may be lost if a // backup is restored, if the backup doesn't have the new private key for the change. // If we reused the old key, it would be possible to add code to look for and // rediscover unknown transactions that were written with keys of ours to recover // post-backup change. // Reserve a new key pair from key pool vector vchPubKey = reservekey.GetReservedKey(); assert(mapKeys.count(vchPubKey)); // Fill a vout to ourself, using same address type as the payment CScript scriptChange; if (scriptPubKey.GetBitcoinAddressHash160() != 0) scriptChange.SetBitcoinAddress(vchPubKey); else scriptChange << vchPubKey << OP_CHECKSIG; wtxNew.vout.push_back(CTxOut(nChange, scriptChange)); } else reservekey.ReturnKey(); // Fill a vout to the payee if (fChangeFirst) wtxNew.vout.push_back(CTxOut(nValueOut, scriptPubKey)); // Fill vin foreach(CWalletTx* pcoin, setCoins) for (int nOut = 0; nOut < pcoin->vout.size(); nOut++) if (pcoin->vout[nOut].IsMine()) wtxNew.vin.push_back(CTxIn(pcoin->GetHash(), nOut)); // Sign int nIn = 0; foreach(CWalletTx* pcoin, setCoins) for (int nOut = 0; nOut < pcoin->vout.size(); nOut++) if (pcoin->vout[nOut].IsMine()) if (!SignSignature(*pcoin, wtxNew, nIn++)) return false; // Limit size unsigned int nBytes = ::GetSerializeSize(*(CTransaction*)&wtxNew, SER_NETWORK); if (nBytes >= MAX_BLOCK_SIZE_GEN/5) return false; // Check that enough fee is included int64 nPayFee = nTransactionFee * (1 + (int64)nBytes / 1000); int64 nMinFee = wtxNew.GetMinFee(); if (nFeeRet < max(nPayFee, nMinFee)) { nFeeRet = max(nPayFee, nMinFee); continue; } // Fill vtxPrev by copying from previous transactions vtxPrev wtxNew.AddSupportingTransactions(txdb); wtxNew.fTimeReceivedIsTxTime = true; break; } } } return true; } // Call after CreateTransaction unless you want to abort bool CommitTransaction(CWalletTx& wtxNew, CReserveKey& reservekey) { CRITICAL_BLOCK(cs_main) { printf("CommitTransaction:\n%s", wtxNew.ToString().c_str()); CRITICAL_BLOCK(cs_mapWallet) { // This is only to keep the database open to defeat the auto-flush for the // duration of this scope. This is the only place where this optimization // maybe makes sense; please don't do it anywhere else. CWalletDB walletdb("r"); // Take key pair from key pool so it won't be used again reservekey.KeepKey(); // Add tx to wallet, because if it has change it's also ours, // otherwise just for transaction history. AddToWallet(wtxNew); // Mark old coins as spent set setCoins; foreach(const CTxIn& txin, wtxNew.vin) setCoins.insert(&mapWallet[txin.prevout.hash]); foreach(CWalletTx* pcoin, setCoins) { pcoin->fSpent = true; pcoin->WriteToDisk(); vWalletUpdated.push_back(pcoin->GetHash()); } } // Track how many getdata requests our transaction gets CRITICAL_BLOCK(cs_mapRequestCount) mapRequestCount[wtxNew.GetHash()] = 0; // Broadcast if (!wtxNew.AcceptToMemoryPool()) { // This must not fail. The transaction has already been signed and recorded. printf("CommitTransaction() : Error: Transaction not valid"); return false; } wtxNew.RelayWalletTransaction(); } MainFrameRepaint(); return true; } string SendMoney(CScript scriptPubKey, int64 nValue, CWalletTx& wtxNew, bool fAskFee) { CRITICAL_BLOCK(cs_main) { CReserveKey reservekey; int64 nFeeRequired; if (!CreateTransaction(scriptPubKey, nValue, wtxNew, reservekey, nFeeRequired)) { string strError; if (nValue + nFeeRequired > GetBalance()) strError = strprintf(_("Error: This is an oversized transaction that requires a transaction fee of %s "), FormatMoney(nFeeRequired).c_str()); else strError = _("Error: Transaction creation failed "); printf("SendMoney() : %s", strError.c_str()); return strError; } if (fAskFee && !ThreadSafeAskFee(nFeeRequired, _("Sending..."), NULL)) return "ABORTED"; if (!CommitTransaction(wtxNew, reservekey)) return _("Error: The transaction was rejected. This might happen if some of the coins in your wallet were already spent, such as if you used a copy of wallet.dat and coins were spent in the copy but not marked as spent here."); } MainFrameRepaint(); return ""; } string SendMoneyToBitcoinAddress(string strAddress, int64 nValue, CWalletTx& wtxNew, bool fAskFee) { // Check amount if (nValue <= 0) return _("Invalid amount"); if (nValue + nTransactionFee > GetBalance()) return _("Insufficient funds"); // Parse bitcoin address CScript scriptPubKey; if (!scriptPubKey.SetBitcoinAddress(strAddress)) return _("Invalid bitcoin address"); return SendMoney(scriptPubKey, nValue, wtxNew, fAskFee); }