// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "interpreter.h" #include "core/transaction.h" #include "crypto/ripemd160.h" #include "crypto/sha1.h" #include "crypto/sha2.h" #include "eccryptoverify.h" #include "pubkey.h" #include "script/script.h" #include "uint256.h" using namespace std; typedef vector valtype; static const valtype vchFalse(0); static const valtype vchZero(0); static const valtype vchTrue(1, 1); static const CScriptNum bnZero(0); static const CScriptNum bnOne(1); static const CScriptNum bnFalse(0); static const CScriptNum bnTrue(1); namespace { inline bool set_success(ScriptError* ret) { if (ret) *ret = SCRIPT_ERR_OK; return true; } inline bool set_error(ScriptError* ret, const ScriptError serror) { if (ret) *ret = serror; return false; } } // anon namespace bool CastToBool(const valtype& vch) { for (unsigned int i = 0; i < vch.size(); i++) { if (vch[i] != 0) { // Can be negative zero if (i == vch.size()-1 && vch[i] == 0x80) return false; return true; } } return false; } /** * Script is a stack machine (like Forth) that evaluates a predicate * returning a bool indicating valid or not. There are no loops. */ #define stacktop(i) (stack.at(stack.size()+(i))) #define altstacktop(i) (altstack.at(altstack.size()+(i))) static inline void popstack(vector& stack) { if (stack.empty()) throw runtime_error("popstack() : stack empty"); stack.pop_back(); } bool static IsCompressedOrUncompressedPubKey(const valtype &vchPubKey) { if (vchPubKey.size() < 33) { // Non-canonical public key: too short return false; } if (vchPubKey[0] == 0x04) { if (vchPubKey.size() != 65) { // Non-canonical public key: invalid length for uncompressed key return false; } } else if (vchPubKey[0] == 0x02 || vchPubKey[0] == 0x03) { if (vchPubKey.size() != 33) { // Non-canonical public key: invalid length for compressed key return false; } } else { // Non-canonical public key: neither compressed nor uncompressed return false; } return true; } /** * A canonical signature exists of: <30> <02> <02> * Where R and S are not negative (their first byte has its highest bit not set), and not * excessively padded (do not start with a 0 byte, unless an otherwise negative number follows, * in which case a single 0 byte is necessary and even required). * * See https://bitcointalk.org/index.php?topic=8392.msg127623#msg127623 */ bool static IsDERSignature(const valtype &vchSig) { if (vchSig.size() < 9) { // Non-canonical signature: too short return false; } if (vchSig.size() > 73) { // Non-canonical signature: too long return false; } if (vchSig[0] != 0x30) { // Non-canonical signature: wrong type return false; } if (vchSig[1] != vchSig.size()-3) { // Non-canonical signature: wrong length marker return false; } unsigned int nLenR = vchSig[3]; if (5 + nLenR >= vchSig.size()) { // Non-canonical signature: S length misplaced return false; } unsigned int nLenS = vchSig[5+nLenR]; if ((unsigned long)(nLenR+nLenS+7) != vchSig.size()) { // Non-canonical signature: R+S length mismatch return false; } const unsigned char *R = &vchSig[4]; if (R[-2] != 0x02) { // Non-canonical signature: R value type mismatch return false; } if (nLenR == 0) { // Non-canonical signature: R length is zero return false; } if (R[0] & 0x80) { // Non-canonical signature: R value negative return false; } if (nLenR > 1 && (R[0] == 0x00) && !(R[1] & 0x80)) { // Non-canonical signature: R value excessively padded return false; } const unsigned char *S = &vchSig[6+nLenR]; if (S[-2] != 0x02) { // Non-canonical signature: S value type mismatch return false; } if (nLenS == 0) { // Non-canonical signature: S length is zero return false; } if (S[0] & 0x80) { // Non-canonical signature: S value negative return false; } if (nLenS > 1 && (S[0] == 0x00) && !(S[1] & 0x80)) { // Non-canonical signature: S value excessively padded return false; } return true; } bool static IsLowDERSignature(const valtype &vchSig, ScriptError* serror) { if (!IsDERSignature(vchSig)) { return set_error(serror, SCRIPT_ERR_SIG_DER); } unsigned int nLenR = vchSig[3]; unsigned int nLenS = vchSig[5+nLenR]; const unsigned char *S = &vchSig[6+nLenR]; // If the S value is above the order of the curve divided by two, its // complement modulo the order could have been used instead, which is // one byte shorter when encoded correctly. if (!eccrypto::CheckSignatureElement(S, nLenS, true)) return set_error(serror, SCRIPT_ERR_SIG_HIGH_S); return true; } bool static IsDefinedHashtypeSignature(const valtype &vchSig) { if (vchSig.size() == 0) { return false; } unsigned char nHashType = vchSig[vchSig.size() - 1] & (~(SIGHASH_ANYONECANPAY)); if (nHashType < SIGHASH_ALL || nHashType > SIGHASH_SINGLE) return false; return true; } bool static CheckSignatureEncoding(const valtype &vchSig, unsigned int flags, ScriptError* serror) { if ((flags & (SCRIPT_VERIFY_DERSIG | SCRIPT_VERIFY_LOW_S | SCRIPT_VERIFY_STRICTENC)) != 0 && !IsDERSignature(vchSig)) { return set_error(serror, SCRIPT_ERR_SIG_DER); } else if ((flags & SCRIPT_VERIFY_LOW_S) != 0 && !IsLowDERSignature(vchSig, serror)) { // serror is set return false; } else if ((flags & SCRIPT_VERIFY_STRICTENC) != 0 && !IsDefinedHashtypeSignature(vchSig)) { return set_error(serror, SCRIPT_ERR_SIG_HASHTYPE); } return true; } bool static CheckPubKeyEncoding(const valtype &vchSig, unsigned int flags, ScriptError* serror) { if ((flags & SCRIPT_VERIFY_STRICTENC) != 0 && !IsCompressedOrUncompressedPubKey(vchSig)) { return set_error(serror, SCRIPT_ERR_PUBKEYTYPE); } return true; } bool static CheckMinimalPush(const valtype& data, opcodetype opcode) { if (data.size() == 0) { // Could have used OP_0. return opcode == OP_0; } else if (data.size() == 1 && data[0] >= 1 && data[0] <= 16) { // Could have used OP_1 .. OP_16. return opcode == OP_1 + (data[0] - 1); } else if (data.size() == 1 && data[0] == 0x81) { // Could have used OP_1NEGATE. return opcode == OP_1NEGATE; } else if (data.size() <= 75) { // Could have used a direct push (opcode indicating number of bytes pushed + those bytes). return opcode == data.size(); } else if (data.size() <= 255) { // Could have used OP_PUSHDATA. return opcode == OP_PUSHDATA1; } else if (data.size() <= 65535) { // Could have used OP_PUSHDATA2. return opcode == OP_PUSHDATA2; } return true; } bool EvalScript(vector >& stack, const CScript& script, unsigned int flags, const BaseSignatureChecker& checker, ScriptError* serror) { CScript::const_iterator pc = script.begin(); CScript::const_iterator pend = script.end(); CScript::const_iterator pbegincodehash = script.begin(); opcodetype opcode; valtype vchPushValue; vector vfExec; vector altstack; set_error(serror, SCRIPT_ERR_UNKNOWN_ERROR); if (script.size() > 10000) return set_error(serror, SCRIPT_ERR_SCRIPT_SIZE); int nOpCount = 0; bool fRequireMinimal = (flags & SCRIPT_VERIFY_MINIMALDATA) != 0; try { while (pc < pend) { bool fExec = !count(vfExec.begin(), vfExec.end(), false); // // Read instruction // if (!script.GetOp(pc, opcode, vchPushValue)) return set_error(serror, SCRIPT_ERR_BAD_OPCODE); if (vchPushValue.size() > MAX_SCRIPT_ELEMENT_SIZE) return set_error(serror, SCRIPT_ERR_PUSH_SIZE); // Note how OP_RESERVED does not count towards the opcode limit. if (opcode > OP_16 && ++nOpCount > 201) return set_error(serror, SCRIPT_ERR_OP_COUNT); if (opcode == OP_CAT || opcode == OP_SUBSTR || opcode == OP_LEFT || opcode == OP_RIGHT || opcode == OP_INVERT || opcode == OP_AND || opcode == OP_OR || opcode == OP_XOR || opcode == OP_2MUL || opcode == OP_2DIV || opcode == OP_MUL || opcode == OP_DIV || opcode == OP_MOD || opcode == OP_LSHIFT || opcode == OP_RSHIFT) return set_error(serror, SCRIPT_ERR_DISABLED_OPCODE); // Disabled opcodes. if (fExec && 0 <= opcode && opcode <= OP_PUSHDATA4) { if (fRequireMinimal && !CheckMinimalPush(vchPushValue, opcode)) { return set_error(serror, SCRIPT_ERR_MINIMALDATA); } stack.push_back(vchPushValue); } else if (fExec || (OP_IF <= opcode && opcode <= OP_ENDIF)) switch (opcode) { // // Push value // case OP_1NEGATE: case OP_1: case OP_2: case OP_3: case OP_4: case OP_5: case OP_6: case OP_7: case OP_8: case OP_9: case OP_10: case OP_11: case OP_12: case OP_13: case OP_14: case OP_15: case OP_16: { // ( -- value) CScriptNum bn((int)opcode - (int)(OP_1 - 1)); stack.push_back(bn.getvch()); // The result of these opcodes should always be the minimal way to push the data // they push, so no need for a CheckMinimalPush here. } break; // // Control // case OP_NOP: break; case OP_NOP1: case OP_NOP2: case OP_NOP3: case OP_NOP4: case OP_NOP5: case OP_NOP6: case OP_NOP7: case OP_NOP8: case OP_NOP9: case OP_NOP10: { if (flags & SCRIPT_VERIFY_DISCOURAGE_UPGRADABLE_NOPS) return set_error(serror, SCRIPT_ERR_DISCOURAGE_UPGRADABLE_NOPS); } break; case OP_IF: case OP_NOTIF: { // if [statements] [else [statements]] endif bool fValue = false; if (fExec) { if (stack.size() < 1) return set_error(serror, SCRIPT_ERR_UNBALANCED_CONDITIONAL); valtype& vch = stacktop(-1); fValue = CastToBool(vch); if (opcode == OP_NOTIF) fValue = !fValue; popstack(stack); } vfExec.push_back(fValue); } break; case OP_ELSE: { if (vfExec.empty()) return set_error(serror, SCRIPT_ERR_UNBALANCED_CONDITIONAL); vfExec.back() = !vfExec.back(); } break; case OP_ENDIF: { if (vfExec.empty()) return set_error(serror, SCRIPT_ERR_UNBALANCED_CONDITIONAL); vfExec.pop_back(); } break; case OP_VERIFY: { // (true -- ) or // (false -- false) and return if (stack.size() < 1) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); bool fValue = CastToBool(stacktop(-1)); if (fValue) popstack(stack); else return set_error(serror, SCRIPT_ERR_VERIFY); } break; case OP_RETURN: { return set_error(serror, SCRIPT_ERR_OP_RETURN); } break; // // Stack ops // case OP_TOALTSTACK: { if (stack.size() < 1) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); altstack.push_back(stacktop(-1)); popstack(stack); } break; case OP_FROMALTSTACK: { if (altstack.size() < 1) return set_error(serror, SCRIPT_ERR_INVALID_ALTSTACK_OPERATION); stack.push_back(altstacktop(-1)); popstack(altstack); } break; case OP_2DROP: { // (x1 x2 -- ) if (stack.size() < 2) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); popstack(stack); popstack(stack); } break; case OP_2DUP: { // (x1 x2 -- x1 x2 x1 x2) if (stack.size() < 2) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); valtype vch1 = stacktop(-2); valtype vch2 = stacktop(-1); stack.push_back(vch1); stack.push_back(vch2); } break; case OP_3DUP: { // (x1 x2 x3 -- x1 x2 x3 x1 x2 x3) if (stack.size() < 3) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); valtype vch1 = stacktop(-3); valtype vch2 = stacktop(-2); valtype vch3 = stacktop(-1); stack.push_back(vch1); stack.push_back(vch2); stack.push_back(vch3); } break; case OP_2OVER: { // (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2) if (stack.size() < 4) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); valtype vch1 = stacktop(-4); valtype vch2 = stacktop(-3); stack.push_back(vch1); stack.push_back(vch2); } break; case OP_2ROT: { // (x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2) if (stack.size() < 6) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); valtype vch1 = stacktop(-6); valtype vch2 = stacktop(-5); stack.erase(stack.end()-6, stack.end()-4); stack.push_back(vch1); stack.push_back(vch2); } break; case OP_2SWAP: { // (x1 x2 x3 x4 -- x3 x4 x1 x2) if (stack.size() < 4) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); swap(stacktop(-4), stacktop(-2)); swap(stacktop(-3), stacktop(-1)); } break; case OP_IFDUP: { // (x - 0 | x x) if (stack.size() < 1) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); valtype vch = stacktop(-1); if (CastToBool(vch)) stack.push_back(vch); } break; case OP_DEPTH: { // -- stacksize CScriptNum bn(stack.size()); stack.push_back(bn.getvch()); } break; case OP_DROP: { // (x -- ) if (stack.size() < 1) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); popstack(stack); } break; case OP_DUP: { // (x -- x x) if (stack.size() < 1) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); valtype vch = stacktop(-1); stack.push_back(vch); } break; case OP_NIP: { // (x1 x2 -- x2) if (stack.size() < 2) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); stack.erase(stack.end() - 2); } break; case OP_OVER: { // (x1 x2 -- x1 x2 x1) if (stack.size() < 2) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); valtype vch = stacktop(-2); stack.push_back(vch); } break; case OP_PICK: case OP_ROLL: { // (xn ... x2 x1 x0 n - xn ... x2 x1 x0 xn) // (xn ... x2 x1 x0 n - ... x2 x1 x0 xn) if (stack.size() < 2) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); int n = CScriptNum(stacktop(-1), fRequireMinimal).getint(); popstack(stack); if (n < 0 || n >= (int)stack.size()) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); valtype vch = stacktop(-n-1); if (opcode == OP_ROLL) stack.erase(stack.end()-n-1); stack.push_back(vch); } break; case OP_ROT: { // (x1 x2 x3 -- x2 x3 x1) // x2 x1 x3 after first swap // x2 x3 x1 after second swap if (stack.size() < 3) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); swap(stacktop(-3), stacktop(-2)); swap(stacktop(-2), stacktop(-1)); } break; case OP_SWAP: { // (x1 x2 -- x2 x1) if (stack.size() < 2) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); swap(stacktop(-2), stacktop(-1)); } break; case OP_TUCK: { // (x1 x2 -- x2 x1 x2) if (stack.size() < 2) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); valtype vch = stacktop(-1); stack.insert(stack.end()-2, vch); } break; case OP_SIZE: { // (in -- in size) if (stack.size() < 1) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); CScriptNum bn(stacktop(-1).size()); stack.push_back(bn.getvch()); } break; // // Bitwise logic // case OP_EQUAL: case OP_EQUALVERIFY: //case OP_NOTEQUAL: // use OP_NUMNOTEQUAL { // (x1 x2 - bool) if (stack.size() < 2) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); valtype& vch1 = stacktop(-2); valtype& vch2 = stacktop(-1); bool fEqual = (vch1 == vch2); // OP_NOTEQUAL is disabled because it would be too easy to say // something like n != 1 and have some wiseguy pass in 1 with extra // zero bytes after it (numerically, 0x01 == 0x0001 == 0x000001) //if (opcode == OP_NOTEQUAL) // fEqual = !fEqual; popstack(stack); popstack(stack); stack.push_back(fEqual ? vchTrue : vchFalse); if (opcode == OP_EQUALVERIFY) { if (fEqual) popstack(stack); else return set_error(serror, SCRIPT_ERR_EQUALVERIFY); } } break; // // Numeric // case OP_1ADD: case OP_1SUB: case OP_NEGATE: case OP_ABS: case OP_NOT: case OP_0NOTEQUAL: { // (in -- out) if (stack.size() < 1) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); CScriptNum bn(stacktop(-1), fRequireMinimal); switch (opcode) { case OP_1ADD: bn += bnOne; break; case OP_1SUB: bn -= bnOne; break; case OP_NEGATE: bn = -bn; break; case OP_ABS: if (bn < bnZero) bn = -bn; break; case OP_NOT: bn = (bn == bnZero); break; case OP_0NOTEQUAL: bn = (bn != bnZero); break; default: assert(!"invalid opcode"); break; } popstack(stack); stack.push_back(bn.getvch()); } break; case OP_ADD: case OP_SUB: case OP_BOOLAND: case OP_BOOLOR: case OP_NUMEQUAL: case OP_NUMEQUALVERIFY: case OP_NUMNOTEQUAL: case OP_LESSTHAN: case OP_GREATERTHAN: case OP_LESSTHANOREQUAL: case OP_GREATERTHANOREQUAL: case OP_MIN: case OP_MAX: { // (x1 x2 -- out) if (stack.size() < 2) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); CScriptNum bn1(stacktop(-2), fRequireMinimal); CScriptNum bn2(stacktop(-1), fRequireMinimal); CScriptNum bn(0); switch (opcode) { case OP_ADD: bn = bn1 + bn2; break; case OP_SUB: bn = bn1 - bn2; break; case OP_BOOLAND: bn = (bn1 != bnZero && bn2 != bnZero); break; case OP_BOOLOR: bn = (bn1 != bnZero || bn2 != bnZero); break; case OP_NUMEQUAL: bn = (bn1 == bn2); break; case OP_NUMEQUALVERIFY: bn = (bn1 == bn2); break; case OP_NUMNOTEQUAL: bn = (bn1 != bn2); break; case OP_LESSTHAN: bn = (bn1 < bn2); break; case OP_GREATERTHAN: bn = (bn1 > bn2); break; case OP_LESSTHANOREQUAL: bn = (bn1 <= bn2); break; case OP_GREATERTHANOREQUAL: bn = (bn1 >= bn2); break; case OP_MIN: bn = (bn1 < bn2 ? bn1 : bn2); break; case OP_MAX: bn = (bn1 > bn2 ? bn1 : bn2); break; default: assert(!"invalid opcode"); break; } popstack(stack); popstack(stack); stack.push_back(bn.getvch()); if (opcode == OP_NUMEQUALVERIFY) { if (CastToBool(stacktop(-1))) popstack(stack); else return set_error(serror, SCRIPT_ERR_NUMEQUALVERIFY); } } break; case OP_WITHIN: { // (x min max -- out) if (stack.size() < 3) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); CScriptNum bn1(stacktop(-3), fRequireMinimal); CScriptNum bn2(stacktop(-2), fRequireMinimal); CScriptNum bn3(stacktop(-1), fRequireMinimal); bool fValue = (bn2 <= bn1 && bn1 < bn3); popstack(stack); popstack(stack); popstack(stack); stack.push_back(fValue ? vchTrue : vchFalse); } break; // // Crypto // case OP_RIPEMD160: case OP_SHA1: case OP_SHA256: case OP_HASH160: case OP_HASH256: { // (in -- hash) if (stack.size() < 1) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); valtype& vch = stacktop(-1); valtype vchHash((opcode == OP_RIPEMD160 || opcode == OP_SHA1 || opcode == OP_HASH160) ? 20 : 32); if (opcode == OP_RIPEMD160) CRIPEMD160().Write(begin_ptr(vch), vch.size()).Finalize(begin_ptr(vchHash)); else if (opcode == OP_SHA1) CSHA1().Write(begin_ptr(vch), vch.size()).Finalize(begin_ptr(vchHash)); else if (opcode == OP_SHA256) CSHA256().Write(begin_ptr(vch), vch.size()).Finalize(begin_ptr(vchHash)); else if (opcode == OP_HASH160) CHash160().Write(begin_ptr(vch), vch.size()).Finalize(begin_ptr(vchHash)); else if (opcode == OP_HASH256) CHash256().Write(begin_ptr(vch), vch.size()).Finalize(begin_ptr(vchHash)); popstack(stack); stack.push_back(vchHash); } break; case OP_CODESEPARATOR: { // Hash starts after the code separator pbegincodehash = pc; } break; case OP_CHECKSIG: case OP_CHECKSIGVERIFY: { // (sig pubkey -- bool) if (stack.size() < 2) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); valtype& vchSig = stacktop(-2); valtype& vchPubKey = stacktop(-1); // Subset of script starting at the most recent codeseparator CScript scriptCode(pbegincodehash, pend); // Drop the signature, since there's no way for a signature to sign itself scriptCode.FindAndDelete(CScript(vchSig)); if (!CheckSignatureEncoding(vchSig, flags, serror) || !CheckPubKeyEncoding(vchPubKey, flags, serror)) { //serror is set return false; } bool fSuccess = checker.CheckSig(vchSig, vchPubKey, scriptCode); popstack(stack); popstack(stack); stack.push_back(fSuccess ? vchTrue : vchFalse); if (opcode == OP_CHECKSIGVERIFY) { if (fSuccess) popstack(stack); else return set_error(serror, SCRIPT_ERR_CHECKSIGVERIFY); } } break; case OP_CHECKMULTISIG: case OP_CHECKMULTISIGVERIFY: { // ([sig ...] num_of_signatures [pubkey ...] num_of_pubkeys -- bool) int i = 1; if ((int)stack.size() < i) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); int nKeysCount = CScriptNum(stacktop(-i), fRequireMinimal).getint(); if (nKeysCount < 0 || nKeysCount > 20) return set_error(serror, SCRIPT_ERR_PUBKEY_COUNT); nOpCount += nKeysCount; if (nOpCount > 201) return set_error(serror, SCRIPT_ERR_OP_COUNT); int ikey = ++i; i += nKeysCount; if ((int)stack.size() < i) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); int nSigsCount = CScriptNum(stacktop(-i), fRequireMinimal).getint(); if (nSigsCount < 0 || nSigsCount > nKeysCount) return set_error(serror, SCRIPT_ERR_SIG_COUNT); int isig = ++i; i += nSigsCount; if ((int)stack.size() < i) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); // Subset of script starting at the most recent codeseparator CScript scriptCode(pbegincodehash, pend); // Drop the signatures, since there's no way for a signature to sign itself for (int k = 0; k < nSigsCount; k++) { valtype& vchSig = stacktop(-isig-k); scriptCode.FindAndDelete(CScript(vchSig)); } bool fSuccess = true; while (fSuccess && nSigsCount > 0) { valtype& vchSig = stacktop(-isig); valtype& vchPubKey = stacktop(-ikey); // Note how this makes the exact order of pubkey/signature evaluation // distinguishable by CHECKMULTISIG NOT if the STRICTENC flag is set. // See the script_(in)valid tests for details. if (!CheckSignatureEncoding(vchSig, flags, serror) || !CheckPubKeyEncoding(vchPubKey, flags, serror)) { // serror is set return false; } // Check signature bool fOk = checker.CheckSig(vchSig, vchPubKey, scriptCode); if (fOk) { isig++; nSigsCount--; } ikey++; nKeysCount--; // If there are more signatures left than keys left, // then too many signatures have failed. Exit early, // without checking any further signatures. if (nSigsCount > nKeysCount) fSuccess = false; } // Clean up stack of actual arguments while (i-- > 1) popstack(stack); // A bug causes CHECKMULTISIG to consume one extra argument // whose contents were not checked in any way. // // Unfortunately this is a potential source of mutability, // so optionally verify it is exactly equal to zero prior // to removing it from the stack. if (stack.size() < 1) return set_error(serror, SCRIPT_ERR_INVALID_STACK_OPERATION); if ((flags & SCRIPT_VERIFY_NULLDUMMY) && stacktop(-1).size()) return set_error(serror, SCRIPT_ERR_SIG_NULLDUMMY); popstack(stack); stack.push_back(fSuccess ? vchTrue : vchFalse); if (opcode == OP_CHECKMULTISIGVERIFY) { if (fSuccess) popstack(stack); else return set_error(serror, SCRIPT_ERR_CHECKMULTISIGVERIFY); } } break; default: return set_error(serror, SCRIPT_ERR_BAD_OPCODE); } // Size limits if (stack.size() + altstack.size() > 1000) return set_error(serror, SCRIPT_ERR_STACK_SIZE); } } catch (...) { return set_error(serror, SCRIPT_ERR_UNKNOWN_ERROR); } if (!vfExec.empty()) return set_error(serror, SCRIPT_ERR_UNBALANCED_CONDITIONAL); return set_success(serror); } namespace { /** * Wrapper that serializes like CTransaction, but with the modifications * required for the signature hash done in-place */ class CTransactionSignatureSerializer { private: const CTransaction &txTo; //! reference to the spending transaction (the one being serialized) const CScript &scriptCode; //! output script being consumed const unsigned int nIn; //! input index of txTo being signed const bool fAnyoneCanPay; //! whether the hashtype has the SIGHASH_ANYONECANPAY flag set const bool fHashSingle; //! whether the hashtype is SIGHASH_SINGLE const bool fHashNone; //! whether the hashtype is SIGHASH_NONE public: CTransactionSignatureSerializer(const CTransaction &txToIn, const CScript &scriptCodeIn, unsigned int nInIn, int nHashTypeIn) : txTo(txToIn), scriptCode(scriptCodeIn), nIn(nInIn), fAnyoneCanPay(!!(nHashTypeIn & SIGHASH_ANYONECANPAY)), fHashSingle((nHashTypeIn & 0x1f) == SIGHASH_SINGLE), fHashNone((nHashTypeIn & 0x1f) == SIGHASH_NONE) {} /** Serialize the passed scriptCode, skipping OP_CODESEPARATORs */ template void SerializeScriptCode(S &s, int nType, int nVersion) const { CScript::const_iterator it = scriptCode.begin(); CScript::const_iterator itBegin = it; opcodetype opcode; unsigned int nCodeSeparators = 0; while (scriptCode.GetOp(it, opcode)) { if (opcode == OP_CODESEPARATOR) nCodeSeparators++; } ::WriteCompactSize(s, scriptCode.size() - nCodeSeparators); it = itBegin; while (scriptCode.GetOp(it, opcode)) { if (opcode == OP_CODESEPARATOR) { s.write((char*)&itBegin[0], it-itBegin-1); itBegin = it; } } if (itBegin != scriptCode.end()) s.write((char*)&itBegin[0], it-itBegin); } /** Serialize an input of txTo */ template void SerializeInput(S &s, unsigned int nInput, int nType, int nVersion) const { // In case of SIGHASH_ANYONECANPAY, only the input being signed is serialized if (fAnyoneCanPay) nInput = nIn; // Serialize the prevout ::Serialize(s, txTo.vin[nInput].prevout, nType, nVersion); // Serialize the script if (nInput != nIn) // Blank out other inputs' signatures ::Serialize(s, CScript(), nType, nVersion); else SerializeScriptCode(s, nType, nVersion); // Serialize the nSequence if (nInput != nIn && (fHashSingle || fHashNone)) // let the others update at will ::Serialize(s, (int)0, nType, nVersion); else ::Serialize(s, txTo.vin[nInput].nSequence, nType, nVersion); } /** Serialize an output of txTo */ template void SerializeOutput(S &s, unsigned int nOutput, int nType, int nVersion) const { if (fHashSingle && nOutput != nIn) // Do not lock-in the txout payee at other indices as txin ::Serialize(s, CTxOut(), nType, nVersion); else ::Serialize(s, txTo.vout[nOutput], nType, nVersion); } /** Serialize txTo */ template void Serialize(S &s, int nType, int nVersion) const { // Serialize nVersion ::Serialize(s, txTo.nVersion, nType, nVersion); // Serialize vin unsigned int nInputs = fAnyoneCanPay ? 1 : txTo.vin.size(); ::WriteCompactSize(s, nInputs); for (unsigned int nInput = 0; nInput < nInputs; nInput++) SerializeInput(s, nInput, nType, nVersion); // Serialize vout unsigned int nOutputs = fHashNone ? 0 : (fHashSingle ? nIn+1 : txTo.vout.size()); ::WriteCompactSize(s, nOutputs); for (unsigned int nOutput = 0; nOutput < nOutputs; nOutput++) SerializeOutput(s, nOutput, nType, nVersion); // Serialize nLockTime ::Serialize(s, txTo.nLockTime, nType, nVersion); } }; } // anon namespace uint256 SignatureHash(const CScript& scriptCode, const CTransaction& txTo, unsigned int nIn, int nHashType) { if (nIn >= txTo.vin.size()) { // nIn out of range return 1; } // Check for invalid use of SIGHASH_SINGLE if ((nHashType & 0x1f) == SIGHASH_SINGLE) { if (nIn >= txTo.vout.size()) { // nOut out of range return 1; } } // Wrapper to serialize only the necessary parts of the transaction being signed CTransactionSignatureSerializer txTmp(txTo, scriptCode, nIn, nHashType); // Serialize and hash CHashWriter ss(SER_GETHASH, 0); ss << txTmp << nHashType; return ss.GetHash(); } bool SignatureChecker::VerifySignature(const std::vector& vchSig, const CPubKey& pubkey, const uint256& sighash) const { return pubkey.Verify(sighash, vchSig); } bool SignatureChecker::CheckSig(const vector& vchSigIn, const vector& vchPubKey, const CScript& scriptCode) const { CPubKey pubkey(vchPubKey); if (!pubkey.IsValid()) return false; // Hash type is one byte tacked on to the end of the signature vector vchSig(vchSigIn); if (vchSig.empty()) return false; int nHashType = vchSig.back(); vchSig.pop_back(); uint256 sighash = SignatureHash(scriptCode, txTo, nIn, nHashType); if (!VerifySignature(vchSig, pubkey, sighash)) return false; return true; } bool VerifyScript(const CScript& scriptSig, const CScript& scriptPubKey, unsigned int flags, const BaseSignatureChecker& checker, ScriptError* serror) { set_error(serror, SCRIPT_ERR_UNKNOWN_ERROR); if ((flags & SCRIPT_VERIFY_SIGPUSHONLY) != 0 && !scriptSig.IsPushOnly()) { return set_error(serror, SCRIPT_ERR_SIG_PUSHONLY); } vector > stack, stackCopy; if (!EvalScript(stack, scriptSig, flags, checker, serror)) // serror is set return false; if (flags & SCRIPT_VERIFY_P2SH) stackCopy = stack; if (!EvalScript(stack, scriptPubKey, flags, checker, serror)) // serror is set return false; if (stack.empty()) return set_error(serror, SCRIPT_ERR_EVAL_FALSE); if (CastToBool(stack.back()) == false) return set_error(serror, SCRIPT_ERR_EVAL_FALSE); // Additional validation for spend-to-script-hash transactions: if ((flags & SCRIPT_VERIFY_P2SH) && scriptPubKey.IsPayToScriptHash()) { // scriptSig must be literals-only or validation fails if (!scriptSig.IsPushOnly()) return set_error(serror, SCRIPT_ERR_SIG_PUSHONLY); // Restore stack. swap(stack, stackCopy); // stack cannot be empty here, because if it was the // P2SH HASH <> EQUAL scriptPubKey would be evaluated with // an empty stack and the EvalScript above would return false. assert(!stack.empty()); const valtype& pubKeySerialized = stack.back(); CScript pubKey2(pubKeySerialized.begin(), pubKeySerialized.end()); popstack(stack); if (!EvalScript(stack, pubKey2, flags, checker, serror)) // serror is set return false; if (stack.empty()) return set_error(serror, SCRIPT_ERR_EVAL_FALSE); if (!CastToBool(stack.back())) return set_error(serror, SCRIPT_ERR_EVAL_FALSE); } // The CLEANSTACK check is only performed after potential P2SH evaluation, // as the non-P2SH evaluation of a P2SH script will obviously not result in // a clean stack (the P2SH inputs remain). if ((flags & SCRIPT_VERIFY_CLEANSTACK) != 0) { // Disallow CLEANSTACK without P2SH, as otherwise a switch CLEANSTACK->P2SH+CLEANSTACK // would be possible, which is not a softfork (and P2SH should be one). assert((flags & SCRIPT_VERIFY_P2SH) != 0); if (stack.size() != 1) { return set_error(serror, SCRIPT_ERR_CLEANSTACK); } } return set_success(serror); }