lbrycrd/test/functional/p2p-segwit.py
2017-11-13 17:43:39 -05:00

1944 lines
88 KiB
Python
Executable file

#!/usr/bin/env python3
# Copyright (c) 2016 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test segwit transactions and blocks on P2P network."""
from test_framework.mininode import *
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import *
from test_framework.script import *
from test_framework.blocktools import create_block, create_coinbase, add_witness_commitment, get_witness_script, WITNESS_COMMITMENT_HEADER
from test_framework.key import CECKey, CPubKey
import time
import random
from binascii import hexlify
# The versionbit bit used to signal activation of SegWit
VB_WITNESS_BIT = 1
VB_PERIOD = 144
VB_TOP_BITS = 0x20000000
MAX_SIGOP_COST = 80000
# Calculate the virtual size of a witness block:
# (base + witness/4)
def get_virtual_size(witness_block):
base_size = len(witness_block.serialize())
total_size = len(witness_block.serialize(with_witness=True))
# the "+3" is so we round up
vsize = int((3*base_size + total_size + 3)/4)
return vsize
class TestNode(NodeConnCB):
def __init__(self, rpc):
super().__init__()
self.getdataset = set()
self.rpc = rpc
def on_getdata(self, conn, message):
for inv in message.inv:
self.getdataset.add(inv.hash)
def announce_tx_and_wait_for_getdata(self, tx, timeout=60):
with mininode_lock:
self.last_message.pop("getdata", None)
self.send_message(msg_inv(inv=[CInv(1, tx.sha256)]))
self.wait_for_getdata(timeout)
def announce_block_and_wait_for_getdata(self, block, use_header, timeout=60):
with mininode_lock:
self.last_message.pop("getdata", None)
self.last_message.pop("getheaders", None)
msg = msg_headers()
msg.headers = [ CBlockHeader(block) ]
if use_header:
self.send_message(msg)
else:
self.send_message(msg_inv(inv=[CInv(2, block.sha256)]))
self.wait_for_getheaders()
self.send_message(msg)
self.wait_for_getdata()
def request_block(self, blockhash, inv_type, timeout=60):
with mininode_lock:
self.last_message.pop("block", None)
self.send_message(msg_getdata(inv=[CInv(inv_type, blockhash)]))
self.wait_for_block(blockhash, timeout)
return self.last_message["block"].block
def test_transaction_acceptance(self, tx, with_witness, accepted, reason=None):
tx_message = msg_tx(tx)
if with_witness:
tx_message = msg_witness_tx(tx)
self.send_message(tx_message)
self.sync_with_ping()
assert_equal(tx.hash in self.rpc.getrawmempool(), accepted)
if (reason != None and not accepted):
# Check the rejection reason as well.
with mininode_lock:
assert_equal(self.last_message["reject"].reason, reason)
# Test whether a witness block had the correct effect on the tip
def test_witness_block(self, block, accepted, with_witness=True):
if with_witness:
self.send_message(msg_witness_block(block))
else:
self.send_message(msg_block(block))
self.sync_with_ping()
assert_equal(self.rpc.getbestblockhash() == block.hash, accepted)
# Used to keep track of anyone-can-spend outputs that we can use in the tests
class UTXO():
def __init__(self, sha256, n, nValue):
self.sha256 = sha256
self.n = n
self.nValue = nValue
# Helper for getting the script associated with a P2PKH
def GetP2PKHScript(pubkeyhash):
return CScript([CScriptOp(OP_DUP), CScriptOp(OP_HASH160), pubkeyhash, CScriptOp(OP_EQUALVERIFY), CScriptOp(OP_CHECKSIG)])
# Add signature for a P2PK witness program.
def sign_P2PK_witness_input(script, txTo, inIdx, hashtype, value, key):
tx_hash = SegwitVersion1SignatureHash(script, txTo, inIdx, hashtype, value)
signature = key.sign(tx_hash) + chr(hashtype).encode('latin-1')
txTo.wit.vtxinwit[inIdx].scriptWitness.stack = [signature, script]
txTo.rehash()
class SegWitTest(BitcoinTestFramework):
def set_test_params(self):
self.setup_clean_chain = True
self.num_nodes = 3
# This test tests SegWit both pre and post-activation, so use the normal BIP9 activation.
self.extra_args = [["-whitelist=127.0.0.1", "-vbparams=segwit:0:999999999999"], ["-whitelist=127.0.0.1", "-acceptnonstdtxn=0", "-vbparams=segwit:0:999999999999"], ["-whitelist=127.0.0.1", "-vbparams=segwit:0:0"]]
def setup_network(self):
self.setup_nodes()
connect_nodes(self.nodes[0], 1)
connect_nodes(self.nodes[0], 2)
self.sync_all()
''' Helpers '''
# Build a block on top of node0's tip.
def build_next_block(self, nVersion=4):
tip = self.nodes[0].getbestblockhash()
height = self.nodes[0].getblockcount() + 1
block_time = self.nodes[0].getblockheader(tip)["mediantime"] + 1
block = create_block(int(tip, 16), create_coinbase(height), block_time)
block.nVersion = nVersion
block.rehash()
return block
# Adds list of transactions to block, adds witness commitment, then solves.
def update_witness_block_with_transactions(self, block, tx_list, nonce=0):
block.vtx.extend(tx_list)
add_witness_commitment(block, nonce)
block.solve()
return
''' Individual tests '''
def test_witness_services(self):
self.log.info("Verifying NODE_WITNESS service bit")
assert((self.test_node.connection.nServices & NODE_WITNESS) != 0)
# See if sending a regular transaction works, and create a utxo
# to use in later tests.
def test_non_witness_transaction(self):
# Mine a block with an anyone-can-spend coinbase,
# let it mature, then try to spend it.
self.log.info("Testing non-witness transaction")
block = self.build_next_block(nVersion=1)
block.solve()
self.test_node.send_message(msg_block(block))
self.test_node.sync_with_ping() # make sure the block was processed
txid = block.vtx[0].sha256
self.nodes[0].generate(99) # let the block mature
# Create a transaction that spends the coinbase
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(txid, 0), b""))
tx.vout.append(CTxOut(49*100000000, CScript([OP_TRUE])))
tx.calc_sha256()
# Check that serializing it with or without witness is the same
# This is a sanity check of our testing framework.
assert_equal(msg_tx(tx).serialize(), msg_witness_tx(tx).serialize())
self.test_node.send_message(msg_witness_tx(tx))
self.test_node.sync_with_ping() # make sure the tx was processed
assert(tx.hash in self.nodes[0].getrawmempool())
# Save this transaction for later
self.utxo.append(UTXO(tx.sha256, 0, 49*100000000))
self.nodes[0].generate(1)
# Verify that blocks with witnesses are rejected before activation.
def test_unnecessary_witness_before_segwit_activation(self):
self.log.info("Testing behavior of unnecessary witnesses")
# For now, rely on earlier tests to have created at least one utxo for
# us to use
assert(len(self.utxo) > 0)
assert(get_bip9_status(self.nodes[0], 'segwit')['status'] != 'active')
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, CScript([OP_TRUE])))
tx.wit.vtxinwit.append(CTxInWitness())
tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([CScriptNum(1)])]
# Verify the hash with witness differs from the txid
# (otherwise our testing framework must be broken!)
tx.rehash()
assert(tx.sha256 != tx.calc_sha256(with_witness=True))
# Construct a segwit-signaling block that includes the transaction.
block = self.build_next_block(nVersion=(VB_TOP_BITS|(1 << VB_WITNESS_BIT)))
self.update_witness_block_with_transactions(block, [tx])
# Sending witness data before activation is not allowed (anti-spam
# rule).
self.test_node.test_witness_block(block, accepted=False)
# TODO: fix synchronization so we can test reject reason
# Right now, bitcoind delays sending reject messages for blocks
# until the future, making synchronization here difficult.
#assert_equal(self.test_node.last_message["reject"].reason, "unexpected-witness")
# But it should not be permanently marked bad...
# Resend without witness information.
self.test_node.send_message(msg_block(block))
self.test_node.sync_with_ping()
assert_equal(self.nodes[0].getbestblockhash(), block.hash)
sync_blocks(self.nodes)
# Create a p2sh output -- this is so we can pass the standardness
# rules (an anyone-can-spend OP_TRUE would be rejected, if not wrapped
# in P2SH).
p2sh_program = CScript([OP_TRUE])
p2sh_pubkey = hash160(p2sh_program)
scriptPubKey = CScript([OP_HASH160, p2sh_pubkey, OP_EQUAL])
# Now check that unnecessary witnesses can't be used to blind a node
# to a transaction, eg by violating standardness checks.
tx2 = CTransaction()
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b""))
tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, scriptPubKey))
tx2.rehash()
self.test_node.test_transaction_acceptance(tx2, False, True)
self.nodes[0].generate(1)
sync_blocks(self.nodes)
# We'll add an unnecessary witness to this transaction that would cause
# it to be non-standard, to test that violating policy with a witness before
# segwit activation doesn't blind a node to a transaction. Transactions
# rejected for having a witness before segwit activation shouldn't be added
# to the rejection cache.
tx3 = CTransaction()
tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), CScript([p2sh_program])))
tx3.vout.append(CTxOut(tx2.vout[0].nValue-1000, scriptPubKey))
tx3.wit.vtxinwit.append(CTxInWitness())
tx3.wit.vtxinwit[0].scriptWitness.stack = [b'a'*400000]
tx3.rehash()
# Note that this should be rejected for the premature witness reason,
# rather than a policy check, since segwit hasn't activated yet.
self.std_node.test_transaction_acceptance(tx3, True, False, b'no-witness-yet')
# If we send without witness, it should be accepted.
self.std_node.test_transaction_acceptance(tx3, False, True)
# Now create a new anyone-can-spend utxo for the next test.
tx4 = CTransaction()
tx4.vin.append(CTxIn(COutPoint(tx3.sha256, 0), CScript([p2sh_program])))
tx4.vout.append(CTxOut(tx3.vout[0].nValue-1000, CScript([OP_TRUE])))
tx4.rehash()
self.test_node.test_transaction_acceptance(tx3, False, True)
self.test_node.test_transaction_acceptance(tx4, False, True)
self.nodes[0].generate(1)
sync_blocks(self.nodes)
# Update our utxo list; we spent the first entry.
self.utxo.pop(0)
self.utxo.append(UTXO(tx4.sha256, 0, tx4.vout[0].nValue))
# Mine enough blocks for segwit's vb state to be 'started'.
def advance_to_segwit_started(self):
height = self.nodes[0].getblockcount()
# Will need to rewrite the tests here if we are past the first period
assert(height < VB_PERIOD - 1)
# Genesis block is 'defined'.
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'defined')
# Advance to end of period, status should now be 'started'
self.nodes[0].generate(VB_PERIOD-height-1)
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'started')
# Mine enough blocks to lock in segwit, but don't activate.
# TODO: we could verify that lockin only happens at the right threshold of
# signalling blocks, rather than just at the right period boundary.
def advance_to_segwit_lockin(self):
height = self.nodes[0].getblockcount()
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'started')
# Advance to end of period, and verify lock-in happens at the end
self.nodes[0].generate(VB_PERIOD-1)
height = self.nodes[0].getblockcount()
assert((height % VB_PERIOD) == VB_PERIOD - 2)
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'started')
self.nodes[0].generate(1)
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'locked_in')
# Mine enough blocks to activate segwit.
# TODO: we could verify that activation only happens at the right threshold
# of signalling blocks, rather than just at the right period boundary.
def advance_to_segwit_active(self):
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'locked_in')
height = self.nodes[0].getblockcount()
self.nodes[0].generate(VB_PERIOD - (height%VB_PERIOD) - 2)
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'locked_in')
self.nodes[0].generate(1)
assert_equal(get_bip9_status(self.nodes[0], 'segwit')['status'], 'active')
# This test can only be run after segwit has activated
def test_witness_commitments(self):
self.log.info("Testing witness commitments")
# First try a correct witness commitment.
block = self.build_next_block()
add_witness_commitment(block)
block.solve()
# Test the test -- witness serialization should be different
assert(msg_witness_block(block).serialize() != msg_block(block).serialize())
# This empty block should be valid.
self.test_node.test_witness_block(block, accepted=True)
# Try to tweak the nonce
block_2 = self.build_next_block()
add_witness_commitment(block_2, nonce=28)
block_2.solve()
# The commitment should have changed!
assert(block_2.vtx[0].vout[-1] != block.vtx[0].vout[-1])
# This should also be valid.
self.test_node.test_witness_block(block_2, accepted=True)
# Now test commitments with actual transactions
assert (len(self.utxo) > 0)
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
# Let's construct a witness program
witness_program = CScript([OP_TRUE])
witness_hash = sha256(witness_program)
scriptPubKey = CScript([OP_0, witness_hash])
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey))
tx.rehash()
# tx2 will spend tx1, and send back to a regular anyone-can-spend address
tx2 = CTransaction()
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b""))
tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, witness_program))
tx2.wit.vtxinwit.append(CTxInWitness())
tx2.wit.vtxinwit[0].scriptWitness.stack = [witness_program]
tx2.rehash()
block_3 = self.build_next_block()
self.update_witness_block_with_transactions(block_3, [tx, tx2], nonce=1)
# Add an extra OP_RETURN output that matches the witness commitment template,
# even though it has extra data after the incorrect commitment.
# This block should fail.
block_3.vtx[0].vout.append(CTxOut(0, CScript([OP_RETURN, WITNESS_COMMITMENT_HEADER + ser_uint256(2), 10])))
block_3.vtx[0].rehash()
block_3.hashMerkleRoot = block_3.calc_merkle_root()
block_3.rehash()
block_3.solve()
self.test_node.test_witness_block(block_3, accepted=False)
# Add a different commitment with different nonce, but in the
# right location, and with some funds burned(!).
# This should succeed (nValue shouldn't affect finding the
# witness commitment).
add_witness_commitment(block_3, nonce=0)
block_3.vtx[0].vout[0].nValue -= 1
block_3.vtx[0].vout[-1].nValue += 1
block_3.vtx[0].rehash()
block_3.hashMerkleRoot = block_3.calc_merkle_root()
block_3.rehash()
assert(len(block_3.vtx[0].vout) == 4) # 3 OP_returns
block_3.solve()
self.test_node.test_witness_block(block_3, accepted=True)
# Finally test that a block with no witness transactions can
# omit the commitment.
block_4 = self.build_next_block()
tx3 = CTransaction()
tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b""))
tx3.vout.append(CTxOut(tx.vout[0].nValue-1000, witness_program))
tx3.rehash()
block_4.vtx.append(tx3)
block_4.hashMerkleRoot = block_4.calc_merkle_root()
block_4.solve()
self.test_node.test_witness_block(block_4, with_witness=False, accepted=True)
# Update available utxo's for use in later test.
self.utxo.pop(0)
self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue))
def test_block_malleability(self):
self.log.info("Testing witness block malleability")
# Make sure that a block that has too big a virtual size
# because of a too-large coinbase witness is not permanently
# marked bad.
block = self.build_next_block()
add_witness_commitment(block)
block.solve()
block.vtx[0].wit.vtxinwit[0].scriptWitness.stack.append(b'a'*5000000)
assert(get_virtual_size(block) > MAX_BLOCK_BASE_SIZE)
# We can't send over the p2p network, because this is too big to relay
# TODO: repeat this test with a block that can be relayed
self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True)))
assert(self.nodes[0].getbestblockhash() != block.hash)
block.vtx[0].wit.vtxinwit[0].scriptWitness.stack.pop()
assert(get_virtual_size(block) < MAX_BLOCK_BASE_SIZE)
self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True)))
assert(self.nodes[0].getbestblockhash() == block.hash)
# Now make sure that malleating the witness nonce doesn't
# result in a block permanently marked bad.
block = self.build_next_block()
add_witness_commitment(block)
block.solve()
# Change the nonce -- should not cause the block to be permanently
# failed
block.vtx[0].wit.vtxinwit[0].scriptWitness.stack = [ ser_uint256(1) ]
self.test_node.test_witness_block(block, accepted=False)
# Changing the witness nonce doesn't change the block hash
block.vtx[0].wit.vtxinwit[0].scriptWitness.stack = [ ser_uint256(0) ]
self.test_node.test_witness_block(block, accepted=True)
def test_witness_block_size(self):
self.log.info("Testing witness block size limit")
# TODO: Test that non-witness carrying blocks can't exceed 1MB
# Skipping this test for now; this is covered in p2p-fullblocktest.py
# Test that witness-bearing blocks are limited at ceil(base + wit/4) <= 1MB.
block = self.build_next_block()
assert(len(self.utxo) > 0)
# Create a P2WSH transaction.
# The witness program will be a bunch of OP_2DROP's, followed by OP_TRUE.
# This should give us plenty of room to tweak the spending tx's
# virtual size.
NUM_DROPS = 200 # 201 max ops per script!
NUM_OUTPUTS = 50
witness_program = CScript([OP_2DROP]*NUM_DROPS + [OP_TRUE])
witness_hash = uint256_from_str(sha256(witness_program))
scriptPubKey = CScript([OP_0, ser_uint256(witness_hash)])
prevout = COutPoint(self.utxo[0].sha256, self.utxo[0].n)
value = self.utxo[0].nValue
parent_tx = CTransaction()
parent_tx.vin.append(CTxIn(prevout, b""))
child_value = int(value/NUM_OUTPUTS)
for i in range(NUM_OUTPUTS):
parent_tx.vout.append(CTxOut(child_value, scriptPubKey))
parent_tx.vout[0].nValue -= 50000
assert(parent_tx.vout[0].nValue > 0)
parent_tx.rehash()
child_tx = CTransaction()
for i in range(NUM_OUTPUTS):
child_tx.vin.append(CTxIn(COutPoint(parent_tx.sha256, i), b""))
child_tx.vout = [CTxOut(value - 100000, CScript([OP_TRUE]))]
for i in range(NUM_OUTPUTS):
child_tx.wit.vtxinwit.append(CTxInWitness())
child_tx.wit.vtxinwit[-1].scriptWitness.stack = [b'a'*195]*(2*NUM_DROPS) + [witness_program]
child_tx.rehash()
self.update_witness_block_with_transactions(block, [parent_tx, child_tx])
vsize = get_virtual_size(block)
additional_bytes = (MAX_BLOCK_BASE_SIZE - vsize)*4
i = 0
while additional_bytes > 0:
# Add some more bytes to each input until we hit MAX_BLOCK_BASE_SIZE+1
extra_bytes = min(additional_bytes+1, 55)
block.vtx[-1].wit.vtxinwit[int(i/(2*NUM_DROPS))].scriptWitness.stack[i%(2*NUM_DROPS)] = b'a'*(195+extra_bytes)
additional_bytes -= extra_bytes
i += 1
block.vtx[0].vout.pop() # Remove old commitment
add_witness_commitment(block)
block.solve()
vsize = get_virtual_size(block)
assert_equal(vsize, MAX_BLOCK_BASE_SIZE + 1)
# Make sure that our test case would exceed the old max-network-message
# limit
assert(len(block.serialize(True)) > 2*1024*1024)
self.test_node.test_witness_block(block, accepted=False)
# Now resize the second transaction to make the block fit.
cur_length = len(block.vtx[-1].wit.vtxinwit[0].scriptWitness.stack[0])
block.vtx[-1].wit.vtxinwit[0].scriptWitness.stack[0] = b'a'*(cur_length-1)
block.vtx[0].vout.pop()
add_witness_commitment(block)
block.solve()
assert(get_virtual_size(block) == MAX_BLOCK_BASE_SIZE)
self.test_node.test_witness_block(block, accepted=True)
# Update available utxo's
self.utxo.pop(0)
self.utxo.append(UTXO(block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue))
# submitblock will try to add the nonce automatically, so that mining
# software doesn't need to worry about doing so itself.
def test_submit_block(self):
block = self.build_next_block()
# Try using a custom nonce and then don't supply it.
# This shouldn't possibly work.
add_witness_commitment(block, nonce=1)
block.vtx[0].wit = CTxWitness() # drop the nonce
block.solve()
self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True)))
assert(self.nodes[0].getbestblockhash() != block.hash)
# Now redo commitment with the standard nonce, but let bitcoind fill it in.
add_witness_commitment(block, nonce=0)
block.vtx[0].wit = CTxWitness()
block.solve()
self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True)))
assert_equal(self.nodes[0].getbestblockhash(), block.hash)
# This time, add a tx with non-empty witness, but don't supply
# the commitment.
block_2 = self.build_next_block()
add_witness_commitment(block_2)
block_2.solve()
# Drop commitment and nonce -- submitblock should not fill in.
block_2.vtx[0].vout.pop()
block_2.vtx[0].wit = CTxWitness()
self.nodes[0].submitblock(bytes_to_hex_str(block_2.serialize(True)))
# Tip should not advance!
assert(self.nodes[0].getbestblockhash() != block_2.hash)
# Consensus tests of extra witness data in a transaction.
def test_extra_witness_data(self):
self.log.info("Testing extra witness data in tx")
assert(len(self.utxo) > 0)
block = self.build_next_block()
witness_program = CScript([OP_DROP, OP_TRUE])
witness_hash = sha256(witness_program)
scriptPubKey = CScript([OP_0, witness_hash])
# First try extra witness data on a tx that doesn't require a witness
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
tx.vout.append(CTxOut(self.utxo[0].nValue-2000, scriptPubKey))
tx.vout.append(CTxOut(1000, CScript([OP_TRUE]))) # non-witness output
tx.wit.vtxinwit.append(CTxInWitness())
tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([])]
tx.rehash()
self.update_witness_block_with_transactions(block, [tx])
# Extra witness data should not be allowed.
self.test_node.test_witness_block(block, accepted=False)
# Try extra signature data. Ok if we're not spending a witness output.
block.vtx[1].wit.vtxinwit = []
block.vtx[1].vin[0].scriptSig = CScript([OP_0])
block.vtx[1].rehash()
add_witness_commitment(block)
block.solve()
self.test_node.test_witness_block(block, accepted=True)
# Now try extra witness/signature data on an input that DOES require a
# witness
tx2 = CTransaction()
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b"")) # witness output
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 1), b"")) # non-witness
tx2.vout.append(CTxOut(tx.vout[0].nValue, CScript([OP_TRUE])))
tx2.wit.vtxinwit.extend([CTxInWitness(), CTxInWitness()])
tx2.wit.vtxinwit[0].scriptWitness.stack = [ CScript([CScriptNum(1)]), CScript([CScriptNum(1)]), witness_program ]
tx2.wit.vtxinwit[1].scriptWitness.stack = [ CScript([OP_TRUE]) ]
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx2])
# This has extra witness data, so it should fail.
self.test_node.test_witness_block(block, accepted=False)
# Now get rid of the extra witness, but add extra scriptSig data
tx2.vin[0].scriptSig = CScript([OP_TRUE])
tx2.vin[1].scriptSig = CScript([OP_TRUE])
tx2.wit.vtxinwit[0].scriptWitness.stack.pop(0)
tx2.wit.vtxinwit[1].scriptWitness.stack = []
tx2.rehash()
add_witness_commitment(block)
block.solve()
# This has extra signature data for a witness input, so it should fail.
self.test_node.test_witness_block(block, accepted=False)
# Now get rid of the extra scriptsig on the witness input, and verify
# success (even with extra scriptsig data in the non-witness input)
tx2.vin[0].scriptSig = b""
tx2.rehash()
add_witness_commitment(block)
block.solve()
self.test_node.test_witness_block(block, accepted=True)
# Update utxo for later tests
self.utxo.pop(0)
self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue))
def test_max_witness_push_length(self):
''' Should only allow up to 520 byte pushes in witness stack '''
self.log.info("Testing maximum witness push size")
MAX_SCRIPT_ELEMENT_SIZE = 520
assert(len(self.utxo))
block = self.build_next_block()
witness_program = CScript([OP_DROP, OP_TRUE])
witness_hash = sha256(witness_program)
scriptPubKey = CScript([OP_0, witness_hash])
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey))
tx.rehash()
tx2 = CTransaction()
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b""))
tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, CScript([OP_TRUE])))
tx2.wit.vtxinwit.append(CTxInWitness())
# First try a 521-byte stack element
tx2.wit.vtxinwit[0].scriptWitness.stack = [ b'a'*(MAX_SCRIPT_ELEMENT_SIZE+1), witness_program ]
tx2.rehash()
self.update_witness_block_with_transactions(block, [tx, tx2])
self.test_node.test_witness_block(block, accepted=False)
# Now reduce the length of the stack element
tx2.wit.vtxinwit[0].scriptWitness.stack[0] = b'a'*(MAX_SCRIPT_ELEMENT_SIZE)
add_witness_commitment(block)
block.solve()
self.test_node.test_witness_block(block, accepted=True)
# Update the utxo for later tests
self.utxo.pop()
self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue))
def test_max_witness_program_length(self):
# Can create witness outputs that are long, but can't be greater than
# 10k bytes to successfully spend
self.log.info("Testing maximum witness program length")
assert(len(self.utxo))
MAX_PROGRAM_LENGTH = 10000
# This program is 19 max pushes (9937 bytes), then 64 more opcode-bytes.
long_witness_program = CScript([b'a'*520]*19 + [OP_DROP]*63 + [OP_TRUE])
assert(len(long_witness_program) == MAX_PROGRAM_LENGTH+1)
long_witness_hash = sha256(long_witness_program)
long_scriptPubKey = CScript([OP_0, long_witness_hash])
block = self.build_next_block()
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, long_scriptPubKey))
tx.rehash()
tx2 = CTransaction()
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b""))
tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, CScript([OP_TRUE])))
tx2.wit.vtxinwit.append(CTxInWitness())
tx2.wit.vtxinwit[0].scriptWitness.stack = [b'a']*44 + [long_witness_program]
tx2.rehash()
self.update_witness_block_with_transactions(block, [tx, tx2])
self.test_node.test_witness_block(block, accepted=False)
# Try again with one less byte in the witness program
witness_program = CScript([b'a'*520]*19 + [OP_DROP]*62 + [OP_TRUE])
assert(len(witness_program) == MAX_PROGRAM_LENGTH)
witness_hash = sha256(witness_program)
scriptPubKey = CScript([OP_0, witness_hash])
tx.vout[0] = CTxOut(tx.vout[0].nValue, scriptPubKey)
tx.rehash()
tx2.vin[0].prevout.hash = tx.sha256
tx2.wit.vtxinwit[0].scriptWitness.stack = [b'a']*43 + [witness_program]
tx2.rehash()
block.vtx = [block.vtx[0]]
self.update_witness_block_with_transactions(block, [tx, tx2])
self.test_node.test_witness_block(block, accepted=True)
self.utxo.pop()
self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue))
def test_witness_input_length(self):
''' Ensure that vin length must match vtxinwit length '''
self.log.info("Testing witness input length")
assert(len(self.utxo))
witness_program = CScript([OP_DROP, OP_TRUE])
witness_hash = sha256(witness_program)
scriptPubKey = CScript([OP_0, witness_hash])
# Create a transaction that splits our utxo into many outputs
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
nValue = self.utxo[0].nValue
for i in range(10):
tx.vout.append(CTxOut(int(nValue/10), scriptPubKey))
tx.vout[0].nValue -= 1000
assert(tx.vout[0].nValue >= 0)
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx])
self.test_node.test_witness_block(block, accepted=True)
# Try various ways to spend tx that should all break.
# This "broken" transaction serializer will not normalize
# the length of vtxinwit.
class BrokenCTransaction(CTransaction):
def serialize_with_witness(self):
flags = 0
if not self.wit.is_null():
flags |= 1
r = b""
r += struct.pack("<i", self.nVersion)
if flags:
dummy = []
r += ser_vector(dummy)
r += struct.pack("<B", flags)
r += ser_vector(self.vin)
r += ser_vector(self.vout)
if flags & 1:
r += self.wit.serialize()
r += struct.pack("<I", self.nLockTime)
return r
tx2 = BrokenCTransaction()
for i in range(10):
tx2.vin.append(CTxIn(COutPoint(tx.sha256, i), b""))
tx2.vout.append(CTxOut(nValue-3000, CScript([OP_TRUE])))
# First try using a too long vtxinwit
for i in range(11):
tx2.wit.vtxinwit.append(CTxInWitness())
tx2.wit.vtxinwit[i].scriptWitness.stack = [b'a', witness_program]
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx2])
self.test_node.test_witness_block(block, accepted=False)
# Now try using a too short vtxinwit
tx2.wit.vtxinwit.pop()
tx2.wit.vtxinwit.pop()
block.vtx = [block.vtx[0]]
self.update_witness_block_with_transactions(block, [tx2])
self.test_node.test_witness_block(block, accepted=False)
# Now make one of the intermediate witnesses be incorrect
tx2.wit.vtxinwit.append(CTxInWitness())
tx2.wit.vtxinwit[-1].scriptWitness.stack = [b'a', witness_program]
tx2.wit.vtxinwit[5].scriptWitness.stack = [ witness_program ]
block.vtx = [block.vtx[0]]
self.update_witness_block_with_transactions(block, [tx2])
self.test_node.test_witness_block(block, accepted=False)
# Fix the broken witness and the block should be accepted.
tx2.wit.vtxinwit[5].scriptWitness.stack = [b'a', witness_program]
block.vtx = [block.vtx[0]]
self.update_witness_block_with_transactions(block, [tx2])
self.test_node.test_witness_block(block, accepted=True)
self.utxo.pop()
self.utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue))
def test_witness_tx_relay_before_segwit_activation(self):
self.log.info("Testing relay of witness transactions")
# Generate a transaction that doesn't require a witness, but send it
# with a witness. Should be rejected for premature-witness, but should
# not be added to recently rejected list.
assert(len(self.utxo))
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, CScript([OP_TRUE])))
tx.wit.vtxinwit.append(CTxInWitness())
tx.wit.vtxinwit[0].scriptWitness.stack = [ b'a' ]
tx.rehash()
tx_hash = tx.sha256
tx_value = tx.vout[0].nValue
# Verify that if a peer doesn't set nServices to include NODE_WITNESS,
# the getdata is just for the non-witness portion.
self.old_node.announce_tx_and_wait_for_getdata(tx)
assert(self.old_node.last_message["getdata"].inv[0].type == 1)
# Since we haven't delivered the tx yet, inv'ing the same tx from
# a witness transaction ought not result in a getdata.
try:
self.test_node.announce_tx_and_wait_for_getdata(tx, timeout=2)
self.log.error("Error: duplicate tx getdata!")
assert(False)
except AssertionError as e:
pass
# Delivering this transaction with witness should fail (no matter who
# its from)
assert_equal(len(self.nodes[0].getrawmempool()), 0)
assert_equal(len(self.nodes[1].getrawmempool()), 0)
self.old_node.test_transaction_acceptance(tx, with_witness=True, accepted=False)
self.test_node.test_transaction_acceptance(tx, with_witness=True, accepted=False)
# But eliminating the witness should fix it
self.test_node.test_transaction_acceptance(tx, with_witness=False, accepted=True)
# Cleanup: mine the first transaction and update utxo
self.nodes[0].generate(1)
assert_equal(len(self.nodes[0].getrawmempool()), 0)
self.utxo.pop(0)
self.utxo.append(UTXO(tx_hash, 0, tx_value))
# After segwit activates, verify that mempool:
# - rejects transactions with unnecessary/extra witnesses
# - accepts transactions with valid witnesses
# and that witness transactions are relayed to non-upgraded peers.
def test_tx_relay_after_segwit_activation(self):
self.log.info("Testing relay of witness transactions")
# Generate a transaction that doesn't require a witness, but send it
# with a witness. Should be rejected because we can't use a witness
# when spending a non-witness output.
assert(len(self.utxo))
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, CScript([OP_TRUE])))
tx.wit.vtxinwit.append(CTxInWitness())
tx.wit.vtxinwit[0].scriptWitness.stack = [ b'a' ]
tx.rehash()
tx_hash = tx.sha256
# Verify that unnecessary witnesses are rejected.
self.test_node.announce_tx_and_wait_for_getdata(tx)
assert_equal(len(self.nodes[0].getrawmempool()), 0)
self.test_node.test_transaction_acceptance(tx, with_witness=True, accepted=False)
# Verify that removing the witness succeeds.
self.test_node.announce_tx_and_wait_for_getdata(tx)
self.test_node.test_transaction_acceptance(tx, with_witness=False, accepted=True)
# Now try to add extra witness data to a valid witness tx.
witness_program = CScript([OP_TRUE])
witness_hash = sha256(witness_program)
scriptPubKey = CScript([OP_0, witness_hash])
tx2 = CTransaction()
tx2.vin.append(CTxIn(COutPoint(tx_hash, 0), b""))
tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, scriptPubKey))
tx2.rehash()
tx3 = CTransaction()
tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b""))
tx3.wit.vtxinwit.append(CTxInWitness())
# Add too-large for IsStandard witness and check that it does not enter reject filter
p2sh_program = CScript([OP_TRUE])
p2sh_pubkey = hash160(p2sh_program)
witness_program2 = CScript([b'a'*400000])
tx3.vout.append(CTxOut(tx2.vout[0].nValue-1000, CScript([OP_HASH160, p2sh_pubkey, OP_EQUAL])))
tx3.wit.vtxinwit[0].scriptWitness.stack = [witness_program2]
tx3.rehash()
# Node will not be blinded to the transaction
self.std_node.announce_tx_and_wait_for_getdata(tx3)
self.std_node.test_transaction_acceptance(tx3, True, False, b'tx-size')
self.std_node.announce_tx_and_wait_for_getdata(tx3)
self.std_node.test_transaction_acceptance(tx3, True, False, b'tx-size')
# Remove witness stuffing, instead add extra witness push on stack
tx3.vout[0] = CTxOut(tx2.vout[0].nValue-1000, CScript([OP_TRUE]))
tx3.wit.vtxinwit[0].scriptWitness.stack = [CScript([CScriptNum(1)]), witness_program ]
tx3.rehash()
self.test_node.test_transaction_acceptance(tx2, with_witness=True, accepted=True)
self.test_node.test_transaction_acceptance(tx3, with_witness=True, accepted=False)
# Get rid of the extra witness, and verify acceptance.
tx3.wit.vtxinwit[0].scriptWitness.stack = [ witness_program ]
# Also check that old_node gets a tx announcement, even though this is
# a witness transaction.
self.old_node.wait_for_inv([CInv(1, tx2.sha256)]) # wait until tx2 was inv'ed
self.test_node.test_transaction_acceptance(tx3, with_witness=True, accepted=True)
self.old_node.wait_for_inv([CInv(1, tx3.sha256)])
# Test that getrawtransaction returns correct witness information
# hash, size, vsize
raw_tx = self.nodes[0].getrawtransaction(tx3.hash, 1)
assert_equal(int(raw_tx["hash"], 16), tx3.calc_sha256(True))
assert_equal(raw_tx["size"], len(tx3.serialize_with_witness()))
vsize = (len(tx3.serialize_with_witness()) + 3*len(tx3.serialize_without_witness()) + 3) / 4
assert_equal(raw_tx["vsize"], vsize)
assert_equal(len(raw_tx["vin"][0]["txinwitness"]), 1)
assert_equal(raw_tx["vin"][0]["txinwitness"][0], hexlify(witness_program).decode('ascii'))
assert(vsize != raw_tx["size"])
# Cleanup: mine the transactions and update utxo for next test
self.nodes[0].generate(1)
assert_equal(len(self.nodes[0].getrawmempool()), 0)
self.utxo.pop(0)
self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue))
# Test that block requests to NODE_WITNESS peer are with MSG_WITNESS_FLAG
# This is true regardless of segwit activation.
# Also test that we don't ask for blocks from unupgraded peers
def test_block_relay(self, segwit_activated):
self.log.info("Testing block relay")
blocktype = 2|MSG_WITNESS_FLAG
# test_node has set NODE_WITNESS, so all getdata requests should be for
# witness blocks.
# Test announcing a block via inv results in a getdata, and that
# announcing a version 4 or random VB block with a header results in a getdata
block1 = self.build_next_block()
block1.solve()
self.test_node.announce_block_and_wait_for_getdata(block1, use_header=False)
assert(self.test_node.last_message["getdata"].inv[0].type == blocktype)
self.test_node.test_witness_block(block1, True)
block2 = self.build_next_block(nVersion=4)
block2.solve()
self.test_node.announce_block_and_wait_for_getdata(block2, use_header=True)
assert(self.test_node.last_message["getdata"].inv[0].type == blocktype)
self.test_node.test_witness_block(block2, True)
block3 = self.build_next_block(nVersion=(VB_TOP_BITS | (1<<15)))
block3.solve()
self.test_node.announce_block_and_wait_for_getdata(block3, use_header=True)
assert(self.test_node.last_message["getdata"].inv[0].type == blocktype)
self.test_node.test_witness_block(block3, True)
# Check that we can getdata for witness blocks or regular blocks,
# and the right thing happens.
if segwit_activated == False:
# Before activation, we should be able to request old blocks with
# or without witness, and they should be the same.
chain_height = self.nodes[0].getblockcount()
# Pick 10 random blocks on main chain, and verify that getdata's
# for MSG_BLOCK, MSG_WITNESS_BLOCK, and rpc getblock() are equal.
all_heights = list(range(chain_height+1))
random.shuffle(all_heights)
all_heights = all_heights[0:10]
for height in all_heights:
block_hash = self.nodes[0].getblockhash(height)
rpc_block = self.nodes[0].getblock(block_hash, False)
block_hash = int(block_hash, 16)
block = self.test_node.request_block(block_hash, 2)
wit_block = self.test_node.request_block(block_hash, 2|MSG_WITNESS_FLAG)
assert_equal(block.serialize(True), wit_block.serialize(True))
assert_equal(block.serialize(), hex_str_to_bytes(rpc_block))
else:
# After activation, witness blocks and non-witness blocks should
# be different. Verify rpc getblock() returns witness blocks, while
# getdata respects the requested type.
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [])
# This gives us a witness commitment.
assert(len(block.vtx[0].wit.vtxinwit) == 1)
assert(len(block.vtx[0].wit.vtxinwit[0].scriptWitness.stack) == 1)
self.test_node.test_witness_block(block, accepted=True)
# Now try to retrieve it...
rpc_block = self.nodes[0].getblock(block.hash, False)
non_wit_block = self.test_node.request_block(block.sha256, 2)
wit_block = self.test_node.request_block(block.sha256, 2|MSG_WITNESS_FLAG)
assert_equal(wit_block.serialize(True), hex_str_to_bytes(rpc_block))
assert_equal(wit_block.serialize(False), non_wit_block.serialize())
assert_equal(wit_block.serialize(True), block.serialize(True))
# Test size, vsize, weight
rpc_details = self.nodes[0].getblock(block.hash, True)
assert_equal(rpc_details["size"], len(block.serialize(True)))
assert_equal(rpc_details["strippedsize"], len(block.serialize(False)))
weight = 3*len(block.serialize(False)) + len(block.serialize(True))
assert_equal(rpc_details["weight"], weight)
# Upgraded node should not ask for blocks from unupgraded
block4 = self.build_next_block(nVersion=4)
block4.solve()
self.old_node.getdataset = set()
# Blocks can be requested via direct-fetch (immediately upon processing the announcement)
# or via parallel download (with an indeterminate delay from processing the announcement)
# so to test that a block is NOT requested, we could guess a time period to sleep for,
# and then check. We can avoid the sleep() by taking advantage of transaction getdata's
# being processed after block getdata's, and announce a transaction as well,
# and then check to see if that particular getdata has been received.
# Since 0.14, inv's will only be responded to with a getheaders, so send a header
# to announce this block.
msg = msg_headers()
msg.headers = [ CBlockHeader(block4) ]
self.old_node.send_message(msg)
self.old_node.announce_tx_and_wait_for_getdata(block4.vtx[0])
assert(block4.sha256 not in self.old_node.getdataset)
# V0 segwit outputs should be standard after activation, but not before.
def test_standardness_v0(self, segwit_activated):
self.log.info("Testing standardness of v0 outputs (%s activation)" % ("after" if segwit_activated else "before"))
assert(len(self.utxo))
witness_program = CScript([OP_TRUE])
witness_hash = sha256(witness_program)
scriptPubKey = CScript([OP_0, witness_hash])
p2sh_pubkey = hash160(witness_program)
p2sh_scriptPubKey = CScript([OP_HASH160, p2sh_pubkey, OP_EQUAL])
# First prepare a p2sh output (so that spending it will pass standardness)
p2sh_tx = CTransaction()
p2sh_tx.vin = [CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")]
p2sh_tx.vout = [CTxOut(self.utxo[0].nValue-1000, p2sh_scriptPubKey)]
p2sh_tx.rehash()
# Mine it on test_node to create the confirmed output.
self.test_node.test_transaction_acceptance(p2sh_tx, with_witness=True, accepted=True)
self.nodes[0].generate(1)
sync_blocks(self.nodes)
# Now test standardness of v0 P2WSH outputs.
# Start by creating a transaction with two outputs.
tx = CTransaction()
tx.vin = [CTxIn(COutPoint(p2sh_tx.sha256, 0), CScript([witness_program]))]
tx.vout = [CTxOut(p2sh_tx.vout[0].nValue-10000, scriptPubKey)]
tx.vout.append(CTxOut(8000, scriptPubKey)) # Might burn this later
tx.rehash()
self.std_node.test_transaction_acceptance(tx, with_witness=True, accepted=segwit_activated)
# Now create something that looks like a P2PKH output. This won't be spendable.
scriptPubKey = CScript([OP_0, hash160(witness_hash)])
tx2 = CTransaction()
if segwit_activated:
# if tx was accepted, then we spend the second output.
tx2.vin = [CTxIn(COutPoint(tx.sha256, 1), b"")]
tx2.vout = [CTxOut(7000, scriptPubKey)]
tx2.wit.vtxinwit.append(CTxInWitness())
tx2.wit.vtxinwit[0].scriptWitness.stack = [witness_program]
else:
# if tx wasn't accepted, we just re-spend the p2sh output we started with.
tx2.vin = [CTxIn(COutPoint(p2sh_tx.sha256, 0), CScript([witness_program]))]
tx2.vout = [CTxOut(p2sh_tx.vout[0].nValue-1000, scriptPubKey)]
tx2.rehash()
self.std_node.test_transaction_acceptance(tx2, with_witness=True, accepted=segwit_activated)
# Now update self.utxo for later tests.
tx3 = CTransaction()
if segwit_activated:
# tx and tx2 were both accepted. Don't bother trying to reclaim the
# P2PKH output; just send tx's first output back to an anyone-can-spend.
sync_mempools([self.nodes[0], self.nodes[1]])
tx3.vin = [CTxIn(COutPoint(tx.sha256, 0), b"")]
tx3.vout = [CTxOut(tx.vout[0].nValue-1000, CScript([OP_TRUE]))]
tx3.wit.vtxinwit.append(CTxInWitness())
tx3.wit.vtxinwit[0].scriptWitness.stack = [witness_program]
tx3.rehash()
self.test_node.test_transaction_acceptance(tx3, with_witness=True, accepted=True)
else:
# tx and tx2 didn't go anywhere; just clean up the p2sh_tx output.
tx3.vin = [CTxIn(COutPoint(p2sh_tx.sha256, 0), CScript([witness_program]))]
tx3.vout = [CTxOut(p2sh_tx.vout[0].nValue-1000, witness_program)]
tx3.rehash()
self.test_node.test_transaction_acceptance(tx3, with_witness=True, accepted=True)
self.nodes[0].generate(1)
sync_blocks(self.nodes)
self.utxo.pop(0)
self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue))
assert_equal(len(self.nodes[1].getrawmempool()), 0)
# Verify that future segwit upgraded transactions are non-standard,
# but valid in blocks. Can run this before and after segwit activation.
def test_segwit_versions(self):
self.log.info("Testing standardness/consensus for segwit versions (0-16)")
assert(len(self.utxo))
NUM_TESTS = 17 # will test OP_0, OP1, ..., OP_16
if (len(self.utxo) < NUM_TESTS):
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
split_value = (self.utxo[0].nValue - 4000) // NUM_TESTS
for i in range(NUM_TESTS):
tx.vout.append(CTxOut(split_value, CScript([OP_TRUE])))
tx.rehash()
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx])
self.test_node.test_witness_block(block, accepted=True)
self.utxo.pop(0)
for i in range(NUM_TESTS):
self.utxo.append(UTXO(tx.sha256, i, split_value))
sync_blocks(self.nodes)
temp_utxo = []
tx = CTransaction()
count = 0
witness_program = CScript([OP_TRUE])
witness_hash = sha256(witness_program)
assert_equal(len(self.nodes[1].getrawmempool()), 0)
for version in list(range(OP_1, OP_16+1)) + [OP_0]:
count += 1
# First try to spend to a future version segwit scriptPubKey.
scriptPubKey = CScript([CScriptOp(version), witness_hash])
tx.vin = [CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b"")]
tx.vout = [CTxOut(self.utxo[0].nValue-1000, scriptPubKey)]
tx.rehash()
self.std_node.test_transaction_acceptance(tx, with_witness=True, accepted=False)
self.test_node.test_transaction_acceptance(tx, with_witness=True, accepted=True)
self.utxo.pop(0)
temp_utxo.append(UTXO(tx.sha256, 0, tx.vout[0].nValue))
self.nodes[0].generate(1) # Mine all the transactions
sync_blocks(self.nodes)
assert(len(self.nodes[0].getrawmempool()) == 0)
# Finally, verify that version 0 -> version 1 transactions
# are non-standard
scriptPubKey = CScript([CScriptOp(OP_1), witness_hash])
tx2 = CTransaction()
tx2.vin = [CTxIn(COutPoint(tx.sha256, 0), b"")]
tx2.vout = [CTxOut(tx.vout[0].nValue-1000, scriptPubKey)]
tx2.wit.vtxinwit.append(CTxInWitness())
tx2.wit.vtxinwit[0].scriptWitness.stack = [ witness_program ]
tx2.rehash()
# Gets accepted to test_node, because standardness of outputs isn't
# checked with fRequireStandard
self.test_node.test_transaction_acceptance(tx2, with_witness=True, accepted=True)
self.std_node.test_transaction_acceptance(tx2, with_witness=True, accepted=False)
temp_utxo.pop() # last entry in temp_utxo was the output we just spent
temp_utxo.append(UTXO(tx2.sha256, 0, tx2.vout[0].nValue))
# Spend everything in temp_utxo back to an OP_TRUE output.
tx3 = CTransaction()
total_value = 0
for i in temp_utxo:
tx3.vin.append(CTxIn(COutPoint(i.sha256, i.n), b""))
tx3.wit.vtxinwit.append(CTxInWitness())
total_value += i.nValue
tx3.wit.vtxinwit[-1].scriptWitness.stack = [witness_program]
tx3.vout.append(CTxOut(total_value - 1000, CScript([OP_TRUE])))
tx3.rehash()
# Spending a higher version witness output is not allowed by policy,
# even with fRequireStandard=false.
self.test_node.test_transaction_acceptance(tx3, with_witness=True, accepted=False)
self.test_node.sync_with_ping()
with mininode_lock:
assert(b"reserved for soft-fork upgrades" in self.test_node.last_message["reject"].reason)
# Building a block with the transaction must be valid, however.
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx2, tx3])
self.test_node.test_witness_block(block, accepted=True)
sync_blocks(self.nodes)
# Add utxo to our list
self.utxo.append(UTXO(tx3.sha256, 0, tx3.vout[0].nValue))
def test_premature_coinbase_witness_spend(self):
self.log.info("Testing premature coinbase witness spend")
block = self.build_next_block()
# Change the output of the block to be a witness output.
witness_program = CScript([OP_TRUE])
witness_hash = sha256(witness_program)
scriptPubKey = CScript([OP_0, witness_hash])
block.vtx[0].vout[0].scriptPubKey = scriptPubKey
# This next line will rehash the coinbase and update the merkle
# root, and solve.
self.update_witness_block_with_transactions(block, [])
self.test_node.test_witness_block(block, accepted=True)
spend_tx = CTransaction()
spend_tx.vin = [CTxIn(COutPoint(block.vtx[0].sha256, 0), b"")]
spend_tx.vout = [CTxOut(block.vtx[0].vout[0].nValue, witness_program)]
spend_tx.wit.vtxinwit.append(CTxInWitness())
spend_tx.wit.vtxinwit[0].scriptWitness.stack = [ witness_program ]
spend_tx.rehash()
# Now test a premature spend.
self.nodes[0].generate(98)
sync_blocks(self.nodes)
block2 = self.build_next_block()
self.update_witness_block_with_transactions(block2, [spend_tx])
self.test_node.test_witness_block(block2, accepted=False)
# Advancing one more block should allow the spend.
self.nodes[0].generate(1)
block2 = self.build_next_block()
self.update_witness_block_with_transactions(block2, [spend_tx])
self.test_node.test_witness_block(block2, accepted=True)
sync_blocks(self.nodes)
def test_signature_version_1(self):
self.log.info("Testing segwit signature hash version 1")
key = CECKey()
key.set_secretbytes(b"9")
pubkey = CPubKey(key.get_pubkey())
witness_program = CScript([pubkey, CScriptOp(OP_CHECKSIG)])
witness_hash = sha256(witness_program)
scriptPubKey = CScript([OP_0, witness_hash])
# First create a witness output for use in the tests.
assert(len(self.utxo))
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey))
tx.rehash()
self.test_node.test_transaction_acceptance(tx, with_witness=True, accepted=True)
# Mine this transaction in preparation for following tests.
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx])
self.test_node.test_witness_block(block, accepted=True)
sync_blocks(self.nodes)
self.utxo.pop(0)
# Test each hashtype
prev_utxo = UTXO(tx.sha256, 0, tx.vout[0].nValue)
for sigflag in [ 0, SIGHASH_ANYONECANPAY ]:
for hashtype in [SIGHASH_ALL, SIGHASH_NONE, SIGHASH_SINGLE]:
hashtype |= sigflag
block = self.build_next_block()
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(prev_utxo.sha256, prev_utxo.n), b""))
tx.vout.append(CTxOut(prev_utxo.nValue - 1000, scriptPubKey))
tx.wit.vtxinwit.append(CTxInWitness())
# Too-large input value
sign_P2PK_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue+1, key)
self.update_witness_block_with_transactions(block, [tx])
self.test_node.test_witness_block(block, accepted=False)
# Too-small input value
sign_P2PK_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue-1, key)
block.vtx.pop() # remove last tx
self.update_witness_block_with_transactions(block, [tx])
self.test_node.test_witness_block(block, accepted=False)
# Now try correct value
sign_P2PK_witness_input(witness_program, tx, 0, hashtype, prev_utxo.nValue, key)
block.vtx.pop()
self.update_witness_block_with_transactions(block, [tx])
self.test_node.test_witness_block(block, accepted=True)
prev_utxo = UTXO(tx.sha256, 0, tx.vout[0].nValue)
# Test combinations of signature hashes.
# Split the utxo into a lot of outputs.
# Randomly choose up to 10 to spend, sign with different hashtypes, and
# output to a random number of outputs. Repeat NUM_TESTS times.
# Ensure that we've tested a situation where we use SIGHASH_SINGLE with
# an input index > number of outputs.
NUM_TESTS = 500
temp_utxos = []
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(prev_utxo.sha256, prev_utxo.n), b""))
split_value = prev_utxo.nValue // NUM_TESTS
for i in range(NUM_TESTS):
tx.vout.append(CTxOut(split_value, scriptPubKey))
tx.wit.vtxinwit.append(CTxInWitness())
sign_P2PK_witness_input(witness_program, tx, 0, SIGHASH_ALL, prev_utxo.nValue, key)
for i in range(NUM_TESTS):
temp_utxos.append(UTXO(tx.sha256, i, split_value))
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx])
self.test_node.test_witness_block(block, accepted=True)
block = self.build_next_block()
used_sighash_single_out_of_bounds = False
for i in range(NUM_TESTS):
# Ping regularly to keep the connection alive
if (not i % 100):
self.test_node.sync_with_ping()
# Choose random number of inputs to use.
num_inputs = random.randint(1, 10)
# Create a slight bias for producing more utxos
num_outputs = random.randint(1, 11)
random.shuffle(temp_utxos)
assert(len(temp_utxos) > num_inputs)
tx = CTransaction()
total_value = 0
for i in range(num_inputs):
tx.vin.append(CTxIn(COutPoint(temp_utxos[i].sha256, temp_utxos[i].n), b""))
tx.wit.vtxinwit.append(CTxInWitness())
total_value += temp_utxos[i].nValue
split_value = total_value // num_outputs
for i in range(num_outputs):
tx.vout.append(CTxOut(split_value, scriptPubKey))
for i in range(num_inputs):
# Now try to sign each input, using a random hashtype.
anyonecanpay = 0
if random.randint(0, 1):
anyonecanpay = SIGHASH_ANYONECANPAY
hashtype = random.randint(1, 3) | anyonecanpay
sign_P2PK_witness_input(witness_program, tx, i, hashtype, temp_utxos[i].nValue, key)
if (hashtype == SIGHASH_SINGLE and i >= num_outputs):
used_sighash_single_out_of_bounds = True
tx.rehash()
for i in range(num_outputs):
temp_utxos.append(UTXO(tx.sha256, i, split_value))
temp_utxos = temp_utxos[num_inputs:]
block.vtx.append(tx)
# Test the block periodically, if we're close to maxblocksize
if (get_virtual_size(block) > MAX_BLOCK_BASE_SIZE - 1000):
self.update_witness_block_with_transactions(block, [])
self.test_node.test_witness_block(block, accepted=True)
block = self.build_next_block()
if (not used_sighash_single_out_of_bounds):
self.log.info("WARNING: this test run didn't attempt SIGHASH_SINGLE with out-of-bounds index value")
# Test the transactions we've added to the block
if (len(block.vtx) > 1):
self.update_witness_block_with_transactions(block, [])
self.test_node.test_witness_block(block, accepted=True)
# Now test witness version 0 P2PKH transactions
pubkeyhash = hash160(pubkey)
scriptPKH = CScript([OP_0, pubkeyhash])
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(temp_utxos[0].sha256, temp_utxos[0].n), b""))
tx.vout.append(CTxOut(temp_utxos[0].nValue, scriptPKH))
tx.wit.vtxinwit.append(CTxInWitness())
sign_P2PK_witness_input(witness_program, tx, 0, SIGHASH_ALL, temp_utxos[0].nValue, key)
tx2 = CTransaction()
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b""))
tx2.vout.append(CTxOut(tx.vout[0].nValue, CScript([OP_TRUE])))
script = GetP2PKHScript(pubkeyhash)
sig_hash = SegwitVersion1SignatureHash(script, tx2, 0, SIGHASH_ALL, tx.vout[0].nValue)
signature = key.sign(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL
# Check that we can't have a scriptSig
tx2.vin[0].scriptSig = CScript([signature, pubkey])
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx, tx2])
self.test_node.test_witness_block(block, accepted=False)
# Move the signature to the witness.
block.vtx.pop()
tx2.wit.vtxinwit.append(CTxInWitness())
tx2.wit.vtxinwit[0].scriptWitness.stack = [signature, pubkey]
tx2.vin[0].scriptSig = b""
tx2.rehash()
self.update_witness_block_with_transactions(block, [tx2])
self.test_node.test_witness_block(block, accepted=True)
temp_utxos.pop(0)
# Update self.utxos for later tests. Just spend everything in
# temp_utxos to a corresponding entry in self.utxos
tx = CTransaction()
index = 0
for i in temp_utxos:
# Just spend to our usual anyone-can-spend output
# Use SIGHASH_SINGLE|SIGHASH_ANYONECANPAY so we can build up
# the signatures as we go.
tx.vin.append(CTxIn(COutPoint(i.sha256, i.n), b""))
tx.vout.append(CTxOut(i.nValue, CScript([OP_TRUE])))
tx.wit.vtxinwit.append(CTxInWitness())
sign_P2PK_witness_input(witness_program, tx, index, SIGHASH_SINGLE|SIGHASH_ANYONECANPAY, i.nValue, key)
index += 1
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx])
self.test_node.test_witness_block(block, accepted=True)
for i in range(len(tx.vout)):
self.utxo.append(UTXO(tx.sha256, i, tx.vout[i].nValue))
# Test P2SH wrapped witness programs.
def test_p2sh_witness(self, segwit_activated):
self.log.info("Testing P2SH witness transactions")
assert(len(self.utxo))
# Prepare the p2sh-wrapped witness output
witness_program = CScript([OP_DROP, OP_TRUE])
witness_hash = sha256(witness_program)
p2wsh_pubkey = CScript([OP_0, witness_hash])
p2sh_witness_hash = hash160(p2wsh_pubkey)
scriptPubKey = CScript([OP_HASH160, p2sh_witness_hash, OP_EQUAL])
scriptSig = CScript([p2wsh_pubkey]) # a push of the redeem script
# Fund the P2SH output
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
tx.vout.append(CTxOut(self.utxo[0].nValue-1000, scriptPubKey))
tx.rehash()
# Verify mempool acceptance and block validity
self.test_node.test_transaction_acceptance(tx, with_witness=False, accepted=True)
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx])
self.test_node.test_witness_block(block, accepted=True, with_witness=segwit_activated)
sync_blocks(self.nodes)
# Now test attempts to spend the output.
spend_tx = CTransaction()
spend_tx.vin.append(CTxIn(COutPoint(tx.sha256, 0), scriptSig))
spend_tx.vout.append(CTxOut(tx.vout[0].nValue-1000, CScript([OP_TRUE])))
spend_tx.rehash()
# This transaction should not be accepted into the mempool pre- or
# post-segwit. Mempool acceptance will use SCRIPT_VERIFY_WITNESS which
# will require a witness to spend a witness program regardless of
# segwit activation. Note that older bitcoind's that are not
# segwit-aware would also reject this for failing CLEANSTACK.
self.test_node.test_transaction_acceptance(spend_tx, with_witness=False, accepted=False)
# Try to put the witness script in the scriptSig, should also fail.
spend_tx.vin[0].scriptSig = CScript([p2wsh_pubkey, b'a'])
spend_tx.rehash()
self.test_node.test_transaction_acceptance(spend_tx, with_witness=False, accepted=False)
# Now put the witness script in the witness, should succeed after
# segwit activates.
spend_tx.vin[0].scriptSig = scriptSig
spend_tx.rehash()
spend_tx.wit.vtxinwit.append(CTxInWitness())
spend_tx.wit.vtxinwit[0].scriptWitness.stack = [ b'a', witness_program ]
# Verify mempool acceptance
self.test_node.test_transaction_acceptance(spend_tx, with_witness=True, accepted=segwit_activated)
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [spend_tx])
# If we're before activation, then sending this without witnesses
# should be valid. If we're after activation, then sending this with
# witnesses should be valid.
if segwit_activated:
self.test_node.test_witness_block(block, accepted=True)
else:
self.test_node.test_witness_block(block, accepted=True, with_witness=False)
# Update self.utxo
self.utxo.pop(0)
self.utxo.append(UTXO(spend_tx.sha256, 0, spend_tx.vout[0].nValue))
# Test the behavior of starting up a segwit-aware node after the softfork
# has activated. As segwit requires different block data than pre-segwit
# nodes would have stored, this requires special handling.
# To enable this test, pass --oldbinary=<path-to-pre-segwit-bitcoind> to
# the test.
def test_upgrade_after_activation(self, node_id):
self.log.info("Testing software upgrade after softfork activation")
assert(node_id != 0) # node0 is assumed to be a segwit-active bitcoind
# Make sure the nodes are all up
sync_blocks(self.nodes)
# Restart with the new binary
self.stop_node(node_id)
self.start_node(node_id, extra_args=["-vbparams=segwit:0:999999999999"])
connect_nodes(self.nodes[0], node_id)
sync_blocks(self.nodes)
# Make sure that this peer thinks segwit has activated.
assert(get_bip9_status(self.nodes[node_id], 'segwit')['status'] == "active")
# Make sure this peers blocks match those of node0.
height = self.nodes[node_id].getblockcount()
while height >= 0:
block_hash = self.nodes[node_id].getblockhash(height)
assert_equal(block_hash, self.nodes[0].getblockhash(height))
assert_equal(self.nodes[0].getblock(block_hash), self.nodes[node_id].getblock(block_hash))
height -= 1
def test_witness_sigops(self):
'''Ensure sigop counting is correct inside witnesses.'''
self.log.info("Testing sigops limit")
assert(len(self.utxo))
# Keep this under MAX_OPS_PER_SCRIPT (201)
witness_program = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKMULTISIG]*5 + [OP_CHECKSIG]*193 + [OP_ENDIF])
witness_hash = sha256(witness_program)
scriptPubKey = CScript([OP_0, witness_hash])
sigops_per_script = 20*5 + 193*1
# We'll produce 2 extra outputs, one with a program that would take us
# over max sig ops, and one with a program that would exactly reach max
# sig ops
outputs = (MAX_SIGOP_COST // sigops_per_script) + 2
extra_sigops_available = MAX_SIGOP_COST % sigops_per_script
# We chose the number of checkmultisigs/checksigs to make this work:
assert(extra_sigops_available < 100) # steer clear of MAX_OPS_PER_SCRIPT
# This script, when spent with the first
# N(=MAX_SIGOP_COST//sigops_per_script) outputs of our transaction,
# would push us just over the block sigop limit.
witness_program_toomany = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKSIG]*(extra_sigops_available + 1) + [OP_ENDIF])
witness_hash_toomany = sha256(witness_program_toomany)
scriptPubKey_toomany = CScript([OP_0, witness_hash_toomany])
# If we spend this script instead, we would exactly reach our sigop
# limit (for witness sigops).
witness_program_justright = CScript([OP_TRUE, OP_IF, OP_TRUE, OP_ELSE] + [OP_CHECKSIG]*(extra_sigops_available) + [OP_ENDIF])
witness_hash_justright = sha256(witness_program_justright)
scriptPubKey_justright = CScript([OP_0, witness_hash_justright])
# First split our available utxo into a bunch of outputs
split_value = self.utxo[0].nValue // outputs
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
for i in range(outputs):
tx.vout.append(CTxOut(split_value, scriptPubKey))
tx.vout[-2].scriptPubKey = scriptPubKey_toomany
tx.vout[-1].scriptPubKey = scriptPubKey_justright
tx.rehash()
block_1 = self.build_next_block()
self.update_witness_block_with_transactions(block_1, [tx])
self.test_node.test_witness_block(block_1, accepted=True)
tx2 = CTransaction()
# If we try to spend the first n-1 outputs from tx, that should be
# too many sigops.
total_value = 0
for i in range(outputs-1):
tx2.vin.append(CTxIn(COutPoint(tx.sha256, i), b""))
tx2.wit.vtxinwit.append(CTxInWitness())
tx2.wit.vtxinwit[-1].scriptWitness.stack = [ witness_program ]
total_value += tx.vout[i].nValue
tx2.wit.vtxinwit[-1].scriptWitness.stack = [ witness_program_toomany ]
tx2.vout.append(CTxOut(total_value, CScript([OP_TRUE])))
tx2.rehash()
block_2 = self.build_next_block()
self.update_witness_block_with_transactions(block_2, [tx2])
self.test_node.test_witness_block(block_2, accepted=False)
# Try dropping the last input in tx2, and add an output that has
# too many sigops (contributing to legacy sigop count).
checksig_count = (extra_sigops_available // 4) + 1
scriptPubKey_checksigs = CScript([OP_CHECKSIG]*checksig_count)
tx2.vout.append(CTxOut(0, scriptPubKey_checksigs))
tx2.vin.pop()
tx2.wit.vtxinwit.pop()
tx2.vout[0].nValue -= tx.vout[-2].nValue
tx2.rehash()
block_3 = self.build_next_block()
self.update_witness_block_with_transactions(block_3, [tx2])
self.test_node.test_witness_block(block_3, accepted=False)
# If we drop the last checksig in this output, the tx should succeed.
block_4 = self.build_next_block()
tx2.vout[-1].scriptPubKey = CScript([OP_CHECKSIG]*(checksig_count-1))
tx2.rehash()
self.update_witness_block_with_transactions(block_4, [tx2])
self.test_node.test_witness_block(block_4, accepted=True)
# Reset the tip back down for the next test
sync_blocks(self.nodes)
for x in self.nodes:
x.invalidateblock(block_4.hash)
# Try replacing the last input of tx2 to be spending the last
# output of tx
block_5 = self.build_next_block()
tx2.vout.pop()
tx2.vin.append(CTxIn(COutPoint(tx.sha256, outputs-1), b""))
tx2.wit.vtxinwit.append(CTxInWitness())
tx2.wit.vtxinwit[-1].scriptWitness.stack = [ witness_program_justright ]
tx2.rehash()
self.update_witness_block_with_transactions(block_5, [tx2])
self.test_node.test_witness_block(block_5, accepted=True)
# TODO: test p2sh sigop counting
def test_getblocktemplate_before_lockin(self):
self.log.info("Testing getblocktemplate setting of segwit versionbit (before lockin)")
# Node0 is segwit aware, node2 is not.
for node in [self.nodes[0], self.nodes[2]]:
gbt_results = node.getblocktemplate()
block_version = gbt_results['version']
# If we're not indicating segwit support, we will still be
# signalling for segwit activation.
assert_equal((block_version & (1 << VB_WITNESS_BIT) != 0), node == self.nodes[0])
# If we don't specify the segwit rule, then we won't get a default
# commitment.
assert('default_witness_commitment' not in gbt_results)
# Workaround:
# Can either change the tip, or change the mempool and wait 5 seconds
# to trigger a recomputation of getblocktemplate.
txid = int(self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1), 16)
# Using mocktime lets us avoid sleep()
sync_mempools(self.nodes)
self.nodes[0].setmocktime(int(time.time())+10)
self.nodes[2].setmocktime(int(time.time())+10)
for node in [self.nodes[0], self.nodes[2]]:
gbt_results = node.getblocktemplate({"rules" : ["segwit"]})
block_version = gbt_results['version']
if node == self.nodes[2]:
# If this is a non-segwit node, we should still not get a witness
# commitment, nor a version bit signalling segwit.
assert_equal(block_version & (1 << VB_WITNESS_BIT), 0)
assert('default_witness_commitment' not in gbt_results)
else:
# For segwit-aware nodes, check the version bit and the witness
# commitment are correct.
assert(block_version & (1 << VB_WITNESS_BIT) != 0)
assert('default_witness_commitment' in gbt_results)
witness_commitment = gbt_results['default_witness_commitment']
# Check that default_witness_commitment is present.
witness_root = CBlock.get_merkle_root([ser_uint256(0),
ser_uint256(txid)])
script = get_witness_script(witness_root, 0)
assert_equal(witness_commitment, bytes_to_hex_str(script))
# undo mocktime
self.nodes[0].setmocktime(0)
self.nodes[2].setmocktime(0)
# Uncompressed pubkeys are no longer supported in default relay policy,
# but (for now) are still valid in blocks.
def test_uncompressed_pubkey(self):
self.log.info("Testing uncompressed pubkeys")
# Segwit transactions using uncompressed pubkeys are not accepted
# under default policy, but should still pass consensus.
key = CECKey()
key.set_secretbytes(b"9")
key.set_compressed(False)
pubkey = CPubKey(key.get_pubkey())
assert_equal(len(pubkey), 65) # This should be an uncompressed pubkey
assert(len(self.utxo) > 0)
utxo = self.utxo.pop(0)
# Test 1: P2WPKH
# First create a P2WPKH output that uses an uncompressed pubkey
pubkeyhash = hash160(pubkey)
scriptPKH = CScript([OP_0, pubkeyhash])
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(utxo.sha256, utxo.n), b""))
tx.vout.append(CTxOut(utxo.nValue-1000, scriptPKH))
tx.rehash()
# Confirm it in a block.
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx])
self.test_node.test_witness_block(block, accepted=True)
# Now try to spend it. Send it to a P2WSH output, which we'll
# use in the next test.
witness_program = CScript([pubkey, CScriptOp(OP_CHECKSIG)])
witness_hash = sha256(witness_program)
scriptWSH = CScript([OP_0, witness_hash])
tx2 = CTransaction()
tx2.vin.append(CTxIn(COutPoint(tx.sha256, 0), b""))
tx2.vout.append(CTxOut(tx.vout[0].nValue-1000, scriptWSH))
script = GetP2PKHScript(pubkeyhash)
sig_hash = SegwitVersion1SignatureHash(script, tx2, 0, SIGHASH_ALL, tx.vout[0].nValue)
signature = key.sign(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL
tx2.wit.vtxinwit.append(CTxInWitness())
tx2.wit.vtxinwit[0].scriptWitness.stack = [ signature, pubkey ]
tx2.rehash()
# Should fail policy test.
self.test_node.test_transaction_acceptance(tx2, True, False, b'non-mandatory-script-verify-flag (Using non-compressed keys in segwit)')
# But passes consensus.
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx2])
self.test_node.test_witness_block(block, accepted=True)
# Test 2: P2WSH
# Try to spend the P2WSH output created in last test.
# Send it to a P2SH(P2WSH) output, which we'll use in the next test.
p2sh_witness_hash = hash160(scriptWSH)
scriptP2SH = CScript([OP_HASH160, p2sh_witness_hash, OP_EQUAL])
scriptSig = CScript([scriptWSH])
tx3 = CTransaction()
tx3.vin.append(CTxIn(COutPoint(tx2.sha256, 0), b""))
tx3.vout.append(CTxOut(tx2.vout[0].nValue-1000, scriptP2SH))
tx3.wit.vtxinwit.append(CTxInWitness())
sign_P2PK_witness_input(witness_program, tx3, 0, SIGHASH_ALL, tx2.vout[0].nValue, key)
# Should fail policy test.
self.test_node.test_transaction_acceptance(tx3, True, False, b'non-mandatory-script-verify-flag (Using non-compressed keys in segwit)')
# But passes consensus.
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx3])
self.test_node.test_witness_block(block, accepted=True)
# Test 3: P2SH(P2WSH)
# Try to spend the P2SH output created in the last test.
# Send it to a P2PKH output, which we'll use in the next test.
scriptPubKey = GetP2PKHScript(pubkeyhash)
tx4 = CTransaction()
tx4.vin.append(CTxIn(COutPoint(tx3.sha256, 0), scriptSig))
tx4.vout.append(CTxOut(tx3.vout[0].nValue-1000, scriptPubKey))
tx4.wit.vtxinwit.append(CTxInWitness())
sign_P2PK_witness_input(witness_program, tx4, 0, SIGHASH_ALL, tx3.vout[0].nValue, key)
# Should fail policy test.
self.test_node.test_transaction_acceptance(tx4, True, False, b'non-mandatory-script-verify-flag (Using non-compressed keys in segwit)')
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx4])
self.test_node.test_witness_block(block, accepted=True)
# Test 4: Uncompressed pubkeys should still be valid in non-segwit
# transactions.
tx5 = CTransaction()
tx5.vin.append(CTxIn(COutPoint(tx4.sha256, 0), b""))
tx5.vout.append(CTxOut(tx4.vout[0].nValue-1000, CScript([OP_TRUE])))
(sig_hash, err) = SignatureHash(scriptPubKey, tx5, 0, SIGHASH_ALL)
signature = key.sign(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL
tx5.vin[0].scriptSig = CScript([signature, pubkey])
tx5.rehash()
# Should pass policy and consensus.
self.test_node.test_transaction_acceptance(tx5, True, True)
block = self.build_next_block()
self.update_witness_block_with_transactions(block, [tx5])
self.test_node.test_witness_block(block, accepted=True)
self.utxo.append(UTXO(tx5.sha256, 0, tx5.vout[0].nValue))
def test_non_standard_witness(self):
self.log.info("Testing detection of non-standard P2WSH witness")
pad = chr(1).encode('latin-1')
# Create scripts for tests
scripts = []
scripts.append(CScript([OP_DROP] * 100))
scripts.append(CScript([OP_DROP] * 99))
scripts.append(CScript([pad * 59] * 59 + [OP_DROP] * 60))
scripts.append(CScript([pad * 59] * 59 + [OP_DROP] * 61))
p2wsh_scripts = []
assert(len(self.utxo))
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.utxo[0].sha256, self.utxo[0].n), b""))
# For each script, generate a pair of P2WSH and P2SH-P2WSH output.
outputvalue = (self.utxo[0].nValue - 1000) // (len(scripts) * 2)
for i in scripts:
p2wsh = CScript([OP_0, sha256(i)])
p2sh = hash160(p2wsh)
p2wsh_scripts.append(p2wsh)
tx.vout.append(CTxOut(outputvalue, p2wsh))
tx.vout.append(CTxOut(outputvalue, CScript([OP_HASH160, p2sh, OP_EQUAL])))
tx.rehash()
txid = tx.sha256
self.test_node.test_transaction_acceptance(tx, with_witness=False, accepted=True)
self.nodes[0].generate(1)
sync_blocks(self.nodes)
# Creating transactions for tests
p2wsh_txs = []
p2sh_txs = []
for i in range(len(scripts)):
p2wsh_tx = CTransaction()
p2wsh_tx.vin.append(CTxIn(COutPoint(txid,i*2)))
p2wsh_tx.vout.append(CTxOut(outputvalue - 5000, CScript([OP_0, hash160(hex_str_to_bytes(""))])))
p2wsh_tx.wit.vtxinwit.append(CTxInWitness())
p2wsh_tx.rehash()
p2wsh_txs.append(p2wsh_tx)
p2sh_tx = CTransaction()
p2sh_tx.vin.append(CTxIn(COutPoint(txid,i*2+1), CScript([p2wsh_scripts[i]])))
p2sh_tx.vout.append(CTxOut(outputvalue - 5000, CScript([OP_0, hash160(hex_str_to_bytes(""))])))
p2sh_tx.wit.vtxinwit.append(CTxInWitness())
p2sh_tx.rehash()
p2sh_txs.append(p2sh_tx)
# Testing native P2WSH
# Witness stack size, excluding witnessScript, over 100 is non-standard
p2wsh_txs[0].wit.vtxinwit[0].scriptWitness.stack = [pad] * 101 + [scripts[0]]
self.std_node.test_transaction_acceptance(p2wsh_txs[0], True, False, b'bad-witness-nonstandard')
# Non-standard nodes should accept
self.test_node.test_transaction_acceptance(p2wsh_txs[0], True, True)
# Stack element size over 80 bytes is non-standard
p2wsh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 81] * 100 + [scripts[1]]
self.std_node.test_transaction_acceptance(p2wsh_txs[1], True, False, b'bad-witness-nonstandard')
# Non-standard nodes should accept
self.test_node.test_transaction_acceptance(p2wsh_txs[1], True, True)
# Standard nodes should accept if element size is not over 80 bytes
p2wsh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 80] * 100 + [scripts[1]]
self.std_node.test_transaction_acceptance(p2wsh_txs[1], True, True)
# witnessScript size at 3600 bytes is standard
p2wsh_txs[2].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, scripts[2]]
self.test_node.test_transaction_acceptance(p2wsh_txs[2], True, True)
self.std_node.test_transaction_acceptance(p2wsh_txs[2], True, True)
# witnessScript size at 3601 bytes is non-standard
p2wsh_txs[3].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, pad, scripts[3]]
self.std_node.test_transaction_acceptance(p2wsh_txs[3], True, False, b'bad-witness-nonstandard')
# Non-standard nodes should accept
self.test_node.test_transaction_acceptance(p2wsh_txs[3], True, True)
# Repeating the same tests with P2SH-P2WSH
p2sh_txs[0].wit.vtxinwit[0].scriptWitness.stack = [pad] * 101 + [scripts[0]]
self.std_node.test_transaction_acceptance(p2sh_txs[0], True, False, b'bad-witness-nonstandard')
self.test_node.test_transaction_acceptance(p2sh_txs[0], True, True)
p2sh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 81] * 100 + [scripts[1]]
self.std_node.test_transaction_acceptance(p2sh_txs[1], True, False, b'bad-witness-nonstandard')
self.test_node.test_transaction_acceptance(p2sh_txs[1], True, True)
p2sh_txs[1].wit.vtxinwit[0].scriptWitness.stack = [pad * 80] * 100 + [scripts[1]]
self.std_node.test_transaction_acceptance(p2sh_txs[1], True, True)
p2sh_txs[2].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, scripts[2]]
self.test_node.test_transaction_acceptance(p2sh_txs[2], True, True)
self.std_node.test_transaction_acceptance(p2sh_txs[2], True, True)
p2sh_txs[3].wit.vtxinwit[0].scriptWitness.stack = [pad, pad, pad, scripts[3]]
self.std_node.test_transaction_acceptance(p2sh_txs[3], True, False, b'bad-witness-nonstandard')
self.test_node.test_transaction_acceptance(p2sh_txs[3], True, True)
self.nodes[0].generate(1) # Mine and clean up the mempool of non-standard node
# Valid but non-standard transactions in a block should be accepted by standard node
sync_blocks(self.nodes)
assert_equal(len(self.nodes[0].getrawmempool()), 0)
assert_equal(len(self.nodes[1].getrawmempool()), 0)
self.utxo.pop(0)
def run_test(self):
# Setup the p2p connections and start up the network thread.
# self.test_node sets NODE_WITNESS|NODE_NETWORK
self.test_node = self.nodes[0].add_p2p_connection(TestNode(self.nodes[0].rpc), services=NODE_NETWORK|NODE_WITNESS)
# self.old_node sets only NODE_NETWORK
self.old_node = self.nodes[0].add_p2p_connection(TestNode(self.nodes[0].rpc), services=NODE_NETWORK)
# self.std_node is for testing node1 (fRequireStandard=true)
self.std_node = self.nodes[1].add_p2p_connection(TestNode(self.nodes[1].rpc), services=NODE_NETWORK|NODE_WITNESS)
NetworkThread().start() # Start up network handling in another thread
# Keep a place to store utxo's that can be used in later tests
self.utxo = []
# Test logic begins here
self.test_node.wait_for_verack()
self.log.info("Starting tests before segwit lock in:")
self.test_witness_services() # Verifies NODE_WITNESS
self.test_non_witness_transaction() # non-witness tx's are accepted
self.test_unnecessary_witness_before_segwit_activation()
self.test_block_relay(segwit_activated=False)
# Advance to segwit being 'started'
self.advance_to_segwit_started()
sync_blocks(self.nodes)
self.test_getblocktemplate_before_lockin()
sync_blocks(self.nodes)
# At lockin, nothing should change.
self.log.info("Testing behavior post lockin, pre-activation")
self.advance_to_segwit_lockin()
# Retest unnecessary witnesses
self.test_unnecessary_witness_before_segwit_activation()
self.test_witness_tx_relay_before_segwit_activation()
self.test_block_relay(segwit_activated=False)
self.test_p2sh_witness(segwit_activated=False)
self.test_standardness_v0(segwit_activated=False)
sync_blocks(self.nodes)
# Now activate segwit
self.log.info("Testing behavior after segwit activation")
self.advance_to_segwit_active()
sync_blocks(self.nodes)
# Test P2SH witness handling again
self.test_p2sh_witness(segwit_activated=True)
self.test_witness_commitments()
self.test_block_malleability()
self.test_witness_block_size()
self.test_submit_block()
self.test_extra_witness_data()
self.test_max_witness_push_length()
self.test_max_witness_program_length()
self.test_witness_input_length()
self.test_block_relay(segwit_activated=True)
self.test_tx_relay_after_segwit_activation()
self.test_standardness_v0(segwit_activated=True)
self.test_segwit_versions()
self.test_premature_coinbase_witness_spend()
self.test_uncompressed_pubkey()
self.test_signature_version_1()
self.test_non_standard_witness()
sync_blocks(self.nodes)
self.test_upgrade_after_activation(node_id=2)
self.test_witness_sigops()
if __name__ == '__main__':
SegWitTest().main()