// Package memory implements the storage interface for a Chihaya // BitTorrent tracker keeping peer data in memory. package memory import ( "encoding/binary" "net" "runtime" "strconv" "sync" "sync/atomic" "time" log "github.com/Sirupsen/logrus" "gopkg.in/yaml.v2" "github.com/chihaya/chihaya/bittorrent" "github.com/chihaya/chihaya/storage" ) // Name is the name by which this peer store is registered with Chihaya. const Name = "memory" func init() { // Register the storage driver. storage.RegisterDriver(Name, driver{}) } type driver struct{} func (d driver) NewPeerStore(icfg interface{}) (storage.PeerStore, error) { // Marshal the config back into bytes. bytes, err := yaml.Marshal(icfg) if err != nil { return nil, err } // Unmarshal the bytes into the proper config type. var cfg Config err = yaml.Unmarshal(bytes, &cfg) if err != nil { return nil, err } return New(cfg) } // Config holds the configuration of a memory PeerStore. type Config struct { GarbageCollectionInterval time.Duration `yaml:"gc_interval"` PrometheusReportingInterval time.Duration `yaml:"prometheus_reporting_interval"` PeerLifetime time.Duration `yaml:"peer_lifetime"` ShardCount int `yaml:"shard_count"` } // LogFields renders the current config as a set of Logrus fields. func (cfg Config) LogFields() log.Fields { return log.Fields{ "name": Name, "gcInterval": cfg.GarbageCollectionInterval, "promReportInterval": cfg.PrometheusReportingInterval, "peerLifetime": cfg.PeerLifetime, "shardCount": cfg.ShardCount, } } // Validate sanity checks values set in a config and returns a new config with // default values replacing anything that is invalid. // // This function warns to the logger when a value is changed. func (cfg Config) Validate() Config { validcfg := cfg if cfg.ShardCount > 0 { validcfg.ShardCount = cfg.ShardCount } else { validcfg.ShardCount = 1024 log.WithFields(log.Fields{ "name": Name + ".ShardCount", "provided": strconv.Itoa(cfg.ShardCount), "default": strconv.Itoa(validcfg.ShardCount), }).Warnln("falling back to default configuration") } if cfg.GarbageCollectionInterval <= 0 { validcfg.GarbageCollectionInterval = time.Minute * 14 log.WithFields(log.Fields{ "name": Name + ".GarbageCollectionInterval", "provided": cfg.GarbageCollectionInterval, "default": validcfg.GarbageCollectionInterval, }).Warnln("falling back to default configuration") } if cfg.PrometheusReportingInterval <= 0 { validcfg.PrometheusReportingInterval = time.Second * 1 log.WithFields(log.Fields{ "name": Name + ".PrometheusReportingInterval", "provided": cfg.PrometheusReportingInterval, "default": validcfg.PrometheusReportingInterval, }).Warnln("falling back to default configuration") } return validcfg } // New creates a new PeerStore backed by memory. func New(provided Config) (storage.PeerStore, error) { cfg := provided.Validate() ps := &peerStore{ cfg: cfg, shards: make([]*peerShard, cfg.ShardCount*2), closed: make(chan struct{}), } for i := 0; i < cfg.ShardCount*2; i++ { ps.shards[i] = &peerShard{swarms: make(map[bittorrent.InfoHash]swarm)} } // Start a goroutine for garbage collection. ps.wg.Add(1) go func() { defer ps.wg.Done() for { select { case <-ps.closed: return case <-time.After(cfg.GarbageCollectionInterval): before := time.Now().Add(-cfg.PeerLifetime) log.Debugln("memory: purging peers with no announces since", before) ps.collectGarbage(before) } } }() // Start a goroutine for updating our cached system clock. ps.wg.Add(1) go func() { defer ps.wg.Done() t := time.NewTicker(1 * time.Second) for { select { case <-ps.closed: t.Stop() return case now := <-t.C: ps.setClock(now.UnixNano()) } } }() // Start a goroutine for reporting statistics to Prometheus. ps.wg.Add(1) go func() { defer ps.wg.Done() t := time.NewTicker(cfg.PrometheusReportingInterval) for { select { case <-ps.closed: t.Stop() return case <-t.C: before := time.Now() ps.populateProm() log.Debugf("memory: populateProm() took %s", time.Since(before)) } } }() return ps, nil } type serializedPeer string func newPeerKey(p bittorrent.Peer) serializedPeer { b := make([]byte, 20+2+len(p.IP.IP)) copy(b[:20], p.ID[:]) binary.BigEndian.PutUint16(b[20:22], p.Port) copy(b[22:], p.IP.IP) return serializedPeer(b) } func decodePeerKey(pk serializedPeer) bittorrent.Peer { peer := bittorrent.Peer{ ID: bittorrent.PeerIDFromString(string(pk[:20])), Port: binary.BigEndian.Uint16([]byte(pk[20:22])), IP: bittorrent.IP{IP: net.IP(pk[22:])}} if ip := peer.IP.To4(); ip != nil { peer.IP.IP = ip peer.IP.AddressFamily = bittorrent.IPv4 } else if len(peer.IP.IP) == net.IPv6len { // implies toReturn.IP.To4() == nil peer.IP.AddressFamily = bittorrent.IPv6 } else { panic("IP is neither v4 nor v6") } return peer } type peerShard struct { swarms map[bittorrent.InfoHash]swarm numSeeders uint64 numLeechers uint64 sync.RWMutex } type swarm struct { // map serialized peer to mtime seeders map[serializedPeer]int64 leechers map[serializedPeer]int64 } type peerStore struct { cfg Config shards []*peerShard // clock stores the current time nanoseconds, updated every second. // Must be accessed atomically! clock int64 closed chan struct{} wg sync.WaitGroup } var _ storage.PeerStore = &peerStore{} // populateProm aggregates metrics over all shards and then posts them to // prometheus. func (ps *peerStore) populateProm() { var numInfohashes, numSeeders, numLeechers uint64 for _, s := range ps.shards { s.RLock() numInfohashes += uint64(len(s.swarms)) numSeeders += s.numSeeders numLeechers += s.numLeechers s.RUnlock() } storage.PromInfohashesCount.Set(float64(numInfohashes)) storage.PromSeedersCount.Set(float64(numSeeders)) storage.PromLeechersCount.Set(float64(numLeechers)) } // recordGCDuration records the duration of a GC sweep. func recordGCDuration(duration time.Duration) { storage.PromGCDurationMilliseconds.Observe(float64(duration.Nanoseconds()) / float64(time.Millisecond)) } func (ps *peerStore) getClock() int64 { return atomic.LoadInt64(&ps.clock) } func (ps *peerStore) setClock(to int64) { atomic.StoreInt64(&ps.clock, to) } func (ps *peerStore) shardIndex(infoHash bittorrent.InfoHash, af bittorrent.AddressFamily) uint32 { // There are twice the amount of shards specified by the user, the first // half is dedicated to IPv4 swarms and the second half is dedicated to // IPv6 swarms. idx := binary.BigEndian.Uint32(infoHash[:4]) % (uint32(len(ps.shards)) / 2) if af == bittorrent.IPv6 { idx += uint32(len(ps.shards) / 2) } return idx } func (ps *peerStore) PutSeeder(ih bittorrent.InfoHash, p bittorrent.Peer) error { select { case <-ps.closed: panic("attempted to interact with stopped memory store") default: } pk := newPeerKey(p) shard := ps.shards[ps.shardIndex(ih, p.IP.AddressFamily)] shard.Lock() if _, ok := shard.swarms[ih]; !ok { shard.swarms[ih] = swarm{ seeders: make(map[serializedPeer]int64), leechers: make(map[serializedPeer]int64), } } // If this peer isn't already a seeder, update the stats for the swarm. if _, ok := shard.swarms[ih].seeders[pk]; !ok { shard.numSeeders++ } // Update the peer in the swarm. shard.swarms[ih].seeders[pk] = ps.getClock() shard.Unlock() return nil } func (ps *peerStore) DeleteSeeder(ih bittorrent.InfoHash, p bittorrent.Peer) error { select { case <-ps.closed: panic("attempted to interact with stopped memory store") default: } pk := newPeerKey(p) shard := ps.shards[ps.shardIndex(ih, p.IP.AddressFamily)] shard.Lock() if _, ok := shard.swarms[ih]; !ok { shard.Unlock() return storage.ErrResourceDoesNotExist } if _, ok := shard.swarms[ih].seeders[pk]; !ok { shard.Unlock() return storage.ErrResourceDoesNotExist } shard.numSeeders-- delete(shard.swarms[ih].seeders, pk) if len(shard.swarms[ih].seeders)|len(shard.swarms[ih].leechers) == 0 { delete(shard.swarms, ih) } shard.Unlock() return nil } func (ps *peerStore) PutLeecher(ih bittorrent.InfoHash, p bittorrent.Peer) error { select { case <-ps.closed: panic("attempted to interact with stopped memory store") default: } pk := newPeerKey(p) shard := ps.shards[ps.shardIndex(ih, p.IP.AddressFamily)] shard.Lock() if _, ok := shard.swarms[ih]; !ok { shard.swarms[ih] = swarm{ seeders: make(map[serializedPeer]int64), leechers: make(map[serializedPeer]int64), } } // If this peer isn't already a leecher, update the stats for the swarm. if _, ok := shard.swarms[ih].leechers[pk]; !ok { shard.numLeechers++ } // Update the peer in the swarm. shard.swarms[ih].leechers[pk] = ps.getClock() shard.Unlock() return nil } func (ps *peerStore) DeleteLeecher(ih bittorrent.InfoHash, p bittorrent.Peer) error { select { case <-ps.closed: panic("attempted to interact with stopped memory store") default: } pk := newPeerKey(p) shard := ps.shards[ps.shardIndex(ih, p.IP.AddressFamily)] shard.Lock() if _, ok := shard.swarms[ih]; !ok { shard.Unlock() return storage.ErrResourceDoesNotExist } if _, ok := shard.swarms[ih].leechers[pk]; !ok { shard.Unlock() return storage.ErrResourceDoesNotExist } shard.numLeechers-- delete(shard.swarms[ih].leechers, pk) if len(shard.swarms[ih].seeders)|len(shard.swarms[ih].leechers) == 0 { delete(shard.swarms, ih) } shard.Unlock() return nil } func (ps *peerStore) GraduateLeecher(ih bittorrent.InfoHash, p bittorrent.Peer) error { select { case <-ps.closed: panic("attempted to interact with stopped memory store") default: } pk := newPeerKey(p) shard := ps.shards[ps.shardIndex(ih, p.IP.AddressFamily)] shard.Lock() if _, ok := shard.swarms[ih]; !ok { shard.swarms[ih] = swarm{ seeders: make(map[serializedPeer]int64), leechers: make(map[serializedPeer]int64), } } // If this peer is a leecher, update the stats for the swarm and remove them. if _, ok := shard.swarms[ih].leechers[pk]; ok { shard.numLeechers-- delete(shard.swarms[ih].leechers, pk) } // If this peer isn't already a seeder, update the stats for the swarm. if _, ok := shard.swarms[ih].seeders[pk]; !ok { shard.numSeeders++ } // Update the peer in the swarm. shard.swarms[ih].seeders[pk] = ps.getClock() shard.Unlock() return nil } func (ps *peerStore) AnnouncePeers(ih bittorrent.InfoHash, seeder bool, numWant int, announcer bittorrent.Peer) (peers []bittorrent.Peer, err error) { select { case <-ps.closed: panic("attempted to interact with stopped memory store") default: } shard := ps.shards[ps.shardIndex(ih, announcer.IP.AddressFamily)] shard.RLock() if _, ok := shard.swarms[ih]; !ok { shard.RUnlock() return nil, storage.ErrResourceDoesNotExist } if seeder { // Append leechers as possible. leechers := shard.swarms[ih].leechers for pk := range leechers { if numWant == 0 { break } peers = append(peers, decodePeerKey(pk)) numWant-- } } else { // Append as many seeders as possible. seeders := shard.swarms[ih].seeders for pk := range seeders { if numWant == 0 { break } peers = append(peers, decodePeerKey(pk)) numWant-- } // Append leechers until we reach numWant. if numWant > 0 { leechers := shard.swarms[ih].leechers announcerPK := newPeerKey(announcer) for pk := range leechers { if pk == announcerPK { continue } if numWant == 0 { break } peers = append(peers, decodePeerKey(pk)) numWant-- } } } shard.RUnlock() return } func (ps *peerStore) ScrapeSwarm(ih bittorrent.InfoHash, addressFamily bittorrent.AddressFamily) (resp bittorrent.Scrape) { select { case <-ps.closed: panic("attempted to interact with stopped memory store") default: } resp.InfoHash = ih shard := ps.shards[ps.shardIndex(ih, addressFamily)] shard.RLock() if _, ok := shard.swarms[ih]; !ok { shard.RUnlock() return } resp.Incomplete = uint32(len(shard.swarms[ih].leechers)) resp.Complete = uint32(len(shard.swarms[ih].seeders)) shard.RUnlock() return } // collectGarbage deletes all Peers from the PeerStore which are older than the // cutoff time. // // This function must be able to execute while other methods on this interface // are being executed in parallel. func (ps *peerStore) collectGarbage(cutoff time.Time) error { select { case <-ps.closed: return nil default: } cutoffUnix := cutoff.UnixNano() start := time.Now() for _, shard := range ps.shards { shard.RLock() var infohashes []bittorrent.InfoHash for ih := range shard.swarms { infohashes = append(infohashes, ih) } shard.RUnlock() runtime.Gosched() for _, ih := range infohashes { shard.Lock() if _, stillExists := shard.swarms[ih]; !stillExists { shard.Unlock() runtime.Gosched() continue } for pk, mtime := range shard.swarms[ih].leechers { if mtime <= cutoffUnix { shard.numLeechers-- delete(shard.swarms[ih].leechers, pk) } } for pk, mtime := range shard.swarms[ih].seeders { if mtime <= cutoffUnix { shard.numSeeders-- delete(shard.swarms[ih].seeders, pk) } } if len(shard.swarms[ih].seeders)|len(shard.swarms[ih].leechers) == 0 { delete(shard.swarms, ih) } shard.Unlock() runtime.Gosched() } runtime.Gosched() } recordGCDuration(time.Since(start)) return nil } func (ps *peerStore) Stop() <-chan error { c := make(chan error) go func() { close(ps.closed) ps.wg.Wait() // Explicitly deallocate our storage. shards := make([]*peerShard, len(ps.shards)) for i := 0; i < len(ps.shards); i++ { shards[i] = &peerShard{swarms: make(map[bittorrent.InfoHash]swarm)} } ps.shards = shards close(c) }() return c } func (ps *peerStore) LogFields() log.Fields { return ps.cfg.LogFields() }